JPH01127608A - Manufacture of aluminum based alloy rapidly cooled solidified powder - Google Patents
Manufacture of aluminum based alloy rapidly cooled solidified powderInfo
- Publication number
- JPH01127608A JPH01127608A JP28379987A JP28379987A JPH01127608A JP H01127608 A JPH01127608 A JP H01127608A JP 28379987 A JP28379987 A JP 28379987A JP 28379987 A JP28379987 A JP 28379987A JP H01127608 A JPH01127608 A JP H01127608A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- cooling gas
- air
- rapidly solidified
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 11
- 239000000956 alloy Substances 0.000 title claims abstract description 11
- 229910052782 aluminium Inorganic materials 0.000 title claims description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 16
- 239000000112 cooling gas Substances 0.000 claims abstract description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 29
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000007789 gas Substances 0.000 claims abstract description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 229910052786 argon Inorganic materials 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 239000001307 helium Substances 0.000 claims abstract description 8
- 229910052734 helium Inorganic materials 0.000 claims abstract description 8
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims description 27
- 229910000838 Al alloy Inorganic materials 0.000 claims description 25
- 238000001816 cooling Methods 0.000 claims description 10
- 238000007712 rapid solidification Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 27
- 230000000052 comparative effect Effects 0.000 description 19
- 238000009864 tensile test Methods 0.000 description 8
- 238000000889 atomisation Methods 0.000 description 7
- 238000005242 forging Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000009689 gas atomisation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035922 thirst Effects 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は成形体、鍛造体の強度を向上することができる
アルミニウム系合金急冷凝固粉末の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing rapidly solidified aluminum alloy powder that can improve the strength of molded bodies and forged bodies.
[従来の技術]
従来より、アルミニウム系合金急冷凝固粉末を製造する
方法としては、空気アトマイズ法、不活性ガスアトマイ
ズ法、回転ディスク法、双ロール法などが提供されてい
る。空気アトマイズ法はノズルから噴出する空気にアル
ミニウム系合金の溶湯を供給し、これによりアルミニウ
ム系合金の粒子を得る方法である。又、不活性ガスアト
マイズ法は、ノズルから噴出されている不活性ガスにア
ルミニウム系合金の溶湯を供給して、これによりアルミ
ニウム系合金の粒子を得る方法である。回転ディスク法
は、高速回転するディスクにアルミニウム系合金の溶湯
を衝突させ、これによりアルミニウム系合金の粒子を得
る方法である。双ロール法は、2個一対の高速回転する
ロールに、アルミニウム参合金の溶湯を衝突させて、ア
ルミニウム系合金粉末の粒子を得る方法である。[Prior Art] Conventionally, air atomization methods, inert gas atomization methods, rotating disk methods, twin roll methods, and the like have been provided as methods for producing rapidly solidified aluminum-based alloy powders. The air atomization method is a method in which molten aluminum alloy is supplied to air ejected from a nozzle, thereby obtaining aluminum alloy particles. In addition, the inert gas atomization method is a method in which molten aluminum alloy is supplied to an inert gas ejected from a nozzle, thereby obtaining aluminum alloy particles. The rotating disk method is a method in which molten aluminum alloy is collided with a disk rotating at high speed, thereby obtaining aluminum alloy particles. The twin roll method is a method in which molten aluminum alloy is collided with a pair of high speed rotating rolls to obtain particles of aluminum alloy powder.
上記した空気アトマイズ法では、冷却速度が比較的小さ
いため、得られる急冷凝固粉末の粒子のの特性が劣る。In the above-mentioned air atomization method, the cooling rate is relatively low, so the properties of the resulting rapidly solidified powder particles are poor.
又、双ロール法では、薄状又はリボン状のものしか得ら
れず、粉末粒子が得られにくい。又、回転ディスク法で
は、球形の粉末粒子しか得られない。Further, in the twin roll method, only thin or ribbon-shaped particles can be obtained, and powder particles are difficult to obtain. Furthermore, the rotating disk method yields only spherical powder particles.
そのため、上記した方法で製造した粉末、箔を圧縮成形
した成形体、その成形体を粉末鍛造した鍛造体の強度は
、高強度部材として使用するには、必ずしも充分では無
かった。Therefore, the strength of compacts produced by compression molding powders and foils manufactured by the above-described method, and forged bodies obtained by powder forging the compacts, was not necessarily sufficient for use as high-strength members.
そこで、近年、特開昭59−177304号公報に開示
されているように、高速回転するディスクにアルミニウ
ム系合金の溶湯を衝突させて溶湯を粉化させるとともに
、粉化したアルミニウム粒子に冷却ガスを噴出してアル
ミニウム粒子の冷却を促進させるアルミニウム系合金急
冷凝固粉末の製造方法がW#発されている。また、特開
昭59−211506号公報および特開昭55−504
07号公報に開示されているように、高速回転するカッ
プに金属溶湯を衝突させて溶湯を粉化させるとともに、
粉化した金属粒子を移動水層に供給して金属粒子の冷却
を促進させる急冷凝固粉末の製造方法が開発されている
。Therefore, in recent years, as disclosed in Japanese Unexamined Patent Application Publication No. 177304/1984, molten aluminum alloy is collided with a high-speed rotating disk to pulverize the molten metal, and cooling gas is applied to the pulverized aluminum particles. A method for producing a rapidly solidified aluminum-based alloy powder that is ejected to accelerate cooling of aluminum particles has been published in W#. Also, JP-A-59-211506 and JP-A-55-504
As disclosed in Publication No. 07, the molten metal is made to collide with a cup that rotates at high speed to pulverize the molten metal, and
A method for producing rapidly solidified powder has been developed in which powdered metal particles are fed into a moving water layer to promote cooling of the metal particles.
[発明が解決しようとする問題点]
ところで、上記した製造方法で製造した粉末を圧縮成形
した成形体の強度、その成形体を熱間で粉末鍛造した鍛
造体の強度は必ずしも充分ではな(、強度の一層の向上
が望まれていた。[Problems to be Solved by the Invention] By the way, the strength of a molded body obtained by compression molding the powder produced by the above-mentioned manufacturing method, and the strength of a forged body obtained by hot powder forging the molded body, are not necessarily sufficient (, Further improvement in strength was desired.
本発明は上記した実情に鑑みなされたものであり、その
目的は、粉末を圧縮成形した成形体、成形体を熱間で粉
末鍛造した鍛造体の強度を向上することができるアルミ
ニウム系合金急冷凝固粉末を製造することができる回転
ディスク゛式の製造方法を提供することにある。The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a rapidly solidified aluminum alloy that can improve the strength of compacts obtained by compression molding powder and forged products obtained by hot powder forging of compacts. An object of the present invention is to provide a rotating disk type manufacturing method capable of manufacturing powder.
[問題点を解決するための手段]
本発明者は、上記した目的を達成するために、上記した
冷却ガスを使用してアルミニウム系合金の粉末粒子の冷
却を促進させる回転ディスク法について鋭意研究した結
果、冷却ガスの組成を調整して冷却ガスを、体積比で、
15〜95%の空気と残り実質的にヘリウム、アルゴン
および窒素の少なくとも1種とからなる組成をもつ混合
ガスとすれば、成形体の強度、成形体を鍛造した鍛造体
の強度を向上し得ることを見出し、本発明を完成したも
のである。[Means for Solving the Problems] In order to achieve the above-mentioned object, the present inventor has conducted intensive research on a rotating disk method that uses the above-mentioned cooling gas to accelerate cooling of aluminum-based alloy powder particles. As a result, by adjusting the composition of the cooling gas, the volume ratio of the cooling gas is
If the mixed gas has a composition of 15 to 95% air and the remainder substantially at least one of helium, argon, and nitrogen, the strength of the compact and the strength of the forged body obtained by forging the compact can be improved. This discovery led to the completion of the present invention.
ここで、回転ディスク法において、冷却ガスを、体積比
で、15〜95%の空気と残り実質的にヘリウム、アル
ゴンおよび窒素の少なくとも1111とからなる組成を
もつ混合ガスとした場合、成形体の強度、その成形体を
鍛造した鍛造体の強度を向上し得る理由は、以下の様で
あると推察される。Here, in the rotating disk method, when the cooling gas is a mixed gas having a composition consisting of 15 to 95% air in terms of volume ratio and the remainder substantially consisting of at least 1111 of helium, argon, and nitrogen, The reason why the strength and the strength of the forged body obtained by forging the formed body can be improved is presumed to be as follows.
すなわち、上記冷IJ3ガスの中の空気量が15%未満
の場合、冷却速度が大きいため粉末粒子が真球状となり
、この様に真球状となると、金型成形をしたとき粉末粒
子のからみがほとんどなくなり、金型成形しにくくなり
、成形したとしても、粉末を圧縮成形した成形体の強度
、さらには、成形体を熱間で鍛造した鍛造体の強度が相
当低下する。In other words, when the amount of air in the cold IJ3 gas is less than 15%, the cooling rate is high, so the powder particles become true spherical, and when they become true spherical, there is almost no entanglement of the powder particles when molded. As a result, it becomes difficult to mold with a die, and even if it is molded, the strength of the molded product obtained by compression molding the powder and furthermore the strength of the forged product obtained by hot forging the compact is considerably reduced.
また、冷却ガス中の空気量が95%をこえると、粉末粒
子の表面に発生する酸化膜が多くなりすぎて焼結現象が
進行しにくくなり、鍛造体の強度が低下するし、また、
冷却ガス中の空気量が95%をこえると、冷却速度が遅
くなり、急冷効果が低下する。本発明にかかる製造方法
では、冷却ガスを、体積比で、15〜95%の空気と残
り実質的にヘリウム、アルゴンおよび窒素の少なくとも
1種とからなる組成をもつ混合ガスとしているので、ア
ルミニウム系合金急冷凝固粉末が、微細のまま、複雑な
形状をもつ涙状となり、したがって、粉末を圧縮成形し
た際に粉末粒子同志がよくからみあい結合力が増加し、
そのため、成形体の強度、成形体を鍛造した鍛造体の強
度を向上し得るものである。Furthermore, if the amount of air in the cooling gas exceeds 95%, too much oxide film will be generated on the surface of the powder particles, making it difficult for the sintering phenomenon to proceed, reducing the strength of the forged body, and
When the amount of air in the cooling gas exceeds 95%, the cooling rate slows down and the quenching effect decreases. In the manufacturing method according to the present invention, the cooling gas is a mixed gas having a composition of 15 to 95% air by volume and the remainder substantially consisting of at least one of helium, argon, and nitrogen. The rapidly solidified alloy powder remains fine and becomes teardrop-shaped with a complicated shape. Therefore, when the powder is compression molded, the powder particles are well entangled with each other and the bonding strength is increased.
Therefore, the strength of the molded body and the strength of the forged body obtained by forging the molded body can be improved.
即ち、本発明に係るアルミニウム系合金急冷凝固粉末の
製造方法は、高速回転するディスクにアルミニウム系合
金の溶湯を!I突させてwI渇を粉化させるとともに、
粉化したアルミニウム粒子に冷却ガスを噴出してアルミ
ニウム粒子の冷却を促進させるアルミニウム系合金急冷
凝固粉末の製造方法において、冷却ガスは、体積比で、
15〜95%の空気と、残り実質的にヘリウム、アルゴ
ンおよび窒素の少なくとも111!とからなる組成をも
つ混合ガスであることを特徴とするものである。That is, in the method for producing a rapidly solidified aluminum alloy powder according to the present invention, a molten aluminum alloy is placed in a disk rotating at high speed! I will strike you and turn my thirst into dust,
In a method for producing rapidly solidified aluminum alloy powder in which a cooling gas is ejected onto powdered aluminum particles to promote cooling of the aluminum particles, the cooling gas has a volume ratio of:
15-95% air and the remainder substantially helium, argon and nitrogen! It is characterized by being a mixed gas having a composition consisting of.
アルミニウム系合金の溶湯としては、例えば、純アルミ
ニウム、アルミニウムーマグネシウム系、アルミニウム
ー銅系のものを採用できる。この場合、成分の含有量は
必要に応じて適宜選択されるが、例えば、マグネシウム
が0〜60%、銅が0〜20%とすることができる。As the molten aluminum alloy, for example, pure aluminum, aluminum-magnesium alloy, or aluminum-copper alloy can be used. In this case, the contents of the components are appropriately selected as necessary, and for example, the content of magnesium can be 0 to 60%, and the content of copper can be 0 to 20%.
本発明で製造されたアルミニウム系合金急冷凝固粉末は
、金型で圧縮成形されて成形体とされる。The aluminum-based alloy rapidly solidified powder produced according to the present invention is compression-molded in a mold to form a compact.
その後、成形体は500〜600℃の熱間で鍛造され、
製品形状をもつ鍛造体とされる。After that, the molded body is hot forged at 500 to 600°C,
It is considered to be a forged body with a product shape.
本発明で製造された急冷凝固粉末は、冷W速度が10’
〜104に/secであるため、過飽和に合金元素を
固溶している。The rapidly solidified powder produced by the present invention has a cooling W speed of 10'
~104/sec, the alloying elements are dissolved in supersaturation.
本発明のIIJ造方法では、冷却ガスは、粉化した粉末
粒子の冷却を促進するために使用されるものである。冷
却ガスのガス圧力は0.5〜1.1Mpa程度とするこ
とができる。粉化した粒子に冷却ガスを吹付けるにあた
っては、ノズルで行うことができる。本発明の%l造方
法では、回転ディスクの回転速度は20000〜300
00rpmとすることができる。回転ディスクの材質は
冷部性能がよい方が望ましく、例えば、銅、ステンレス
とすることができる。In the IIJ manufacturing method of the present invention, the cooling gas is used to promote cooling of the pulverized powder particles. The gas pressure of the cooling gas can be about 0.5 to 1.1 MPa. Cooling gas can be sprayed onto the powdered particles using a nozzle. In the manufacturing method of the present invention, the rotation speed of the rotating disk is 20,000 to 300
00 rpm. It is desirable that the material of the rotating disk has good cold section performance, and may be made of copper or stainless steel, for example.
ところで、通常のアトマイズ法で得られる急冷凝固粉末
の平均粒径は通常、約140μmであるが、本発明に係
る製造方法で¥J!!した急冷凝固粉末の平均粒径は、
10〜60μmであり、例えば約40μmであり、通常
のアトマイズ法より微粉にである。その理由は、アトマ
イズ法では粉化のためのエネルギーとしてガス圧だけで
あるのに対し、回転ディスク法では溶湯とディスクとの
衝突によるエネルギー、溶湯とディスクとの摩擦、およ
びディスクの回転のエネルギーであり、回転ディスク方
式にかかる本発明では、粉化のためのエネルギーが通常
の7トマイズ法より大きいためであると考えられる。Incidentally, the average particle size of the rapidly solidified powder obtained by the normal atomization method is usually about 140 μm, but with the manufacturing method according to the present invention, the average particle size of the rapidly solidified powder is about 140 μm. ! The average particle size of the rapidly solidified powder is
It is 10 to 60 μm, for example about 40 μm, and can be made into a fine powder by a normal atomization method. The reason for this is that in the atomization method, only gas pressure is used as the energy for pulverization, whereas in the rotating disk method, the energy from the collision between the molten metal and the disk, the friction between the molten metal and the disk, and the energy from the rotation of the disk are used. This is thought to be because the present invention, which uses a rotating disk method, requires more energy for powdering than the normal 7tomizing method.
本発明で使用する冷却ガス中の空気mは、体積比で、1
5〜95%であり、冷却ガスの残部は実質的にヘリウム
(He)、アルゴン(Ar)および窒素(N2)の1種
である。ヘリウム、アルゴンおよび窒素のうらでも、安
全性、低コストの理由で窒素が望ましい。冷却ガスの温
度は通常常温である。Air m in the cooling gas used in the present invention has a volume ratio of 1
5 to 95%, and the remainder of the cooling gas is essentially one of helium (He), argon (Ar), and nitrogen (N2). Among helium, argon, and nitrogen, nitrogen is preferred for reasons of safety and low cost. The temperature of the cooling gas is usually room temperature.
ここで回転ディスク法において、冷却ガス中の空気量が
15%未満で残部が実質的に窒素の組成である場合、こ
の組成の冷却ガスを使用すると、冷却ガス中のIS!!
素聞が少な(、比較的清浄な冷部ガスであるため回転デ
ィスクにより粉化しだ液適の凝固は、粉末表面が小さく
なる凝固即ち自然凝固をするため、はぼ真球のアルミニ
ウム系合金急冷凝固粉末が得られる。この真球の急冷凝
固粉末を金型成形すると、成形中に急冷凝固粉末粒子の
絡み合いはほとんどなく、そのため金型成形は事実上で
きない。従って真球の急冷凝固粉末を固結する方法とし
ては、金型成形法ではなく、押出法又は熱間静水圧法(
HIP法)など金型成形法でなく、コスト高となる方法
によらなければならない。そのため鍛造体の製造コスト
が高くなる。In the rotating disk method, if the amount of air in the cooling gas is less than 15% and the remainder is essentially nitrogen, if a cooling gas with this composition is used, IS! !
Since the cold part gas is relatively clean, it is pulverized by a rotating disk, and the solidification of the liquid occurs through natural solidification, which reduces the powder surface. A solidified powder is obtained.When this perfectly spherical rapidly solidified powder is molded into a mold, there is almost no entanglement of the rapidly solidified powder particles during molding, so mold forming is virtually impossible.Therefore, when this perfectly spherical rapidly solidified powder is solidified, The method of bonding is not the molding method, but the extrusion method or the hot isostatic pressure method (
Instead of a molding method such as the HIP method (HIP method), an expensive method must be used. Therefore, the manufacturing cost of the forged body increases.
従って低コストな固結方法である金型成形で成形体を形
成するためには、冷却ガス中の空気量は体積比で15%
以上は必要である。一方、冷却ガス中の空気量が95%
を超えると、1gられるアルミニウム系合金急冷凝固粉
末に含まれる酸素椿が茗しく多くなり、つまり、粉末粒
子表面に形成される酸化lI醋が増加し、そのため、以
後の焼結工程において急冷凝固粉末どうしの焼結の際の
ネック成長が阻害される。そのため鍛造体の強度も向上
しない。従って冷却ガス中の空気量は体積比で95%を
越えないように、15〜95%とする必要がある。Therefore, in order to form a compact by molding, which is a low-cost consolidation method, the amount of air in the cooling gas must be 15% by volume.
The above is necessary. On the other hand, the amount of air in the cooling gas is 95%
If the value exceeds 1g, the amount of oxygen contained in the rapidly solidified aluminum alloy powder will increase considerably, that is, the amount of lI oxide formed on the surface of the powder particles will increase, and as a result, the rapidly solidified powder will be Neck growth during sintering is inhibited. Therefore, the strength of the forged body does not improve. Therefore, the amount of air in the cooling gas needs to be 15 to 95% so as not to exceed 95% by volume.
[実施例1
(実施例1)
第1図に、実施例1で使用する装置を示す。第1図中に
示す通常のアルミニウム溶解炉1にて、11fi%で、
亜鉛が8%、マグネシウムが2%、銅が2%、残部を実
質的にアルミニウムよりなるアルミニウム系合金m’t
Qを製造した。このように製造したアルミニウム系合金
の溶湯をトリベ2に移し、ノズル部3を通して下方へ落
下した。この落下した温潤を、2500Orpmで回転
しているステンレス製の回転ディスク4に衝突させた。[Example 1 (Example 1) Fig. 1 shows an apparatus used in Example 1. In the ordinary aluminum melting furnace 1 shown in FIG. 1, at 11 fi%,
Aluminum alloy m't consisting of 8% zinc, 2% magnesium, 2% copper, and the balance substantially aluminum
Q was manufactured. The molten aluminum alloy produced in this manner was transferred to ladle 2 and fell downward through nozzle portion 3. This fallen hot water was made to collide with a stainless steel rotary disk 4 rotating at 2500 rpm.
回転ディスク4の大き・さは、φ70mmである。The size of the rotating disk 4 is φ70 mm.
この衝突により、温潤は微細な液wI45となる。Due to this collision, the hot water turns into a fine liquid wI45.
この液滴5に噴出ノズル6から、体積比で、95%の空
気と残部実質的に窒素とよりなる冷却ガスを、ガス圧力
0.7MPaにして吹きつけ、これにより液滴5を°急
速に凝固し、急冷凝固粉末を得た。得られた急冷凝固粉
末を100メツシユで篩別した。A cooling gas consisting of 95% air and the remainder substantially nitrogen by volume is sprayed onto the droplets 5 from the jet nozzle 6 at a gas pressure of 0.7 MPa, thereby causing the droplets 5 to rapidly The mixture was solidified to obtain a rapidly solidified powder. The obtained rapidly solidified powder was sieved through a 100-mesh screen.
その後上記粉末をJSPM標準引張り試験金型内に入れ
、面圧200MPaにて圧縮成形し、これにより圧粉体
状の成形体を形成した。成形体は、JSPM標準引張試
験片であり、その長さは96゜5mm1厚み5mm、中
央部の幅は5.7mmである。Thereafter, the above powder was put into a JSPM standard tensile test mold and compression molded at a surface pressure of 200 MPa, thereby forming a green compact. The molded body is a JSPM standard tensile test piece, and its length is 96°, 5 mm, thickness 5 mm, and the width at the center is 5.7 mm.
なお、このとき金型における急冷凝固粉末のカジリを防
ぐために、金型のキャビテイ壁面にワックスを塗布した
。この圧粉体状の成形体を2トンオートグラフにセット
し、クロスヘツドスピード1分間当り1amで引張り試
験を行った。圧粉体状の成形体の引張り強度は120M
Paであった。At this time, in order to prevent the rapidly solidified powder from galling in the mold, wax was applied to the cavity wall of the mold. This green compact was set in a 2-ton autograph, and a tensile test was conducted at a crosshead speed of 1 am per minute. The tensile strength of the green compact is 120M.
It was Pa.
一方、圧粉体状の成形体を炉内に収納し、540℃で6
0分間、窒素雰囲気中にて加熱保持した。On the other hand, the green compact was stored in a furnace and heated to 540℃ for 6 hours.
Heating was maintained in a nitrogen atmosphere for 0 minutes.
その後、成形体を炉から取出し、即座に金型のキャビテ
ィ内にセットした後、成形体の高さ寸法の変動を30%
となるように熱間で粉末鍛造した。After that, the molded body is taken out from the furnace and immediately set in the mold cavity, and the height dimension variation of the molded body is reduced by 30%.
It was hot powder forged to give the following.
これにより鍛造体を(7だ。鍛造体は、JPSM標準引
張試験片と同じであり、但し、高さは30%小さくなる
。This results in a forged body (7).The forged body is the same as the JPSM standard tensile test piece, but the height is 30% smaller.
この鍛造体を2トンオートグラフにセットし、クロスヘ
ツドスピード1分間当り11111で引張り試験を行っ
た。その鍛造体の引張り強度は590M第 1 表
Paであった。なお、この試験結果を第1表に示す。This forged body was set in a 2-ton autograph, and a tensile test was conducted at a crosshead speed of 11111 per minute. The tensile strength of the forged body was 590M Table 1 Pa. The test results are shown in Table 1.
(実施例2)
実施例2に係る製造方法は実施例1の場合と基本的には
同一である。ただし、冷却ガス中の空気量を減少して、
冷却ガスの組成を、体積比で、20%の空気と残部実質
的にアルゴンガスとした。(Example 2) The manufacturing method according to Example 2 is basically the same as that of Example 1. However, by reducing the amount of air in the cooling gas,
The composition of the cooling gas was 20% air by volume and the remainder substantially argon gas.
そして、実施例1の場合と同様に、成形体、鍛造体につ
いて引張り試験を行った。Then, in the same manner as in Example 1, a tensile test was conducted on the molded body and the forged body.
11表に示すように、実施例2に係る圧粉体状の成形体
の引張り強さは108MPaであり、実施例2に係るa
溶体の引張り強さは570MPaでめった。As shown in Table 11, the tensile strength of the green compact according to Example 2 is 108 MPa, and the a
The tensile strength of the solution was 570 MPa.
(比較例1)
比較例1は基本的には実施例1の場合と同じ方法で行っ
た。ただし、比較例1では、冷却ガスの組成を、体積比
で、10%の空気と残部実質的に窒素とした。比較例1
の粉末は真球状であった。(Comparative Example 1) Comparative Example 1 was basically carried out in the same manner as in Example 1. However, in Comparative Example 1, the composition of the cooling gas was 10% air and the remainder substantially nitrogen in terms of volume ratio. Comparative example 1
The powder was perfectly spherical.
比較例1の粉末は、成形荷重220MPaでは金型成形
できず、試験片厚さ方向の中央付近で剥離してしまった
。The powder of Comparative Example 1 could not be molded with a mold under a molding load of 220 MPa, and peeled off near the center of the test piece in the thickness direction.
そこで成形荷重を200MPaにしたが、このときも成
形できず、粉末状態のままであった。したがって、鍛造
体も製造できなかった。比較例1に係る試験結果を第1
表に示す。Therefore, the molding load was set to 200 MPa, but molding was not possible at this time as well, and the product remained in a powder state. Therefore, forged bodies could not be manufactured either. The test results related to Comparative Example 1 are
Shown in the table.
(比較例2)
比較例2は回転ディスクを使用しない空気噴霧方法であ
る。即ち、第2図に示すアルミニウム溶解炉11にて、
前記した実施例1の場合と同様に、fflfi%で、亜
鉛が8%、マグネシウムが2%、銅が2%、残部実質的
にアルミニウムよりなるアルミニウム合金の溶湯を製造
した。この溶湯をトリべ12に移し、ノズル13を通し
て下方へ落トした。この落下した溶湯に、組成が体積%
で95%空気と残部実質的に窒素よりなる冷却ガスをガ
ス圧力0.9MPaで吹きつけ、これにより溶湯を急速
に凝固し、アルミニウム系合金急冷凝固粉末を得た。(Comparative Example 2) Comparative Example 2 is an air atomization method that does not use a rotating disk. That is, in the aluminum melting furnace 11 shown in FIG.
In the same manner as in Example 1 described above, a molten aluminum alloy containing fflfi% of 8% zinc, 2% magnesium, 2% copper, and the remainder substantially aluminum was produced. This molten metal was transferred to a ladle 12 and dropped downward through a nozzle 13. The composition of this fallen molten metal is % by volume.
A cooling gas consisting of 95% air and the balance substantially nitrogen was blown at a gas pressure of 0.9 MPa, thereby rapidly solidifying the molten metal to obtain a rapidly solidified aluminum alloy powder.
比較例2に係る18られた急冷凝固粉末を実施例1の場
合と同様にして100メツシユで篩別し、以下実施例1
の場合と同様に圧粉体状の成形体、鍛造体をIFJ造し
た。成形体、wi造′体についても同様な条件で引張り
試験を行った。比較例2にかがる圧粉体状の成形体の引
張り強さは50MPaであり、鍛造体の引張り強さは3
90MPaであった。第1表から明らかなように、比較
例2の場合には、実施例1、実施例2と比較して成形体
の強度、鍛造体の強度が低い。The quenched rapidly solidified powder according to Comparative Example 2 was sieved using a 100-mesh screen in the same manner as in Example 1.
In the same way as in the case of , a green compact and a forged body were produced by IFJ. Tensile tests were also conducted on the molded bodies and the Wi-shaped bodies under the same conditions. The tensile strength of the green compact in Comparative Example 2 is 50 MPa, and the tensile strength of the forged body is 3.
It was 90 MPa. As is clear from Table 1, in the case of Comparative Example 2, the strength of the molded body and the strength of the forged body are lower than those of Examples 1 and 2.
(比較例3)
比較例3の方法は実施例1の場合と基本的には同一の方
法である。ただし、比較例3では、冷却ガスの組成を体
積比で100%空気とした。比較1M3に係る悲冷凝固
粉末を実施例1の場合と同様にして100メツシユで篩
別し、以下実施例1の場合と同様に圧粉体状の成形体、
鍛造体を製造した。比較例3の成形体、鍛造体について
も同様な条件で引張り試験を行った。比較例3に係る圧
粉体状の成形体の引張り強さは98MPaであり、鍛造
体の引張り強さは320MPaであった。(Comparative Example 3) The method of Comparative Example 3 is basically the same as that of Example 1. However, in Comparative Example 3, the composition of the cooling gas was 100% air by volume. The cold solidified powder according to Comparative 1M3 was sieved using a 100-mesh screen in the same manner as in Example 1, and then similarly as in Example 1, compacted powder-like compacts,
A forged body was manufactured. The molded body and forged body of Comparative Example 3 were also subjected to a tensile test under the same conditions. The tensile strength of the compacted compact according to Comparative Example 3 was 98 MPa, and the tensile strength of the forged body was 320 MPa.
第1表から明らかなように、比較例3の場合には、実施
例1、実施例2と比較して成形体の強度、鍛造体の強度
が低い。As is clear from Table 1, in the case of Comparative Example 3, the strength of the molded body and the strength of the forged body are lower than those of Examples 1 and 2.
[発明の効果]
本発明に係るアルミニウム系合金急冷凝固粉末の製造方
法によれば、従来の方法で製造した急冷凝固粉末に比較
して、圧粉体状の成形体の引張り強度、鍛造体の引張り
強度を向上させることができる。[Effects of the Invention] According to the method for producing a rapidly solidified aluminum alloy powder according to the present invention, the tensile strength of a green compact and the strength of a forged body are improved compared to rapidly solidified powder produced by a conventional method. Tensile strength can be improved.
第1図は装置の概略側面図、第2図は比較例2で使用す
る装置の概略側面図である。
図中、1は溶解炉、4は回転ディスクを示す。FIG. 1 is a schematic side view of the device, and FIG. 2 is a schematic side view of the device used in Comparative Example 2. In the figure, 1 indicates a melting furnace, and 4 indicates a rotating disk.
Claims (3)
湯を衝突させて該溶湯を粉化させるとともに、粉化した
アルミニウム粒子に冷却ガスを噴出して該アルミニウム
粒子の冷却を促進させるアルミニウム系合金急冷凝固粉
末の製造方法において、該冷却ガスは、体積比で、15
〜95%の空気と、残り実質的にヘリウム、アルゴンお
よび窒素の少なくとも1種とからなる組成をもつ混合ガ
スであることを特徴とするアルミニウム系合金急冷凝固
粉末の製造方法。(1) Rapid solidification of aluminum alloy in which molten aluminum alloy is collided with a disk rotating at high speed to pulverize the molten metal, and cooling gas is ejected to the pulverized aluminum particles to accelerate cooling of the aluminum particles. In the powder manufacturing method, the cooling gas has a volume ratio of 15
A method for producing rapidly solidified aluminum alloy powder, characterized in that the mixed gas has a composition of ~95% air and the remainder substantially consists of at least one of helium, argon, and nitrogen.
質的に窒素とよりなる混合ガスであり、そのガス圧力は
0.7MPaである特許請求の範囲第1項記載のアルミ
ニウム系合金急冷凝固粉末の製造方法。(2) The cooling gas is a mixed gas consisting of 95% air and the remainder substantially nitrogen in terms of volume ratio, and the gas pressure is 0.7 MPa. A method for producing rapidly solidified alloy powder.
的にアルゴンとよりなる混合ガスである特許請求の範囲
第1項記載のアルミニウム系合金急冷凝固粉末の製造方
法。(3) The method for producing rapidly solidified aluminum alloy powder according to claim 1, wherein the cooling gas is a mixed gas consisting of 20% air and the remainder substantially argon in terms of volume ratio.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28379987A JPH01127608A (en) | 1987-11-10 | 1987-11-10 | Manufacture of aluminum based alloy rapidly cooled solidified powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28379987A JPH01127608A (en) | 1987-11-10 | 1987-11-10 | Manufacture of aluminum based alloy rapidly cooled solidified powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01127608A true JPH01127608A (en) | 1989-05-19 |
Family
ID=17670293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28379987A Pending JPH01127608A (en) | 1987-11-10 | 1987-11-10 | Manufacture of aluminum based alloy rapidly cooled solidified powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01127608A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0257603A (en) * | 1988-08-23 | 1990-02-27 | Asahi Chem Ind Co Ltd | Metal powder and its production |
JPH02197502A (en) * | 1989-01-27 | 1990-08-06 | Asahi Chem Ind Co Ltd | Flaky metal powder and its production |
CN106914626A (en) * | 2017-04-10 | 2017-07-04 | 西安铂力特激光成形技术有限公司 | The preparation facilities and preparation method of a kind of submicron metal |
KR102258741B1 (en) * | 2019-12-24 | 2021-06-01 | 주식회사 패트리온 | Metal fuel production method and composition thereof for hydrogen production |
-
1987
- 1987-11-10 JP JP28379987A patent/JPH01127608A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0257603A (en) * | 1988-08-23 | 1990-02-27 | Asahi Chem Ind Co Ltd | Metal powder and its production |
JPH02197502A (en) * | 1989-01-27 | 1990-08-06 | Asahi Chem Ind Co Ltd | Flaky metal powder and its production |
CN106914626A (en) * | 2017-04-10 | 2017-07-04 | 西安铂力特激光成形技术有限公司 | The preparation facilities and preparation method of a kind of submicron metal |
CN106914626B (en) * | 2017-04-10 | 2020-02-21 | 西安铂力特增材技术股份有限公司 | Preparation device and preparation method of superfine metal powder |
KR102258741B1 (en) * | 2019-12-24 | 2021-06-01 | 주식회사 패트리온 | Metal fuel production method and composition thereof for hydrogen production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4832741A (en) | Powder-metallurgical process for the production of a green pressed article of high strength and of low relative density from a heat-resistant aluminum alloy | |
US5306463A (en) | Process for producing structural member of amorphous alloy | |
JPH02503331A (en) | Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy | |
JPS63140001A (en) | Granular metal composite and its production | |
US5102620A (en) | Copper alloys with dispersed metal nitrides and method of manufacture | |
JPH0593213A (en) | Production of titanium and titanium alloy powder | |
EP2325342B1 (en) | Hot compaction and extrusion of L12 aluminum alloys | |
CN113600812A (en) | Metal powder and preparation method thereof, metal alloy and preparation method thereof | |
US4961457A (en) | Method to reduce porosity in a spray cast deposit | |
US4971133A (en) | Method to reduce porosity in a spray cast deposit | |
JPH01127608A (en) | Manufacture of aluminum based alloy rapidly cooled solidified powder | |
US5520754A (en) | Spray cast Al-Li alloy composition and method of processing | |
JPH0514779B2 (en) | ||
JPH0754019A (en) | Production of powder by multistage fissure and quenching | |
JP4008597B2 (en) | Aluminum-based composite material and manufacturing method thereof | |
WO2019123537A1 (en) | Magnesium alloy powder and sintered component thereof | |
JPS6347343A (en) | Powder metallurgical production of processed product made of heat resistant aluminum alloy | |
JPWO2002066696A1 (en) | High strength magnesium alloy | |
US5193605A (en) | Techniques for preparation of ingot metallurgical discontinuous composites | |
JPH0643628B2 (en) | Method for manufacturing aluminum alloy member | |
CN116475411B (en) | High-strength high-toughness low-oxygen component and preparation method thereof | |
JPS62256902A (en) | Intermetallic al3ti powder and its production | |
Verlinden et al. | Aluminium Powder Metallurgy | |
JP2654982B2 (en) | Fe-Al-Si alloy and method for producing the same | |
JPH03120301A (en) | Powder metallurgical method for aluminum alloy |