[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01122916A - Crystalline zincosilicate and production thereof - Google Patents

Crystalline zincosilicate and production thereof

Info

Publication number
JPH01122916A
JPH01122916A JP62278236A JP27823687A JPH01122916A JP H01122916 A JPH01122916 A JP H01122916A JP 62278236 A JP62278236 A JP 62278236A JP 27823687 A JP27823687 A JP 27823687A JP H01122916 A JPH01122916 A JP H01122916A
Authority
JP
Japan
Prior art keywords
source
ion
ratio
reaction mixture
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62278236A
Other languages
Japanese (ja)
Other versions
JP2576151B2 (en
Inventor
Hiroshi Okaniwa
宏 岡庭
Senji Kasahara
泉司 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP62278236A priority Critical patent/JP2576151B2/en
Publication of JPH01122916A publication Critical patent/JPH01122916A/en
Application granted granted Critical
Publication of JP2576151B2 publication Critical patent/JP2576151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enable control of acid strength and maintenance of hydrophilicity and obtain the above substance having excellent adsorption and catalyst performances, by mixing a tetramethylammonium ion source, Si source, Al source, Zn source and alkaline (earth) metal or NH4 ion source with water and heating the resultant reaction mixture at a specific molar ratio of oxides. CONSTITUTION:A tetramethylammonium (R) ion source, Al source, Zn source, alkaline (earth) metal or NH4 (M) ion source and Si source, such as water glass or amorphous silica, consisting of hydroxides, halides, sulfates, etc., of respective ions are mixed with water to prepare a reaction mixture in an amount so as to satisfy the following relations. 1-100 ratio of formula I, 0.001-1.0 ration of formula II, 0.015-0.035 ratio (OH<->/H2O), 0-1.0 ratio (M2/nO/SiO2) (n is the valence of M), 10-50 ratio (H2O/SiO2) and 0.01-1.0 ratio of formula III expressed in terms of molar ratios of respective oxides. The resultant reaction mixture is then placed in a hermetically sealed pressure-resistant vessel, kept at 100-250 deg.C temperature for 2hr-10 days and crystallized to afford the aimed substance having a chemical composition of formula IV (0<a<=1; 2-a<=x<=20) based on the anhydrous state and powder X-ray diffraction pattern including spacings in the table.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は珪素と亜鉛又はこれらとアルミニウムを含有す
る新規な多孔質結晶性ジンコシリケート、及びその製造
方法に間するものである。本発明のこの新規なジンコシ
リケートは、以降“TSZS−11#と総称する。ゼオ
ライトは一般的にはアルミノシリケートであり、互いに
酸素原子を共有することによって結合されたAtOs、
及びS i O4四面体の3次元骨格構造を有している
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a novel porous crystalline zincosilicate containing silicon and zinc or these and aluminum, and a method for producing the same. This novel zincosilicate of the present invention is hereafter collectively referred to as "TSZS-11#". Zeolites are generally aluminosilicate, consisting of AtOs,
and has a three-dimensional skeleton structure of S i O4 tetrahedron.

本発明(7)TSZS−11は、5in4に加え、Zn
O2四面体又はさらにAlO4四面体をその3次元骨格
に含むジンコシリケートである。これらのジンコシリケ
ート多孔体は従来のゼオライトでは得られなかった吸着
特性、触媒性能を有することから、分子篩、吸着剤、或
いは炭化水素転化反応などの触媒成分として有用である
The present invention (7) TSZS-11 has Zn in addition to 5in4
It is a zincosilicate containing O2 tetrahedra or even AlO4 tetrahedra in its three-dimensional skeleton. Since these porous zincosilicate materials have adsorption properties and catalytic performance that cannot be obtained with conventional zeolites, they are useful as molecular sieves, adsorbents, or catalyst components for hydrocarbon conversion reactions.

〈従来の技術〉 亜鉛を含むゼオライト様無機結晶体の報告例は少なく、
これまでに知られているものとしては、亜鉛−アルミニ
ウム−リン−ケイ素−酸化物モレキュラーシーブ(特開
昭60−231414号公報)、亜鉛を含むアルミノホ
スフェート多孔体(Journal  of  the
  Chemi  −cal  5ociety+Ch
emicalCommunications、1985
年。
<Prior art> There are few reports of zeolite-like inorganic crystals containing zinc;
Examples of what is known so far include zinc-aluminum-phosphorus-silicon-oxide molecular sieve (Japanese Patent Application Laid-Open No. 60-231414), aluminophosphate porous material containing zinc (Journal of the
Chemi-cal 5ociety+Ch
chemical communications, 1985
Year.

1056〜1057ページ)等がある。1056-1057 pages).

〈発明が解決しようとする問題点〉 本発明は、ゼオライトの骨格−中のアルミニウムの一部
又は全部を亜鉛で置き換えた新規な結晶性ジンコシリケ
ート及びその製造方法を提供するものである。
<Problems to be Solved by the Invention> The present invention provides a novel crystalline zincosilicate in which part or all of the aluminum in the zeolite skeleton is replaced with zinc, and a method for producing the same.

く問題点を解決するための手段〉 本発明者らは、ゼオライト構造を有し、且つ珪素とアル
ミニウムに加え異種金属原子を結晶骨格内に含有するこ
とにより、従来のゼオライトでは得られなかった細孔径
や固体酸特性、即ち吸着特性や触媒性能を有するメタロ
シリケートを合成することを目的として鋭意研究を重ね
た結果、本発明に到達した。
Means for Solving the Problems> The present inventors have developed a zeolite that has a zeolite structure and contains atoms of different metals in addition to silicon and aluminum in the crystal skeleton, thereby producing fine particles that cannot be obtained with conventional zeolites. The present invention was achieved as a result of intensive research aimed at synthesizing metallosilicates having pore size and solid acid properties, that is, adsorption properties and catalytic performance.

即ち、本発明の新規物質は、その結晶骨格中に珪素、亜
鉛又はこれらとアルミニウムを含有し、酸化物のモル比
で表して、 (1±0.3) M2znO−aZno −(1−a)
A1203・xSiO2 く式中aは 0<a≦1 の数、 Xは (2−a)≦x≦20の数であり、Mは少なくと
も一種の陽イオンを、nはMの原子価を表す。) の無水基準の化学組成を有し、且つ未焼成状態で実質上
、表1に記載の面間隔を含む粉末X線回折図形を有する
ことを特徴とする多孔質結晶性ジンコシリケートである
That is, the novel substance of the present invention contains silicon, zinc, or these and aluminum in its crystal skeleton, and expressed in molar ratio of oxides, (1±0.3) M2znO-aZno-(1-a)
A1203.xSiO2 In the formula, a is a number satisfying 0<a≦1, X is a number satisfying (2-a)≦x≦20, M represents at least one kind of cation, and n represents the valence of M. ) is a porous crystalline zincosilicate having a chemical composition on an anhydrous basis, and having a powder X-ray diffraction pattern substantially including the interplanar spacings shown in Table 1 in an unfired state.

表1 粉末X線回折図形 O監ニュ11 6.36±0.15     M 4.49±0.10    W〜M 3.67=1−0.10     VS3.17±0.
10     W 2.84±0.10     W 2.59±0.08     W (表中、W、M、VSはそれぞれ、弱い、中位。
Table 1 Powder X-ray diffraction pattern O Kannu 11 6.36±0.15 M 4.49±0.10 W~M 3.67=1-0.10 VS3.17±0.
10 W 2.84±0.10 W 2.59±0.08 W (In the table, W, M, and VS are weak and medium, respectively.

非常に強いを表す。) 陽イオンMは特に限定されないが、テトラメチルアンモ
ニウムイオン、アルカリ金属イオン、アルカリ土類金属
イオン、アンモニウムイオン、水素イオン等の陽イオン
、又はこれら陽イオンの混合物である。
Represents very strong. ) The cation M is not particularly limited, but is a cation such as a tetramethylammonium ion, an alkali metal ion, an alkaline earth metal ion, an ammonium ion, a hydrogen ion, or a mixture of these cations.

また、本発明の方法は珪素源;亜鉛源;アルミニウム源
;テトラメチルアンモニウムイオン源;アルカリ金属イ
オン、アルカリ土類金属イオン及びアンモニウムイオン
源のいずれか一種以上;ならびに水を混合して、酸化物
のモル比で示して次の組成 S io2/ (A1203+Zn0)1〜100 ZnO/ (A1203+Zn0) 0.001〜1.0 0H−/H200,015〜0.035M″2/n・O
/51020〜1.0 H20/S i 02  10〜50 TMA”/ (S i 02+A I 203+ Z 
n O)0.01〜1.0 (ただし、M’はアルカリ金属イオン、アルカリ土類金
属イオン及びアンモニウムイオン源のいずれか一種以上
を、n′はM′の原子価を、TMA”はテトラメチルア
ンモニウムイオンを表す。) を有する反応混合物をSIl製し、この反応混合物を、
約100℃ないし約250℃の温度に保持することを特
徴とするTSZS−11の製造方法である。
In addition, the method of the present invention includes a silicon source; a zinc source; an aluminum source; a tetramethylammonium ion source; any one or more of alkali metal ions, alkaline earth metal ions, and ammonium ion sources; and water; The following composition Sio2/ (A1203+Zn0) 1~100 ZnO/ (A1203+Zn0) 0.001~1.0 0H-/H200,015~0.035M''2/n・O
/51020~1.0 H20/S i 02 10~50 TMA"/ (S i 02+A I 203+ Z
n O) 0.01 to 1.0 (However, M' is any one or more of alkali metal ions, alkaline earth metal ions, and ammonium ion sources, n' is the valence of M', and TMA" is tetra (representing methylammonium ion) is prepared by SIl, and this reaction mixture is
This is a method for producing TSZS-11 characterized by maintaining the temperature at about 100°C to about 250°C.

珪素源、亜鉛源、アルミニウム源、テトラメチルアンモ
ニウムイオン源、アルカリ金属イオン。
Silicon source, zinc source, aluminum source, tetramethylammonium ion source, alkali metal ion.

アルカリ土類金属イオン又はアンモニウムイオン源は特
に限定されない。例えば、アルカリ金属イオン、アルカ
リ土類金属イオン又はアンモニウムイオン源としては、
該イオンを含む中性塩又はこれと該イオンの水酸化物等
を用いることができる。
The source of alkaline earth metal ions or ammonium ions is not particularly limited. For example, as an alkali metal ion, alkaline earth metal ion or ammonium ion source,
A neutral salt containing the ion or a hydroxide of this ion and the ion can be used.

珪素源としては、ゼオライト製造に従来より使用されて
いる、水ガラス、コロイド状シリカ、無定形シリカ、フ
ユームドシリ力等を用いることができる。亜鉛源には、
塩化亜鉛、硫酸亜鉛、燐酸亜鉛等を使用できる。アルミ
ニウム源としては、ゼ、オライド製造に従来より使用さ
れている、アルミナゾル、プソイドベーマイト、アルミ
ン酸ナトリウム、水酸化アルミニウム、放化アルミニウ
ム。
As the silicon source, water glass, colloidal silica, amorphous silica, fumed silica, etc., which are conventionally used in zeolite production, can be used. Sources of zinc include
Zinc chloride, zinc sulfate, zinc phosphate, etc. can be used. Aluminum sources include alumina sol, pseudoboehmite, sodium aluminate, aluminum hydroxide, and released aluminum, which are conventionally used in the production of zeolite and olide.

硫酸アルミニウム等が使用される。テトラメチルアンモ
ニウムイオン源は、その水酸化物、或いはハロゲン化物
を導入することにより、供給される。
Aluminum sulfate etc. are used. A source of tetramethylammonium ion is supplied by introducing its hydroxide or halide.

反応混合物が不均一であると、不純物が副生ずることも
あるので、これらの原料は攪拌下に添加し、それぞれの
原料を全部入れ終わるまでの中間混合物及びその供給を
終了した最終反応混合物は実質上均質となるまで攪拌す
るのが好ましい。
If the reaction mixture is heterogeneous, impurities may be generated as by-products, so these raw materials are added under stirring, and the intermediate mixture until all of the raw materials are added and the final reaction mixture after the supply is substantially free. It is preferable to stir until the mixture becomes homogeneous.

こうして得た最終反応混合物は、不純物の混入を防くた
め、例えばポリテトラフルオルエチレンの様な不活性プ
ラスチック材料でライニングしたステンレス製の密閉耐
圧容器を用いて結晶化される。
The final reaction mixture thus obtained is crystallized in a sealed pressure vessel made of stainless steel lined with an inert plastic material, such as polytetrafluoroethylene, to prevent contamination with impurities.

結晶化温度は100℃ないし250℃でなければならな
い。何故なら100℃未満では結晶化に長時間を要し、
250℃を越える温度では、結晶化は短時間で進行する
が、不純物が生成しやすくなるからである。
The crystallization temperature should be between 100°C and 250°C. This is because crystallization takes a long time at temperatures below 100°C.
At temperatures exceeding 250° C., crystallization progresses in a short time, but impurities are likely to be generated.

また結晶化に際し加圧してもよいが、自然圧下行うのが
好ましい。
Although pressure may be applied during crystallization, it is preferable to carry out under natural pressure.

最終反応混合物は、以上のような条件下、通常約2時間
ないし約10日間保持することにより結晶化され、生成
物は濾過、或いは遠心分シ「の様な通常の分離方法によ
り回収される。
The final reaction mixture is crystallized by holding under the above conditions, usually for about 2 hours to about 10 days, and the product is recovered by conventional separation methods such as filtration or centrifugation.

このようにして得られたTSZS−11は、その細孔内
に、鉱化剤として使用したテトラメチルアンモニウムイ
オンを含有している。このテトラメチルアンモニウムイ
オンは必要に応じて除去することができるが、イオン交
換等の処理では除去されず、−船釣な焼成温度、即ち4
50〜650℃の温度で焼成することにより除去される
TSZS-11 thus obtained contains tetramethylammonium ions used as a mineralizer in its pores. This tetramethylammonium ion can be removed if necessary, but it cannot be removed by treatments such as ion exchange, and the
It is removed by firing at a temperature of 50-650°C.

生成物のX線回折にはCuKa線を使用した。CuKa radiation was used for X-ray diffraction of the product.

当業者には公知の事実であるが、パラメータ2θの決定
には人的、及び機械的誤差を受けやすく、2θの各記録
値に対して、約0.4°の誤差を課す事ができる。また
、その物質の骨格の組成や陽イオンの種類の違い、或い
は吸湿の程度等にょっても、2θ、ピーク強度の各記録
値は変動し得る。
As is known to those skilled in the art, the determination of the parameter 2θ is subject to human and mechanical errors, which can impose an error of approximately 0.4° on each recorded value of 2θ. Furthermore, the recorded values of 2θ and peak intensity may vary depending on the composition of the skeleton of the substance, the type of cations, the degree of moisture absorption, etc.

この誤差は、無論、各記録値から計算されるd−間隔、
及び相対強度の値に不確定性を与えるものである。しか
しながら、この不確定性は本発明の新規物質を従来技術
の物質と区別するのを妨げる程ではない。
This error is, of course, the d-spacing calculated from each recorded value,
and gives uncertainty to the value of relative intensity. However, this uncertainty is not sufficient to prevent the novel materials of the present invention from being distinguished from prior art materials.

〈発明の効果〉 上記のテトラメチルアンモニウムイオンを含んだTSZ
S−11は、必要に応じてこのテトラメチルアンモニウ
ムイオンを空気流中450〜650℃の焼成により分解
除去し、その後、例えば水酸化アンモニウム又は硫酸ア
ンモニウム、硝酸アンモニウム等のアンモニウム塩によ
るイオン交換でアンモニア型とした後、450〜650
℃の焼成によりアンモニアを除去し、活性な水素型のT
SZS−11とすることができる。
<Effect of the invention> TSZ containing the above tetramethylammonium ion
In S-11, the tetramethylammonium ion is decomposed and removed by firing at 450 to 650°C in an air stream as necessary, and then converted to ammonia form by ion exchange with ammonium salts such as ammonium hydroxide, ammonium sulfate, and ammonium nitrate. After that, 450-650
Ammonia is removed by calcination at ℃, and the active hydrogen type T is
It can be made into SZS-11.

この水素型のTSZS−11は、結晶中のZnO/ (
A1203+Zn0)モル比を変化させることにより連
続的に酸強度を変化させることができる。
This hydrogen type TSZS-11 has ZnO/(
By changing the molar ratio of A1203+Zn0), the acid strength can be changed continuously.

従来のアルミノシリケートに於ても、結晶中のS i 
02/A I 203モル比を変1ヒさせることによる
酸強度の制御は可能であるが、アルミノシリケートはS
 i 02/A 1203モル比の増加とともに、その
親水性が低下することが知られている。しかしながら、
本発明のTSZS−11は従来のアルミノシリケートで
は成し得ながった、酸強度を制御し、且つその親水性を
維持することを可能とするものであり、例えば炭化水素
転化反応において酸強度を制御することによって、反応
の選択性に都合よく作用させることができる。
Even in conventional aluminosilicate, Si in the crystal
Although it is possible to control the acid strength by changing the molar ratio of 02/A I 203, aluminosilicate
It is known that as the i 02/A 1203 molar ratio increases, its hydrophilicity decreases. however,
TSZS-11 of the present invention makes it possible to control acid strength and maintain its hydrophilicity, which could not be achieved with conventional aluminosilicate. By controlling , the selectivity of the reaction can be favorably influenced.

TSZS−11は、通常のイオン交換、含浸等により、
所望の金属イオンを担持し、触媒成分として使用するこ
とができる。
TSZS-11 is produced by ordinary ion exchange, impregnation, etc.
It supports desired metal ions and can be used as a catalyst component.

〈実施例〉 本発明をさらに具体的に説明するために、以下に実施例
を示すが、本発明は以下の実施例によって限定されるも
のではない。
<Examples> In order to explain the present invention more specifically, Examples are shown below, but the present invention is not limited to the following Examples.

実施例1 塩化亜鉛1.05gと無定形シリカ(S i 02=8
7.7wt%、A 1203:0.+5wt%、H20
=11.8wt%)12.72gを、68゜36gの水
と混合した。得られたスラリーに、45.57gの水に
、6.67gの水酸化ナトリウム(98% Na0H)
を溶かした水酸化ナトリウム溶液を加え、最後に塩化テ
トラメチルアンモニウム 2.71gを加えて、次の組
成を有する反応混合物を調製した。
Example 1 1.05 g of zinc chloride and amorphous silica (S i 02 = 8
7.7wt%, A 1203:0. +5wt%, H20
= 11.8 wt%) was mixed with 68°36 g of water. To the resulting slurry, add 6.67 g of sodium hydroxide (98% NaOH) to 45.57 g of water.
A solution of sodium hydroxide was added, and finally 2.71 g of tetramethylammonium chloride was added to prepare a reaction mixture having the following composition.

5102/(A1203+Zn0)=23ZnO/(A
1203+Zn0)  =0.920H−/H20=0
.023 Na20/S io2 =0.40 H20/S i 02   =35 TMA”/ (S i02+Al2O3+Zno)=0
.38 (TMA+:テトラメチルアンモニウムイオン。
5102/(A1203+Zn0)=23ZnO/(A
1203+Zn0) =0.920H-/H20=0
.. 023 Na20/S io2 =0.40 H20/S i 02 =35 TMA”/ (S i02+Al2O3+Zno)=0
.. 38 (TMA+: tetramethylammonium ion.

以下同じ。) この反応混合物をオートクレーブに密封し、自然圧下1
70℃に加熱し、68時間この温度を保持し結晶性生成
物を得た。これを濾過、水洗の後、110℃で乾燥した
same as below. ) This reaction mixture was sealed in an autoclave and heated under natural pressure for 1
Heating to 70°C and holding this temperature for 68 hours gave a crystalline product. This was filtered, washed with water, and then dried at 110°C.

この生成物は化学分析より、次のモル組成を有していた
Chemical analysis revealed that this product had the following molar composition.

0.31 (T MA) 20 φ0.87N a 2
0 ・0.95Zn Oφ0.05A l 203 ・
8.3S i O2また、これは表2及び図1に示すX
線回折パターンを有する本発明のジンコシリケートであ
った。
0.31 (T MA) 20 φ0.87N a 2
0 ・0.95Zn Oφ0.05A l 203 ・
8.3S i O2 Also, this is X shown in Table 2 and Figure 1
The zincosilicate of the present invention had a line diffraction pattern.

表2 亘−仁A」−・ 6.362   50 4.493   33 3.676  100 3.168   11 2.840   15 2.594   21 実施例2 実施例1と同様にして、次の組成を有する反応混合物を
調製した。
Table 2 Wataru-Jin A'-・ 6.362 50 4.493 33 3.676 100 3.168 11 2.840 15 2.594 21 Example 2 A reaction having the following composition was conducted in the same manner as in Example 1. A mixture was prepared.

SiO2/(A1203+Zn0−)  =42.82
nO/(A1203+Zn0)  =0.860H−/
H20=0.017 Na20/SiO2=0.30 H20/5IO2=25 TMA◆/ (S i 02+A l 203+ Z 
n 0)=0.39 この反応混合物をオートクレーブに密封し、定常攪拌し
つつ自然圧下170℃に加熱し、68時間この温度を保
持し結晶性生成物を得た。これを濾過、水洗の後、11
0℃で乾燥した。
SiO2/(A1203+Zn0-) =42.82
nO/(A1203+Zn0) =0.860H-/
H20=0.017 Na20/SiO2=0.30 H20/5IO2=25 TMA◆/ (S i 02+A l 203+ Z
n 0 )=0.39 This reaction mixture was sealed in an autoclave, heated to 170° C. under natural pressure with constant stirring, and maintained at this temperature for 68 hours to obtain a crystalline product. After filtering and washing with water, 11
It was dried at 0°C.

この生成物は化学分析より、次のモル組成を有していた
Chemical analysis revealed that this product had the following molar composition.

” 0.22(TMA)20  ・0.93N a20
  ・0.902n 0 ・0.10A 120 a 
・17.2S i O2また、これは表3に示すX線回
折パターンを有する本発明のジンコシリケートであった
” 0.22 (TMA)20 ・0.93N a20
・0.902n 0 ・0.10A 120 a
-17.2S i O2 This was also the zincosilicate of the present invention having the X-ray diffraction pattern shown in Table 3.

表3 亘−Ll−>−・ 6.362   56 4.493   48 3.670  100 3.173   15 2.840   17 2.592  23 実施例3 実施例1と同様にして、次の組成を有する反応混合物を
調製した。
Table 3 Wataru-Ll->-・ 6.362 56 4.493 48 3.670 100 3.173 15 2.840 17 2.592 23 Example 3 A reaction having the following composition in the same manner as in Example 1 A mixture was prepared.

5jO2/(A120g−1−ZnO)  =23Zn
O/(A1203+Zn0)  =0.920H−/H
20=0.032 Na20/S i02 =0.40 H20/5i02  冨25 TMA”/ (S i02+A12o3+Zno)=0
.38 この反応混合物をオートクレーブに密封し、定常攪拌し
つつ自然圧下160℃に加熱し、68時間この温度を保
持し結晶性生成物を得た。これを濾過、水洗の後、11
0℃で乾燥した。
5jO2/(A120g-1-ZnO) =23Zn
O/(A1203+Zn0) =0.920H-/H
20=0.032 Na20/S i02 =0.40 H20/5i02 Tomi25 TMA”/ (S i02+A12o3+Zno)=0
.. 38 The reaction mixture was sealed in an autoclave, heated to 160° C. under natural pressure with constant stirring, and maintained at this temperature for 68 hours to obtain a crystalline product. After filtering and washing with water, 11
It was dried at 0°C.

この生成物は化学分析より、次のモル組成を有していた
Chemical analysis revealed that this product had the following molar composition.

0.17 (T MA) 20−0.89N a 20
−0.932n O・0.07A l 203 ・7.
2S i O2また、これは表4に示すX線回折パター
ンを有する本発明のジンコシリケートであった。
0.17 (TMA) 20-0.89N a 20
-0.932n O・0.07A l 203 ・7.
2S i O2 This was also the zincosilicate of the present invention with the X-ray diffraction pattern shown in Table 4.

表4 亘−IAj−・ 6.362   65 4.493   39 3.663  100 3.171   15 2.838   20 2.589   23 実施例4 塩化亜鉛と同時に塩化アルミニウムを加えた以外は、実
施例1と同様にして、次の組成を有する反応混合物を調
製した。
Table 4 Wataru-IAj-・ 6.362 65 4.493 39 3.663 100 3.171 15 2.838 20 2.589 23 Example 4 Same as Example 1 except that aluminum chloride was added at the same time as zinc chloride. A reaction mixture having the following composition was prepared in a similar manner.

S i02/(A1203+Zn0)=25ZnO/(
A1203+Zn0)  =0.500H−/H20=
0.023 Na20/S j02  =0.40 H20/SiO2=35 TMA  會/  (SiO2+AlzO3+Zn0)
=0.40 この反応混合物をオートクレーブに密封し、定常攪拌し
つつ自然圧下170℃に加熱し、68時間この温度を保
持し結晶性生成物を得た。これを濾過、水洗の後、11
0℃で乾燥した。
S i02/(A1203+Zn0)=25ZnO/(
A1203+Zn0) =0.500H-/H20=
0.023 Na20/S j02 =0.40 H20/SiO2=35 TMA meeting/ (SiO2+AlzO3+Zn0)
=0.40 This reaction mixture was sealed in an autoclave, heated to 170° C. under natural pressure with constant stirring, and maintained at this temperature for 68 hours to obtain a crystalline product. After filtering and washing with water, 11
It was dried at 0°C.

この生成物は化学分析より、次のモル組成を有していた
Chemical analysis revealed that this product had the following molar composition.

0.17 (T MA) 20−0.89N a 20
−0.372n O・0.63A 1203 ・9.4
S i O2また、これは表5に示すX線回折パターン
を有する本発明のジンコシリケートであった。
0.17 (TMA) 20-0.89N a 20
-0.372n O・0.63A 1203・9.4
S i O2 was also a zincosilicate of the present invention with the X-ray diffraction pattern shown in Table 5.

表5 ム」ユ  ・ 6.344   45 4.488   36 3.657  100 3.164   12 2.835   13 2.587   17Table 5 Mu” Yu ・ 6.344 45 4.488 36 3.657 100 3.164 12 2.835 13 2.587 17

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、実施例1で得られたジンコシリケートの粉末X
線回折図形を示す図である。
Figure 1 shows the zincosilicate powder X obtained in Example 1.
It is a figure showing a line diffraction pattern.

Claims (1)

【特許請求の範囲】 (1)結晶骨格中に珪素、亜鉛又はこれらとアルミニウ
ムを含有し、酸化物のモル比で表して、(1±0.3)
M_2_/_nO・aZnO・(1−a)Al_2O_
3・xSiO_2 (式中aは0<a≦1の数、 xは(2−a)≦x≦20の数であり、Mは少なくとも
一種の陽イオンを、nはMの原子価を表す。) の無水基準の化学組成を有し、且つ未焼成状態で実質上
、表1に記載した面間隔を含む粉末X線回折図形を有す
ることを特徴とする多孔質結晶性ジンコシリケート。 表1粉末X線回折図形 ¥面間隔d(A)¥¥ピーク強度¥ 6.36±0.15M 4.49±0.10W〜M 3.67±0.10VS 3.17±0.10W 2.84±0.10W 2.59±0.08W (表中、W、M、VSはそれぞれ、弱い、中位、非常に
強いを表す。) (2)テトラメチルアンモニウムイオン源;珪素源;ア
ルミニウム源;亜鉛源;アルカリ金属イオン、アルカリ
土類金属イオン及びアンモニウムイオン源のいずれか一
種以上;ならびに水を混合して、酸化物のモル比で示し
て次の組成 SiO_2/(Al_2O_3+ZnO) 1〜100 ZnO/(Al_2O_3+ZnO) 0.001〜1.0 OH^−/H_2O0.015〜0.035M’_2_
/_n・O/SiO_20〜1.0H_2O/SiO_
210〜50 R/(SiO_2+Al_2O_3+ZnO)0.01
〜1.0 (ただし、M’はアルカリ金属イオン、アルカリ土類金
属イオン及びアンモニウムイオンのいずれか一種以上を
、n’はM’の原子価を、TMA^+はテトラメチルア
ンモニウムイオンを表す。) を有する反応混合物を調製し、該反応混合物を、100
℃ないし250℃の温度に保持することを特徴とする多
孔質結晶性ジンコシリケートの製造方法。
[Claims] (1) Contains silicon, zinc, or both and aluminum in the crystal skeleton, expressed as an oxide molar ratio, (1±0.3)
M_2_/_nO・aZnO・(1-a)Al_2O_
3.xSiO_2 (where a is a number satisfying 0<a≦1, x is a number satisfying (2-a)≦x≦20, M represents at least one kind of cation, and n represents the valence of M. ) A porous crystalline zincosilicate having a chemical composition on an anhydrous basis, and having a powder X-ray diffraction pattern substantially including the interplanar spacings shown in Table 1 in an unfired state. Table 1 Powder X-ray diffraction pattern\Spacing d(A)\Peak intensity\ 6.36±0.15M 4.49±0.10W~M 3.67±0.10VS 3.17±0.10W 2 .84±0.10W 2.59±0.08W (In the table, W, M, and VS represent weak, medium, and very strong, respectively.) (2) Tetramethylammonium ion source; silicon source; aluminum source; zinc source; any one or more of alkali metal ion, alkaline earth metal ion, and ammonium ion source; and water are mixed to form the following composition SiO_2/(Al_2O_3+ZnO) 1 to 100, expressed in molar ratio of oxides. ZnO/(Al_2O_3+ZnO) 0.001~1.0 OH^-/H_2O0.015~0.035M'_2_
/_n・O/SiO_20~1.0H_2O/SiO_
210~50 R/(SiO_2+Al_2O_3+ZnO)0.01
~1.0 (However, M' represents any one or more of an alkali metal ion, an alkaline earth metal ion, and an ammonium ion, n' represents the valence of M', and TMA^+ represents a tetramethylammonium ion. ) is prepared, and the reaction mixture is divided into 100
A method for producing porous crystalline zincosilicate, which comprises maintaining the temperature at a temperature of 0.degree. C. to 250.degree.
JP62278236A 1987-11-05 1987-11-05 Crystalline zinc silicate and method for producing the same Expired - Lifetime JP2576151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62278236A JP2576151B2 (en) 1987-11-05 1987-11-05 Crystalline zinc silicate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62278236A JP2576151B2 (en) 1987-11-05 1987-11-05 Crystalline zinc silicate and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01122916A true JPH01122916A (en) 1989-05-16
JP2576151B2 JP2576151B2 (en) 1997-01-29

Family

ID=17594513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62278236A Expired - Lifetime JP2576151B2 (en) 1987-11-05 1987-11-05 Crystalline zinc silicate and method for producing the same

Country Status (1)

Country Link
JP (1) JP2576151B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476901A2 (en) * 1990-09-10 1992-03-25 JOSEPH CROSFIELD &amp; SONS LTD. Zeolites
US5137706A (en) * 1991-02-12 1992-08-11 Mobil Oil Corporation Crystalline compositions
JP2018140888A (en) * 2017-02-27 2018-09-13 東ソー株式会社 Mfi-type zinc silicate and method for producing the same
CN112097464A (en) * 2020-09-07 2020-12-18 衡阳百赛化工实业有限公司 Zinc sulfate vacuum cooling device
CN112678840A (en) * 2020-12-29 2021-04-20 东北大学 Preparation method and application of zinc-silicon molecular sieve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476901A2 (en) * 1990-09-10 1992-03-25 JOSEPH CROSFIELD &amp; SONS LTD. Zeolites
US5137706A (en) * 1991-02-12 1992-08-11 Mobil Oil Corporation Crystalline compositions
JP2018140888A (en) * 2017-02-27 2018-09-13 東ソー株式会社 Mfi-type zinc silicate and method for producing the same
CN112097464A (en) * 2020-09-07 2020-12-18 衡阳百赛化工实业有限公司 Zinc sulfate vacuum cooling device
CN112678840A (en) * 2020-12-29 2021-04-20 东北大学 Preparation method and application of zinc-silicon molecular sieve

Also Published As

Publication number Publication date
JP2576151B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
CA1038850A (en) Method for producing open framework zeolites
US5371307A (en) Silica/germanium oxide zeolites
JPH0768045B2 (en) Zeolite having MFI structure mainly composed of silica and titanium oxide and method for synthesizing the same
EP0002079A1 (en) Crystalline silicates and method for preparing same
JPH0151447B2 (en)
EP0184409A2 (en) Improved method for the preparation of zeolites
US5328675A (en) Transition-metal-aluminosilicate hydrocarbon conversion catalysts having an L type structure, ECR-22-D
JPS631244B2 (en)
EP0230452B1 (en) Crystalline zeolite lz-202 and process for preparing same
US5338525A (en) MFI-type zeolite and its preparation process
EP0105679B1 (en) Zeolites
JPH01122916A (en) Crystalline zincosilicate and production thereof
JPS6346007B2 (en)
EP1364913A1 (en) Synthesis of zeolite itq-16 in an alkaline medium
JPH0228523B2 (en)
GB1592809A (en) Crystalline silica polymorph method for preparing same and its use
JP2697037B2 (en) Crystalline metal silicate and method for producing the same
JPH0826721A (en) Clinoptilolite and method for synthesizing same
JP2504068B2 (en) Crystalline boroaluminosilicate and method for producing the same
JP2576143B2 (en) Crystalline metallosilicate and method for producing the same
JP2000279949A (en) Ammonium ion adsorptton process using zirconium silicate and zirconium germanate molecular sieve
JP2551060B2 (en) Crystalline metallosilicate and method for producing the same
EP0088352B1 (en) Synthesis process for high silica zeolites
US5370858A (en) Process for the synthesis of zeolites having an aluminosilicate framework belonging to the faujasite structural family, products obtained and their use in adsorption and catalysis
JPH0524820A (en) Titanium-containing aluminosilicate zeolite having mordenite structure and its production