[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01129924A - Method and apparatus for refining molten metal - Google Patents

Method and apparatus for refining molten metal

Info

Publication number
JPH01129924A
JPH01129924A JP28856387A JP28856387A JPH01129924A JP H01129924 A JPH01129924 A JP H01129924A JP 28856387 A JP28856387 A JP 28856387A JP 28856387 A JP28856387 A JP 28856387A JP H01129924 A JPH01129924 A JP H01129924A
Authority
JP
Japan
Prior art keywords
molten metal
refining
flux
magnetic field
rotating magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28856387A
Other languages
Japanese (ja)
Inventor
Norio Sumita
則夫 住田
Toshikazu Sakuratani
桜谷 敏和
Shoji Miyagawa
宮川 昌治
Yoshihide Kato
嘉英 加藤
Tetsuya Fujii
徹也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28856387A priority Critical patent/JPH01129924A/en
Publication of JPH01129924A publication Critical patent/JPH01129924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To rapidly and stably execute flux refining without any fear of damage of refractory by adjusting positional relation of an axis of a refining vessel to an axis of a rotating magnetic field and subjecting a refining agent to contacting and mixing with molten metal and coagulating and separating contained impurities. CONSTITUTION:Circular flow is given to the molten metal 4 charged in the refining vessel 1 and by bringing the molten metal 4 into contact and mixing with the refining agent (refining flux) 5, the molten metal 4 is refined. In this case, at the time of promoting the contact and mixture with the molten metal 4 and the flux 5, the circular flow is given to the molten metal 4 under shifting condition of the axis of this vessel 1 from the axis of the rotating magnetic field center. On the other hand, at the time of coagulating and separating the flux 5 after containing impurities of P, S, O, etc., in the molten metal 4, the circular flow is given to the molten metal 4 under almost coinciding condition of the axis of this vessel 1 and the axis of the rotating magnetic field. By this method, the flux 5 containing the above impurities can be surely separated, and a high purity and high class steel can be industrially and stably produced at low cost.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、精錬容器に収容した溶融金属を回転撹拌によ
って精錬する際、精錬フラックスと溶融金属の接触・混
合を促進し、該金属中の不純物元素を迅速に高純度域ま
で低減するための効果的で、かつ精錬容器耐火物の寿命
を著しく向上させる精錬方法およびその装置に関するも
のである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention promotes contact and mixing of the smelting flux and the molten metal when refining the molten metal contained in a refining vessel by rotary stirring, thereby reducing the amount of the molten metal in the metal. The present invention relates to a refining method and apparatus that is effective for quickly reducing impurity elements to a high purity range and that significantly improves the life of refractory refining vessels.

〈従来の技術〉 溶湯金属精錬技術の向上は鋼材の不純物除去のニーズの
高まりと共に強く望まれ、とくに極低P、極低S、極低
0鋼を得る技術のより一層の政善に対する要求は強い。
<Conventional technology> Improvements in molten metal refining technology are strongly desired as the need for removing impurities from steel materials increases, and in particular, there is a strong demand for further improvements in technology for obtaining ultra-low P, ultra-low S, and ultra-low 0 steel. .

従来、P−3・0のような不純物は、精錬フラックスと
の反応あるいはフラックスへの吸着によって除去されて
いるものであり、その極限までの除去に対しては、フラ
ックスと溶融金属の接触・混合を促進するように撹拌力
を適用する方法が一般にとられている。
Conventionally, impurities such as P-3.0 have been removed by reaction with refining flux or adsorption to the flux, but in order to remove them to the utmost limit, it is necessary to contact and mix the flux and molten metal. A common method is to apply stirring force to promote this.

ここに対象物が高温融体であるため、化学工業界で用い
られる機械的撹拌は困難であり、一般一的には気泡撹拌
が使用されている。しかしながら気泡撹拌の場合、撹拌
力を向上させようとすると気泡が溶融金属から離脱する
際のスプラッシュが大きくなって操業困難となる問題が
ある。
Since the object is a high-temperature melt, mechanical stirring, which is used in the chemical industry, is difficult, and bubble stirring is generally used. However, in the case of bubble stirring, there is a problem in that if an attempt is made to improve the stirring power, the splash when the bubbles separate from the molten metal increases, making operation difficult.

これに対して電磁力投入により溶融金属を撹拌する方法
は気泡によるスプラッシュの問題を回避し、大撹拌力の
適用が可能であり最近の各プロセスで利用されている。
On the other hand, the method of stirring molten metal by applying electromagnetic force avoids the problem of splashing caused by air bubbles, allows the application of a large stirring force, and is used in various recent processes.

電磁力による撹拌力をフラックスと溶融金属の接触・混
合に利用したものとして例えば、特開昭53−1022
12号公報には、溶融金属に回転磁界による水平回転流
を生じさせ、その際に形成される溶融金属表面の窪み部
に精錬フラックスを投入する方法、さらに邪魔板の設置
によりフラックス精錬を促進すべきことが開示されてい
る。
For example, Japanese Patent Application Laid-Open No. 53-1022 uses electromagnetic stirring force to contact and mix flux and molten metal.
Publication No. 12 describes a method in which a horizontal rotating flow is generated in molten metal by a rotating magnetic field, and refining flux is introduced into the depressions on the surface of the molten metal that are formed at that time, and furthermore, a method is described in which a baffle plate is installed to promote flux refining. What should be done is disclosed.

発明者らは、上記のような技術について詳細にわたり検
討したところ、単なる回転撹拌では、精錬フラックスは
溶融金属の旋回流によって生じる該金属表面の窪み部底
部に留まるだけで十分な精錬効果を発揮しないこと、ま
た溶融金属の水平回転流の方向を乱す邪魔板を利用した
撹拌においては単なる回転撹拌に比べ精錬フラックスと
の接触・混合をを利に向上させることができるが、この
邪魔板は、通常耐火物でつ(られているので非撹拌時の
フラックスとの接触で損傷したり、また回転撹拌開始時
の急激な溶融金属接触に伴うはげしい熱衝撃を受けその
寿命に問題があった。さらに耐火物損傷は邪魔板だけに
留らず、邪魔板の存在によって誘起されるtg鋼流の乱
れにより、邪魔板を設けた近傍の精錬容器耐火物の損傷
もまた大きく、容器の寿命に関しても問題が大きかった
The inventors studied the above-mentioned technology in detail and found that with simple rotational stirring, the refining flux only remains at the bottom of the depression on the metal surface caused by the swirling flow of the molten metal, and does not exhibit a sufficient refining effect. In addition, stirring using a baffle plate that disturbs the direction of the horizontal rotational flow of molten metal can improve contact and mixing with the refining flux compared to simple rotary stirring, but this baffle plate usually Because it is made of refractory material, it can be damaged by contact with flux when not being stirred, and its life can be shortened due to severe thermal shock caused by rapid contact with molten metal when rotational stirring is started. The property damage is not only limited to the baffle plate, but due to the turbulence of the tg steel flow induced by the presence of the baffle plate, there is also significant damage to the refractory of the refining vessel near where the baffle plate is installed, and there is a problem with the life of the vessel. It was big.

また、回転撹拌を継続していると邪魔板の作用によりフ
ラックスあるいは非金属介在物の再捲き込みにより精錬
後の分離が・十分なされないという問題もあった。
Further, if the rotational stirring is continued, flux or nonmetallic inclusions are re-incorporated due to the action of the baffle plate, resulting in insufficient separation after refining.

〈発明が解決しようとする問題点〉 本発明は、回転撹拌によって溶融金属を精錬する際に生
じる従来の問題を解消した上で精錬フラックスとの接触
混合を促進させ、しかも溶融金属中に分散したフラック
スの速やかな凝集、分離を図るのに有利であり、かつ精
錬容器耐火物の寿命を著しく向上させる精錬方法および
その装置を提供するためになされたものである。
<Problems to be Solved by the Invention> The present invention solves the conventional problems that occur when refining molten metal by rotary stirring, promotes contact mixing with the refining flux, and furthermore, the present invention solves the conventional problems that occur when refining molten metal by rotary stirring. The present invention has been made in order to provide a refining method and an apparatus therefor that are advantageous for rapid agglomeration and separation of flux and that significantly improve the lifespan of refractory refractories in refining vessels.

く問題点を解決するための手段〉 本発明者らは、溶融金属の精錬について鋭意研究を重ね
た結果、溶融金属と精錬フラックスの接触、混合を必要
な場合には十分確保し、それが不要な場合には溶融金属
と精錬フラックスの接触、混合を低下せしめ、なお、ま
た邪魔板の存在に伴う耐火物損傷の問題を回避し得る方
法として回転磁界発生装置内に収容される溶融金属容器
を任意の位置に移動(前後左右に)可能な台車を架台上
に設置する方法の優位性を知見するに至り、この知見に
もとづいて本発明をなすに至った。
Means for Solving the Problems〉 As a result of intensive research into the refining of molten metal, the present inventors have succeeded in ensuring sufficient contact and mixing between the molten metal and the refining flux when necessary, and eliminating the need for such contact and mixing. In such cases, a molten metal container housed in a rotating magnetic field generator is used as a method to reduce the contact and mixing of molten metal and smelting flux, and also to avoid the problem of damage to refractories caused by the presence of baffles. We have discovered the superiority of a method in which a cart that can be moved to any position (back and forth, left and right) is installed on a pedestal, and based on this knowledge, we have developed the present invention.

本発明は、■精錬容器内に溶融金属を収容し、該容器内
の溶融金属に旋回流を付与し、溶融金属と精錬剤とを接
触・混合させて溶融金属を精錬するに当たり、溶融金属
と精錬剤との接触・混合を促進する際には、該容器の中
心を回転磁界中心より偏倚させた状態で、溶融金属に旋
回流を付与し、一方溶融金属中の不純物を含有した後の
精錬剤を凝集・分離する際には、該容器の中心を回転磁
界中心にほぼ一敗した状態で溶融金属に旋回流を付与す
ることを特徴とする溶融金属の精錬方法、ならびに■精
錬容器内の熔融金属に旋回流を付与するための回転磁界
発生コイルを該容器の外周に配設し、該コイルまたは/
および該容器を搭載する水平移動自在な架台を設けたこ
とを特徴とする溶融金属の精錬装置である。
The present invention provides: (1) Storing molten metal in a refining container, imparting a swirling flow to the molten metal in the container, and bringing the molten metal and a refining agent into contact and mixing to refine the molten metal. To promote contact and mixing with the refining agent, a swirling flow is applied to the molten metal with the center of the container being offset from the center of the rotating magnetic field, while the molten metal is refined after containing impurities. A molten metal refining method characterized by applying a swirling flow to the molten metal with the center of the container almost completely centered around the rotating magnetic field when coagulating and separating the refining agent; A rotating magnetic field generating coil for imparting a swirling flow to the molten metal is arranged around the outer periphery of the container, and the coil or/and
A molten metal refining apparatus is characterized in that it is provided with a horizontally movable pedestal on which the container is mounted.

ここで精錬フラックスを凝集・分離するとは精錬容器が
回転磁界発生装置の中央にある場合に生ずる溶融金属の
水平回転流により発生する求心力によって密度の小さな
フラックスを金属浴面中央部に集合させ、金属とフラッ
クスの間の反応を低下せしめ、かつ溶融金属の清浄性を
著しく向上せしめることである。
Coagulating and separating the refining flux means that when the refining vessel is located at the center of the rotating magnetic field generator, the centripetal force generated by the horizontal rotational flow of molten metal causes the flux with low density to gather at the center of the metal bath surface. and the flux, and significantly improve the cleanliness of the molten metal.

〈作 用〉 本発明は、上述のように溶融金属の精神容器を回転磁界
発生装置内を移動可能な台車を架台上に設置し、溶融金
属の精錬を促進する場合には、精錬容器を回転磁界の中
心から偏倚して混合・撹拌を行ない、この時溶融金属中
に混入分散した精錬フラックスを迅速に凝集分離する際
には、精錬容器を回転磁界の中央に位置させつつ回転撹
拌を行ない併せて精錬容器の偏倚の程度を適宜変化させ
て精錬容器耐火物の損傷を著しく軽減せしめる方法およ
び装置である。
<Function> In the present invention, as described above, when a cart capable of moving a mental container of molten metal within a rotating magnetic field generator is installed on a frame and the refining of molten metal is promoted, the refining container is rotated. Mixing and stirring are performed while being offset from the center of the magnetic field, and when the refining flux mixed and dispersed in the molten metal is quickly coagulated and separated, the refining vessel is positioned at the center of the rotating magnetic field while rotating and stirring is performed. This method and apparatus significantly reduce damage to the refractory of the refining vessel by appropriately changing the degree of deflection of the refining vessel.

本発明は、回転磁界による旋回流作動下における溶融金
属上の精錬フラックスの挙動に関する検討から導かれた
ものである。すなわち、精錬容器が回転磁界発生装置の
中央に置かれたまま溶融金属に旋回流を与える対称的配
置の場合の精錬フラックスと溶融金属の接触・混合の不
十分さを償うべく溶融金属旋回流に非対称的な力を付与
する方法の一つとして検討した結果から得られたもので
ある。
The present invention was derived from studies regarding the behavior of refining flux on molten metal under swirling flow operation caused by a rotating magnetic field. In other words, in order to compensate for the insufficient contact and mixing of the refining flux and molten metal in the case of a symmetrical arrangement in which the refining vessel is placed in the center of the rotating magnetic field generating device and gives a swirling flow to the molten metal, the molten metal swirling flow is This was obtained from the results of the study as a method of applying an asymmetrical force.

内径2.0mの回転磁界発生コイル3の内部に非磁性鋼
よりなる鉄皮の内面に耐火物2を施工した内径 1m、
高さ2.0mの精錬容器1を収容した。
Inside the rotating magnetic field generating coil 3 with an inner diameter of 2.0 m, a refractory material 2 is constructed on the inner surface of the iron skin made of non-magnetic steel, and the inner diameter is 1 m.
A refining container 1 with a height of 2.0 m was accommodated.

一方、回転磁界発生コイルの下方に架台6を設置し、架
台上に旋回自在な車輪を内蔵した台車8を乗せ、その上
に精錬容器が搭載され、精錬容器の作動は左右前後に配
置した複数のエアーシリンダー7で自由に作動をできる
0個々のエアーシリンダiのストローク調整により精錬
容器搭載台車は任意の位置に移動できる構造とした。
On the other hand, a pedestal 6 is installed below the rotating magnetic field generating coil, and a cart 8 with built-in rotatable wheels is mounted on the pedestal, and a refining container is mounted on it. By adjusting the stroke of each air cylinder 7, which can be operated freely, the refining container carrying cart can be moved to any position.

実施に先立ち以下の実験を行い溶融金属の回転を調査し
た。
Prior to implementation, the following experiments were conducted to investigate the rotation of molten metal.

その1として、第1図に示すように容器を回転磁界コイ
ル中心より偏倚させて従来と同様の投入電力を付加した
ときの溶融金属の回転状況を測定すると、回転磁界コイ
ルに近い側の回転速度は50〜60rpm 、遠い側は
40〜50rpmとなり浴面の高低差は20〜251と
なった。
First, as shown in Figure 1, when the container is offset from the center of the rotating magnetic field coil and the same input power as before is applied, the rotational state of the molten metal is measured. The speed was 50 to 60 rpm on the far side, and 40 to 50 rpm on the far side, and the difference in height of the bath surface was 20 to 251.

この条件下で精錬剤を添加すると、精錬剤は浴面より消
失した。
When the refining agent was added under these conditions, the refining agent disappeared from the bath surface.

その2として、第2図に示すように容器を回転磁界コイ
ル中心に置き、従来と同様の投入電力を付加し本発明と
従来との回転速度を比較すると20〜25rpmと25
〜30rpm となり若干の回転速度低下が見られるも
のの不純物の凝集分離効果には影響を及ぼさなかった。
Second, as shown in Fig. 2, when the container is placed at the center of the rotating magnetic field coil and the same input power is applied as before, the rotation speed of the present invention and the conventional one is compared to 20 to 25 rpm and 25 rpm.
Although there was a slight decrease in rotational speed of ~30 rpm, it did not affect the coagulation and separation effect of impurities.

〈実施例〉 溶融金属をAPI−X−70相当の成分とし、内径10
00IIIIIlφ、外径1400nmφの精錬容器に
溶15.0)ンを収容した。この溶鋼に回転磁界発生装
置(内径1700mm、高さ2300M)より溶鋼に水
平回転を与えつつ精錬フラックス(70〜80%Cab
−20〜30%CaFz)を投入して、50 rpta
の旋回流を生じる回転磁界撹拌を4〜5分間行ない脱酸
および脱硫の還元処理を行なった。
<Example> The molten metal has a component equivalent to API-X-70, and the inner diameter is 10
A smelting vessel having a diameter of 1,400 nm and a diameter of 1,400 nm contained a melt of 15.0 nm. This molten steel is given horizontal rotation by a rotating magnetic field generator (inner diameter 1700 mm, height 2300 m) and refining flux (70 to 80% Cab) is applied to the molten steel.
-20 to 30% CaFz) and 50 rpta
Rotating magnetic field stirring to generate a swirling flow was performed for 4 to 5 minutes to perform deoxidation and desulfurization reduction treatments.

フラックス−メタルの接触・混合を促進させる時は第1
図及び第3図に示すように精錬容器を回転磁界発生装置
の中央部から移動させ〔Lよ一300vm ] 、?8
鋼に付与される磁界強度が精錬容器の溶鋼に非対称に投
入される位置に設置した。ついで?g fil全l金属
中純物を含有したのちのフラックスを凝集分離させるた
めに、第2図及び第4図に示すように精錬容器を回転磁
界発生装置の中央にもとしCL + = 150no 
) 20rpmの水平回転流を溶鋼に対称的に与えつつ
、求心力によってi8 E中に分散した不純物を含んだ
フラックスを金属浴面中央部に集合させ、メタルーフラ
ンクス間の反応を抑制した。その結果、溶鋼の到達S′
a度値は3ppm、ofjA度値は5 ppm以下と不
純物元素の低減が確認された。従来の単なる回転撹拌(
溶鋼に付与される回転強度が溶鋼に対称に付与される場
合)と比較して第5図に示した。なお、精錬容器とコイ
ル間隙L+−150mmの場合、LI=200mmの場
合を夫々比較例1、比較例2として示したが本実施例で
は、脱硫反応の反応速度容量係数Ksは0.4〜0.6
m1n”’が得られ比較例1のKs値0.08〜0.1
3m1n−’に比べて約5倍の高値が得られた。これは
溶鋼に付与された磁界強度が溶融金属周方向に不均一と
なる結果、生ずる非対称な/8湯の流れが精錬フラック
スを浴中に捲き込む効果によるものである。
The first step is to promote flux-metal contact and mixing.
As shown in FIG. 8
It was installed at a location where the strength of the magnetic field applied to the steel was asymmetrically introduced into the molten steel in the refining vessel. Next? g fil In order to coagulate and separate the flux after containing all the metal particles, the refining vessel was placed in the center of the rotating magnetic field generator as shown in Figs. 2 and 4, and CL + = 150 no.
) While applying a horizontal rotating flow of 20 rpm symmetrically to the molten steel, the flux containing impurities dispersed in i8 E was collected at the center of the metal bath surface by centripetal force, suppressing the reaction between the metal and the flux. As a result, the molten steel reaches S'
It was confirmed that impurity elements were reduced, with an a degree value of 3 ppm and an ofjA degree value of 5 ppm or less. Conventional simple rotary stirring (
Fig. 5 shows a comparison of the case where the rotational strength applied to the molten steel is applied symmetrically to the molten steel. In addition, in the case of the refining vessel and the coil gap L+-150 mm, the case of LI=200 mm was shown as Comparative Example 1 and Comparative Example 2, respectively, but in this example, the reaction rate capacity coefficient Ks of the desulfurization reaction was 0.4 to 0. .6
m1n"' is obtained and the Ks value of Comparative Example 1 is 0.08 to 0.1
A value about 5 times higher than that of 3m1n-' was obtained. This is because the strength of the magnetic field applied to the molten steel becomes non-uniform in the circumferential direction of the molten metal, resulting in the asymmetrical flow of the molten metal which causes the refining flux to roll into the bath.

ところで、溶融金属の旋回流が定常的かつ対称的流れで
ある場合、耐火物への溶融金鷹流の111突に伴う耐火
物損傷の問題は避けられるが、溶融金属の旋回流を非対
称とした場合、溶融金属旋回流の流速の大きな部分ある
いは流速が急激に変化する部分の容器耐火物の局所的損
傷は避は難い。
By the way, if the swirling flow of molten metal is a steady and symmetrical flow, the problem of damage to the refractory due to the 111 collision of the molten metal flow to the refractory can be avoided, but if the swirling flow of molten metal is made asymmetrical, Local damage to the container refractories in areas where the flow velocity of the swirling molten metal flow is high or where the flow velocity changes rapidly is unavoidable.

しかし、この問題は、精錬容器と回転磁界発生装置の位
置関係を上面からみた第4図に示したように、精錬容器
の設置位置をエアーシリンダーを用いて円周方向360
度の中に順次変化させることにより、耐火物の損傷を、
その内面全体に亘って平均化することにより全面的に解
決される。または、架台に回転板を配設し、その上に精
錬容器を載せることにより耐火物損傷の状況に応じた該
容器設置位置の変更が可能である。
However, as shown in Figure 4, which shows the positional relationship between the refining container and the rotating magnetic field generating device from the top, the installation position of the refining container can be adjusted 360 degrees in the circumferential direction using an air cylinder.
Damage to refractories can be reduced by sequentially changing the degree of
It is completely solved by averaging over its inner surface. Alternatively, by disposing a rotary plate on a pedestal and placing the refining vessel on it, the installation position of the vessel can be changed depending on the situation of damage to the refractory.

すなわち、例えば0.003%のSを0.0003%ま
で低下するために、精錬容器を回転磁界発生装置の中央
部から移動して4〜5分間脱硫処理した時の局所的な耐
火物損耗は農大1噴程度であり、従来の邪魔板を用いて
溶鋼の旋回流を乱して処理した時の耐火物の損傷の場合
には数十ヒート毎に耐火物の中修理を必要としていた。
That is, for example, in order to reduce S from 0.003% to 0.0003%, the refining vessel is moved from the center of the rotating magnetic field generator and desulfurization treatment is performed for 4 to 5 minutes. It was about one injection at the University of Agriculture, and if the refractory was damaged when the swirling flow of molten steel was disturbed using a conventional baffle plate, the refractory had to be repaired every few tens of heats.

これに対して本性は精錬容器を回転磁界発生装置内を3
60度の中で45度ピッチに変化させることで、実質上
10倍以上の耐火物寿命を得ることが可能となった。
On the other hand, the true nature is that the refining container is inside the rotating magnetic field generator.
By changing the pitch to 45 degrees within a range of 60 degrees, it has become possible to substantially increase the life of the refractory by more than 10 times.

以上の例に示したように本発明は著しく反応容量係数の
大きい高純度精錬を安定した耐火物寿命のもとに達成す
る筒便な手段を提供するものである。
As shown in the above examples, the present invention provides a convenient means for achieving high purity refining with a significantly large reaction capacity coefficient while maintaining a stable refractory life.

〈発明の効果〉 本発明の採用によって・従来に比較してより迅速なフラ
ックス精錬を耐火物損傷を懸念することな〈実施できる
ことになり、高純度高級鋼を工業的に安価かつ安定に生
産できることになった。
<Effects of the Invention> By adopting the present invention, faster flux refining can be carried out than before without worrying about damage to refractories, and high-purity high-grade steel can be produced industrially at low cost and stably. Became.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、精錬容器を回転磁界発生コイルから偏心させ
てフラックス精錬をするときの説明図、第2図は、フラ
ックスの凝集分離を行うときの説明図、第3Vlは、第
1図に対応する設備配置図、第4図は、第2図に対応す
る設備配置図、第5図は、実施例と比較例との脱硫反応
速度容量係数のグラフである。 1・・・精錬容器、   2・・・耐火物、3・・・回
転磁界発生コイル、 4・・・溶融金属、   5・・・精錬フラックス、6
・・・架台、     7・・・エアーシリンダー、8
・・・台車、 A−A・・・製錬容器の中心線、 B−B・・・磁界発生コイルの中心線、L+、Lx・・
・回転磁界発生コイルと精錬容器との距離。 特許出願人    川*!!鉄株式会社第1図 第2図 第3図 第4図
Figure 1 is an explanatory diagram when refining flux by making the refining container eccentric from the rotating magnetic field generating coil, Figure 2 is an explanatory diagram when coagulating and separating flux, and 3rd Vl corresponds to Figure 1. FIG. 4 is an equipment layout diagram corresponding to FIG. 2, and FIG. 5 is a graph of desulfurization reaction rate capacity coefficients for Examples and Comparative Examples. DESCRIPTION OF SYMBOLS 1... Refining container, 2... Refractory, 3... Rotating magnetic field generating coil, 4... Molten metal, 5... Refining flux, 6
... Frame, 7... Air cylinder, 8
... Cart, A-A... Center line of smelting container, B-B... Center line of magnetic field generating coil, L+, Lx...
- Distance between the rotating magnetic field generating coil and the refining vessel. Patent applicant Kawa*! ! Tetsu Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、精錬容器内に溶融金属を収容し、該容器内の溶融金
属に旋回流を付与し、溶融金属と精錬剤とを接触・混合
させて溶融金属を精錬するに当たり、溶融金属と精錬剤
との接触・混合を促進する際には、該容器の中心を回転
磁界中心より偏倚させた状態で溶融金属に旋回流を付与
し、一方溶融金属中の不純物を含有した後の精錬剤を凝
集・分離する際には、該容器の中心を回転磁界中心にほ
ぼ一致した状態で溶融金属に旋回流を付与することを特
徴とする溶融金属の精錬方法。 2、精錬容器内の溶融金属に旋回流を付与するための回
転磁界発生コイルを該容器の外周に配設し、該コイルま
たは/および該容器を搭載する水平移動自在な架台を設
けたことを特徴とする溶融金属の精錬装置。
[Claims] 1. In refining the molten metal by storing the molten metal in a refining container, applying a swirling flow to the molten metal in the container, and bringing the molten metal and a refining agent into contact and mixing, When promoting contact and mixing between the molten metal and the refining agent, a swirling flow is applied to the molten metal with the center of the container being offset from the center of the rotating magnetic field, while impurities in the molten metal are removed. A method for refining molten metal, characterized in that when agglomerating and separating the refining agent, a swirling flow is applied to the molten metal with the center of the container substantially aligned with the center of a rotating magnetic field. 2. A rotating magnetic field generating coil for imparting a swirling flow to the molten metal in the refining container is arranged around the outer periphery of the container, and a horizontally movable pedestal is provided on which the coil and/or the container is mounted. Characteristic molten metal refining equipment.
JP28856387A 1987-11-17 1987-11-17 Method and apparatus for refining molten metal Pending JPH01129924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28856387A JPH01129924A (en) 1987-11-17 1987-11-17 Method and apparatus for refining molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28856387A JPH01129924A (en) 1987-11-17 1987-11-17 Method and apparatus for refining molten metal

Publications (1)

Publication Number Publication Date
JPH01129924A true JPH01129924A (en) 1989-05-23

Family

ID=17731872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28856387A Pending JPH01129924A (en) 1987-11-17 1987-11-17 Method and apparatus for refining molten metal

Country Status (1)

Country Link
JP (1) JPH01129924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322060A (en) * 2005-05-20 2006-11-30 Kobe Steel Ltd Method for producing high clean steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322060A (en) * 2005-05-20 2006-11-30 Kobe Steel Ltd Method for producing high clean steel
JP4627216B2 (en) * 2005-05-20 2011-02-09 株式会社神戸製鋼所 Melting method of high clean steel

Similar Documents

Publication Publication Date Title
JP2004518823A (en) Ladle refining of steel
JP6593233B2 (en) Manufacturing method of high clean steel
JP6686838B2 (en) Highly clean steel manufacturing method
JPH01129924A (en) Method and apparatus for refining molten metal
CA2025688C (en) Method of and apparatus for removing non-metallic inclusions from molten metal
JP3760144B2 (en) Ultra-low carbon steel sheet, ultra-low carbon steel slab and method for producing the same
US5098651A (en) Magnesium treatment process and apparatus for carrying out this process
JPH02179813A (en) Method for refining molten metal into high purity and high cleanliness
JP3605390B2 (en) Method for producing ultra-low carbon steel sheet and slab thereof
JP4660038B2 (en) Method for melting steel sheet for thin plate and cast piece thereof
Wang et al. Influences of adding aluminum on inclusions in H13 steel through P–ESR
JPH0339412A (en) Method for refining molten metal
US2015691A (en) Treatment of metals with slags
RU2092592C1 (en) Gear for continuous refining of metal
CN109694939B (en) Deoxidation alloying complex and preparation method thereof
JP4660037B2 (en) Method for melting steel sheet for thin plate and cast piece thereof
JPH02285037A (en) Slag refining method for molten metal
JPH0647691B2 (en) Method of reducing inclusions in molten steel
JP3282530B2 (en) Method for producing high cleanliness low Si steel
JPH01216A (en) Method for refining molten metal
JPS63168995A (en) Method of refining molten metal
Li et al. Novel Concept of Cleansing the Liquid Steel by the Fine In-Situ Phase due to the Composite Ball Explosion Reaction in RH Ladle
JPS63145708A (en) Refining method for molten metal
Zhen et al. Novel concept of cleansing the liquid steel by the fine in-situ phase due to the composite ball explosion reaction in RH ladle
JPH03287714A (en) Molten metal refining method