JPH01125415A - Preventing work for liquefaction of ground by banded drain material - Google Patents
Preventing work for liquefaction of ground by banded drain materialInfo
- Publication number
- JPH01125415A JPH01125415A JP28312087A JP28312087A JPH01125415A JP H01125415 A JPH01125415 A JP H01125415A JP 28312087 A JP28312087 A JP 28312087A JP 28312087 A JP28312087 A JP 28312087A JP H01125415 A JPH01125415 A JP H01125415A
- Authority
- JP
- Japan
- Prior art keywords
- water
- ground
- drain material
- shaped drain
- liquefaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 83
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 69
- 238000000034 method Methods 0.000 claims abstract description 23
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 9
- 238000010276 construction Methods 0.000 claims description 23
- 239000011148 porous material Substances 0.000 claims description 23
- 238000007596 consolidation process Methods 0.000 claims description 17
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 210000004556 brain Anatomy 0.000 abstract 1
- 239000011800 void material Substances 0.000 abstract 1
- 239000004576 sand Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 239000002689 soil Substances 0.000 description 5
- 239000004575 stone Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003110 molding sand Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は軟弱地盤の地震時における液状化を防止するた
めの帯状ドレーン材による地盤の液状化防止工法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for preventing liquefaction of soft ground using a belt-shaped drain material for preventing liquefaction of soft ground during an earthquake.
(従来技術)
地震による繰り返し剪断力によって、水で飽和された低
密度の砂質地盤は土粒子間に存在する間隙水の圧力が急
激に上昇するために有効応力を失い、あたかも液体のよ
うに挙動する。この現象を地盤の液状化現象という。(Prior art) Due to repeated shearing forces caused by earthquakes, water-saturated, low-density sandy ground loses its effective stress due to the sudden increase in the pressure of pore water existing between soil particles, causing it to become as if it were a liquid. behave. This phenomenon is called ground liquefaction.
従来、地盤の液状化防止工法としては、地盤の密度を増
加させて地盤強度を増す工法(サンドコンパクション工
法、バイブロロッド工法等)や、土中の間隙水を早急に
逸散させて液状化を防止する排水工法(グラベルドレー
ン工法、ドレーンパイプ工法)が主に施工されている。Conventionally, methods to prevent liquefaction of the ground include methods that increase the density of the ground to increase its strength (sand compaction method, vibrorod method, etc.), and methods that quickly dissipate pore water in the soil to prevent liquefaction. Drainage methods that prevent drainage (gravel drain method, drain pipe method) are mainly used.
近年、既設構造物の耐震性が見直しされ、構造物周辺の
地盤補強が実施されるに伴って、排水工法が用いられる
割合が多くなっている。In recent years, as the earthquake resistance of existing structures has been reviewed and ground reinforcement has been carried out around the structures, drainage methods are increasingly being used.
(発明が解決しようとする問題点)
しかしながら、排水工法の代表例となるグラベルトレー
ン工法は、砕石を用いるために現地への搬入に労力を費
やし、また施工機が大型であるために改良区域が限定さ
れる問題点があった。更に、グラベルドレーン工法では
、地下水の変動により砕石の間隙に土粒子が流れ込み、
目詰りを起こし易く、長期間液状化防止が可能であると
は言い難い問題点があった。(Problems to be solved by the invention) However, the gravel lane construction method, which is a typical example of a drainage construction method, uses crushed stone, which requires a lot of effort to transport to the site, and the construction equipment is large, making it difficult to improve the area. There was a problem with being limited. Furthermore, in the gravel drain construction method, soil particles flow into the gaps between crushed stones due to fluctuations in groundwater.
There was a problem that clogging easily occurred, and it was difficult to say that liquefaction could be prevented for a long period of time.
本発明の目的は、搬入が容易で、大型機械を必要とせず
、且つ目詰りを起こしにくい帯状ドレーン材による地盤
の液状化防止工法を提供することにある。An object of the present invention is to provide a method for preventing ground liquefaction using a strip-shaped drain material that is easy to transport, does not require large machinery, and is less likely to become clogged.
(問題点を解決するための手段)
上記の目的を達成するための本発明の詳細な説明すると
、本発明による帯状ドレーン材による地盤の液状化防止
工法は、横断面がほぼ矩形状をしていて相対向する広面
が通水板面となっている通水材と、前記通水材の表面を
覆う不織布とを備え、前記通水材内にはその長平方向に
連続する通水路が前記両通水板面間を幅方向に間隔をお
いて連結する複数のリブで仕切られて幅方向に複数個並
設され、前記両通水板面にはその幅方向に沿った溝が長
平方向に間隔をおいて多数それぞれ形成され、前記谷溝
には前記通水路に通じる多数の通水孔がそれぞれ形成さ
れて成る帯状ドレーン材を用い、該帯状ドレーン材を砂
質地盤に打ち込み、前記帯状ドレーン材から地震時にお
ける前記砂質地盤中の過剰間隙水の排水を行うこと、及
び前記帯状ドレーン材を未圧密状態の軟弱地盤上に砂質
地盤が存在する地盤中に該砂質地盤を貫通させて軟弱地
質中に打ち込み、軟弱地層中の水を排水させて圧密を促
進させるとともに地震時における砂質地盤中の過剰間隙
水の排水を行うことを特徴とする。(Means for Solving the Problems) To explain in detail the present invention for achieving the above object, the method for preventing ground liquefaction using a belt-shaped drain material according to the present invention has a cross section that is approximately rectangular. A water-permeable material whose wide surfaces facing each other are water-permeable plate surfaces, and a nonwoven fabric covering the surface of the water-permeable material, and a water-permeable channel that continues in the longitudinal direction of the water-permeable material is provided between the two sides. The water passage plate surfaces are partitioned by a plurality of ribs connected at intervals in the width direction, and a plurality of ribs are arranged in parallel in the width direction, and both water passage plate surfaces have grooves along the width direction in the longitudinal direction. A belt-shaped drain material is used, in which a large number of holes are formed at intervals, and each of the valley grooves has a large number of water holes communicating with the water passage, and the belt-shaped drain material is driven into sandy ground. draining excess pore water in the sandy ground during an earthquake from the material, and penetrating the sandy ground into the ground where the sandy ground exists on unconsolidated soft ground with the belt-shaped drain material. It is characterized by being driven into soft geological formations to promote consolidation by draining water in the soft geological formations, as well as to drain excess pore water in sandy ground during earthquakes.
(作用)
このような帯状ドレーン材を用いると、通水材の両通水
板面にはその幅方向に沿った溝が長平方向に間隔をおい
て多数設けられているので、長尺化しても運搬時の巻取
りが容易となり、従って現地への搬入が容易となる。ま
た、このような帯状ドレーン材を用いると、従来から軟
弱地盤の圧密促進に用いられている従来タイプのペーパ
ートレー5=
−ンの打設機が利用でき、比較的軟弱な悪路においても
施工が可能で、打設方法も確立されているので問題はな
い。この帯状ドレーン材は、表面に不織布のフィルター
層を有するので、帯状ドレーン材内部の各通水路の目詰
りを防止できる。また地震時に生じ゛る過剰間隙水は、
これら目詰りしない通水路よりその発生時に早期に排水
され地震時の砂質地盤の液状化を防止できる。(Function) When such a strip-shaped drain material is used, a large number of grooves along the width direction are provided on both water-passing plate surfaces of the water-passing material at intervals in the longitudinal direction. It also becomes easier to roll up during transport, making it easier to transport to the site. In addition, by using such a strip-shaped drain material, it is possible to use a conventional paper tray driving machine that has traditionally been used to promote consolidation of soft ground, making it possible to perform construction even on relatively soft and rough roads. There is no problem as it is possible and the pouring method has been established. Since this strip-shaped drain material has a non-woven filter layer on its surface, clogging of each passageway inside the strip-shaped drain material can be prevented. In addition, excess pore water generated during earthquakes is
These drainage channels that do not clog can quickly drain water when it occurs, preventing liquefaction of sandy ground during earthquakes.
(実施例)
以下、本発明の実施例を図面を参照して詳細に説明する
。(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
本発明では、従来から軟弱地盤の圧密促進に用いられて
いる帯状ドレーン材を改良して用いるので、先ず、本発
明で用いる新規な帯状ドレーン材1の構造の具体例を第
1図乃至第4図を参照して説明する。In the present invention, the strip-shaped drain material conventionally used for promoting consolidation of soft ground is improved and used. First, specific examples of the structure of the novel strip-shaped drain material 1 used in the present invention are shown in FIGS. This will be explained with reference to the figures.
この帯状ドレーン材1は、横断面がほぼ矩形状をしてい
て相対向する広面が通水板面2Aとなっている通水材2
と、該通水材20表面を覆う不織布3とで構成されてい
る。通水材2は幅Wが100〜150額、厚さTカ月0
〜15w程度の矩形状断面形状をなしている。該通水材
2内には、その長手方向に連続する通水路2Bが、両通
水板面2A間を幅方向に間隔をおいて連結する複数のリ
ブ2Cで仕切られて幅方向に複数個並設されている。This strip-shaped drain material 1 has a water-permeable material 2 whose cross section is approximately rectangular and whose opposing wide surfaces serve as water-permeable plate surfaces 2A.
and a nonwoven fabric 3 that covers the surface of the water permeable material 20. The water-permeable material 2 has a width W of 100 to 150 mm and a thickness T of 0.
It has a rectangular cross-sectional shape of about 15w. In the water passage material 2, there are a plurality of water passages 2B that are continuous in the longitudinal direction and partitioned by a plurality of ribs 2C that connect both water passage plate surfaces 2A at intervals in the width direction. They are installed in parallel.
両通水板面2Aには、その幅方向に沿った溝2Dが、5
fi程度の幅で長手方向に5龍程度の間隔をおいて多数
それぞれ形成されている。溝2Dは両通水板面2Aの長
手方向に相互に存在するように形成されている。各溝2
D内には通水路2Bに連通ずる矩形状の通水孔2Eが該
溝2Dの長手方向に沿って多数個それぞれ形成されてい
る。このような通水材2は、配合によって硬軟がコント
ロールできる塩化ビニル、ポリエチレン等の樹脂材で形
成されている。There are 5 grooves 2D along the width direction on both water passage plate surfaces 2A.
They are formed in large number with a width of about fi and spaced apart from each other by about 5 lengths in the longitudinal direction. The grooves 2D are formed so as to exist in the longitudinal direction of both water passage plate surfaces 2A. Each groove 2
Inside D, a large number of rectangular water holes 2E communicating with the water passage 2B are formed along the longitudinal direction of the groove 2D. The water-permeable material 2 is made of a resin material such as vinyl chloride or polyethylene whose hardness and softness can be controlled by adjusting the composition.
このような帯状ドレーン材1は、通水路2Bが両通水板
面2Aとリブ2Cとで区画されて形成されていて、地盤
内の拘束圧でつぶされないようになっているので、地盤
内で拘束圧が加わっても通水性が低下せず、また、長尺
化されても通水性の低下を抑制できる利点がある。更に
、通水材2の材質と両通水板面2Aの表面の溝2Dの存
在により地盤の変形にも追従でき、且つロール状の巻取
りも容易にでき、運搬も容易である。Such a belt-shaped drain material 1 is formed by dividing the water passage 2B between both water flow plate surfaces 2A and the ribs 2C, and is designed not to be crushed by the restraining pressure in the ground. There is an advantage that the water permeability does not decrease even when confining pressure is applied, and the decrease in water permeability can be suppressed even when the length is increased. Furthermore, due to the material of the water passing material 2 and the presence of the grooves 2D on the surfaces of both water passing plate surfaces 2A, it is possible to follow the deformation of the ground, and it is also easy to wind up into a roll shape, making it easy to transport.
第5図は従来型帯状ドレーン材A、B、Cと、この発明
で用いる新規帯状ドレーン材D(試験時は幅100fi
、厚さLowとしている。)の通水試験結果で、土中の
拘束圧を考慮して試験時の側圧を段階的に増した場合の
各々の通水量を示している。この結果、この発明で用い
る新規帯状ドレーン材りが従来型帯状ドレーン材A、B
、Cに比べて3倍程度大きな通水量を示し、且つ側圧に
影響しないことがわかった。Figure 5 shows conventional strip-shaped drain materials A, B, and C, and the new strip-shaped drain material D used in this invention (width 100 fi during testing).
, the thickness is set to Low. ) shows the water flow rate when the lateral pressure during the test was increased step by step, taking into account the confining pressure in the soil. As a result, the new strip-shaped drain material used in this invention is different from the conventional strip-shaped drain materials A and B.
It was found that the water flow rate was about three times larger than that of , C, and it did not affect the lateral pressure.
そこで本発明では、このような新規な帯状ドレーン材1
を用いて、第6図に示すように例えば緩い密度の砂質地
盤4中にほぼ垂直に打設する。第6図において、5は地
下水位面、6は砂質地盤4の表面に設けた砕石マット、
7は地震力、8はその時の間隙水の動き、9はその時の
帯状ドレーン材1からの排水の動きを示す。Therefore, in the present invention, such a novel strip-shaped drain material 1
As shown in FIG. 6, the concrete is cast almost vertically into, for example, sandy ground 4 with a loose density. In Fig. 6, 5 is the groundwater level, 6 is a crushed stone mat provided on the surface of the sandy ground 4,
7 shows the seismic force, 8 shows the movement of pore water at that time, and 9 shows the movement of drainage from the belt-shaped drain material 1 at that time.
このように、砂質地盤4中に帯状ドレーン材lを打設機
で打設しておくと、地震カフが加わった場合、砂質地盤
4中の飽和間隙水は矢印8で示すように帯状ドレーン材
1に集められ、矢印9で示すように排水され、液状化を
防止する。In this way, if the belt-shaped drain material l is cast in the sandy ground 4 using a pouring machine, when an earthquake cuff is applied, the saturated pore water in the sandy ground 4 will be spread out in the belt-like shape as shown by the arrow 8. It is collected in the drain material 1 and drained as shown by the arrow 9 to prevent liquefaction.
次に、本発明の帯状ドレーン材による地盤の液状化防止
工法の効果について、従来の工法との室内実験による比
較例を説明する。Next, the effect of the ground liquefaction prevention construction method using the belt-shaped drain material of the present invention will be explained using a comparative example with a conventional construction method based on an indoor experiment.
第7図(A) (B)は帯状ドレーン材1を用いない実
験設備と、この設備での加振時の緩い密度の飽和砂の液
状化の状態を示したものである。即ち、第7図(A)は
土槽10内に緩い密度の飽和砂11を入れ、該飽和砂1
1中のP点に間隙水圧計12をセットし、該飽和砂11
中には帯状ドレーン材を挿入しない実験設備の例を示し
ている。第7図(B)は第7図(^)に示す設備で振動
実験をした時のP点の過剰間隙水圧比の時間的変化を示
したものである。ここで、ΔUは過剰間隙水圧、δV′
は有効上載圧、ΔU/δV′は過剰間隙水圧比である。FIGS. 7(A) and 7(B) show an experimental facility that does not use the strip-shaped drain material 1 and the state of liquefaction of saturated sand with a loose density during vibration in this facility. That is, in FIG. 7(A), saturated sand 11 with a loose density is placed in a soil tank 10, and the saturated sand 1
A pore water pressure gauge 12 is set at point P in 1, and the saturated sand 11 is
An example of experimental equipment is shown in which no strip-shaped drain material is inserted. FIG. 7(B) shows the temporal change in the excess pore water pressure ratio at point P when a vibration experiment was conducted using the equipment shown in FIG. 7(^). Here, ΔU is excess pore water pressure, δV′
is the effective overburden pressure and ΔU/δV′ is the excess pore water pressure ratio.
この場合、砂中のΔU/δV′はほぼ1となり、地盤が
完全に液状化して、水のような挙動を示している。In this case, ΔU/δV' in the sand is approximately 1, indicating that the ground has completely liquefied and behaves like water.
第8図(A) (B)は従来のグラベルドレーン材13
を用いた実験設備と、この設備での加振時の緩い飽和砂
の液状化の状態を示したものである。即ち、第8図(^
)は土槽10内に第7図(A)と同密度の飽和砂11を
入れ、該飽和砂11中に砕石柱よりなるグラベルドレー
ン材13を設置し、該グラベルドレーン材13中と飽和
砂11中の21点、22点、P3点に間隙水圧計5をそ
れぞれセットした実験設備の例を示したものである。第
8図(B)は第8図(A)の設備で振動実験をした時の
21点。Figure 8 (A) (B) shows conventional gravel drain material 13
This figure shows the experimental equipment using this equipment and the state of liquefaction of loose saturated sand during vibration using this equipment. That is, Figure 8 (^
) is filled with saturated sand 11 having the same density as shown in FIG. This figure shows an example of experimental equipment in which pore water pressure gauges 5 are set at points 21, 22, and P3 out of 11, respectively. Figure 8 (B) shows 21 points when a vibration experiment was conducted using the equipment shown in Figure 8 (A).
22点、P3点の過剰間隙水圧比の時間的変化を示した
ものである。この図からグラベルドレーンを用いても飽
和砂11内には過剰間隙水圧が上昇する場合もあること
がわかる。This figure shows the temporal changes in the excess pore water pressure ratio at point 22 and point P3. This figure shows that even if a gravel drain is used, excess pore water pressure may increase in the saturated sand 11.
第9図(A) (B)は本発明の帯状ドレーン材1を用
いた実験設備と、この設備での加振時の緩い飽和砂11
の挙動を示したものである。即ち、第9図(A)は土槽
10内に第7図(^)と同密度の飽和砂11を入れ、該
飽和砂11中に本発明の帯状ドレーン材(例えば幅10
0m、厚さ10m)1を設置し、該帯状ドレーン材1中
と飽和砂11中のPI点、P2点、PJ点に間隙水圧計
5をそれぞれセットした実験設備の例を示したものであ
る。Figures 9 (A) and 9 (B) show experimental equipment using the belt-shaped drain material 1 of the present invention and loose saturated sand 11 during vibration in this equipment.
This shows the behavior of That is, in FIG. 9(A), saturated sand 11 having the same density as that in FIG.
This shows an example of experimental equipment in which a pore water pressure gauge 5 is installed at the PI point, P2 point, and PJ point in the strip-shaped drain material 1 and the saturated sand 11. .
第9図(B)は第9図(A)の設備で振動実験をした時
のP1点、P2点、P3点の過剰間隙水圧比の時間的変
化を示したものである。図から明らかなように、本発明
によれば、飽和砂11中で液状化現象が生ぜず、液状化
対策として使用できることが明らかとなった。FIG. 9(B) shows temporal changes in the excess pore water pressure ratio at points P1, P2, and P3 when a vibration experiment was conducted using the equipment shown in FIG. 9(A). As is clear from the figure, according to the present invention, no liquefaction phenomenon occurs in the saturated sand 11, and it has become clear that it can be used as a countermeasure against liquefaction.
第10図は本発明の工法が既存の構造物14の近傍でも
施工が可能である例を示している。図において、15は
緩い密度の砂質地盤4の表面の軟弱地盤、16は帯状ド
レーン材打設機である。FIG. 10 shows an example in which the construction method of the present invention can be implemented even in the vicinity of an existing structure 14. In the figure, 15 is soft ground on the surface of the sandy ground 4 with a loose density, and 16 is a belt-shaped drain material casting machine.
このように、この発明は従来の帯状ドレーン材(例えば
、幅100n、厚さ3龍)より厚い帯状ドレーン材(例
えば、幅100n、厚さ10龍)■を用いるだけなので
、既存の帯状ドレーン材の打設機が使用でき、また軟弱
な地盤でも施工が可能で、従来の大型機械では対処でき
なかった場所においても液状化防止対策を施すことがで
きる。As described above, this invention only uses a strip-shaped drain material (for example, width 100n, thickness 10mm) which is thicker than the conventional strip-shaped drain material (eg, width 100n, thickness 3mm). It is possible to use a pouring machine, and it is also possible to perform construction even on soft ground, making it possible to take measures to prevent liquefaction even in places where conventional large machines could not handle it.
第11図は表層が砂質地盤4で、その下に未圧密軟弱地
盤17が存在する複合地盤に対し、本発明を適用した例
を示したものである。即ち、本発明では、この場合、両
地盤4.17に跨って帯状ドレーン材1を打設し、地盤
4の表面に砕石マツトロを設ける。FIG. 11 shows an example in which the present invention is applied to a composite ground in which the surface layer is sandy ground 4 and there is unconsolidated soft ground 17 underneath. That is, in the present invention, in this case, the belt-shaped drain material 1 is cast across both the ground 4 and 17, and crushed stone is provided on the surface of the ground 4.
第12図は第11図のように施工したときの圧密時の帯
状ドレーン材1の働きを示している。なお、第6図と対
応する部分には同一符号をつけて示している。即ち、こ
の場合には、矢印18で示す圧密沈下が未圧密軟弱地盤
17に生じ、これにつれて地盤17中の間隙水は矢印8
で示すように帯状ドレーン材1に集められ、矢印9で示
すように排水される。地盤17の圧密の進行につれて、
該地盤17中の帯状ドレーン材1は、図示のように蛇行
状に湾曲してこれに対応する。FIG. 12 shows the function of the strip-shaped drain material 1 during consolidation when constructed as shown in FIG. 11. Note that parts corresponding to those in FIG. 6 are designated by the same reference numerals. That is, in this case, consolidation settlement shown by arrow 18 occurs in the unconsolidated soft ground 17, and as a result, pore water in the ground 17 flows as shown by arrow 8.
The water is collected in a belt-shaped drain material 1 as shown by , and drained as shown by an arrow 9 . As the consolidation of ground 17 progresses,
The strip-shaped drain material 1 in the ground 17 is curved in a meandering manner as shown in the figure to accommodate this.
第13図は第12図のように地盤17が圧密された後に
、地震カフが作用したときの帯状トレーン材1の働きを
示している。この場合には、砂質地盤4中の飽和間隙水
が矢印8で示すように帯状ドレーン材1に集められ、矢
印9で示すように排水されて液状化を防止する。FIG. 13 shows the action of the band-shaped train material 1 when the earthquake cuff acts after the ground 17 has been consolidated as shown in FIG. 12. In this case, saturated pore water in the sandy ground 4 is collected in the belt-shaped drain material 1 as shown by arrow 8 and drained as shown by arrow 9 to prevent liquefaction.
即ち、第11図に示すような施工を行うと、下部の軟弱
地盤17の圧密促進と、上部の砂質地盤4の液状化防止
との2つの効果が期待できる。That is, if the construction shown in FIG. 11 is carried out, two effects can be expected: promotion of consolidation of the lower soft ground 17 and prevention of liquefaction of the upper sandy ground 4.
第14図(八) (B) (C) (D)は軟弱地盤1
7の圧密を促進するための従来の帯状ドレーン工法の施
工概略工程を上部型砂に液状化防止対策を施した場合の
概略図である。即ち、第14図(A)は未施工状態、第
14図(B)は軟弱地盤17上に敷砂19をして従来タ
イプの帯状ドレーン材(例えば、幅100龍、厚さ3m
>20を打設した状態、第14図(C)は敷砂19の上
に型砂21をして圧密を行っている状態、第14図(D
)は型砂21の締固めをしている状態を示したものであ
る。即ち、従来の施工では、下部軟弱地盤17の圧密か
終了してから、上部型砂21の液状化防止対策を行って
いる。Figure 14 (8) (B) (C) (D) shows soft ground 1
7 is a schematic diagram of the construction process of the conventional belt-shaped drain construction method for promoting consolidation in the case where measures to prevent liquefaction are taken on the upper mold sand. That is, Fig. 14 (A) shows an unconstructed state, and Fig. 14 (B) shows a conventional type belt-shaped drain material (for example, 100 mm wide and 3 m thick) with sand 19 laid on soft ground 17.
Fig. 14 (C) shows the state in which molding sand 21 is placed on top of the sand 19 and consolidation is performed, and Fig. 14 (D
) shows the state in which the mold sand 21 is being compacted. That is, in conventional construction, measures to prevent liquefaction of the upper mold sand 21 are taken after the consolidation of the lower soft ground 17 is completed.
第15図(A) (B) (C)は軟弱地盤17の圧密
促進のために本発明の工法を適用した概略工程と上部型
砂の液状化防止対策を施した場合の概略図である。即ち
、第15図(A)は未施工状態、第15図(B)は軟弱
地盤17上に型砂21をした状態、第15図(C)は型
砂21と軟弱地盤17とに跨って本発明の工法で帯状ド
レーン材1を打設しかつ型砂21の上に砕石マツトロを
設けた状態を示したものである。即ち、本発明の工法を
用いると、下部軟弱地盤17の圧密促進と上部型砂21
の液状化防止が同じ帯状ドレーン材1で可能になり、且
つ工程が短縮される。FIGS. 15(A), 15(B), and 15(C) are schematic diagrams of the process in which the construction method of the present invention is applied to promote consolidation of the soft ground 17, and in which measures are taken to prevent liquefaction of the upper mold sand. That is, FIG. 15(A) shows the unconstructed state, FIG. 15(B) shows the state where the molding sand 21 is placed on the soft ground 17, and FIG. This figure shows the state in which the belt-shaped drain material 1 has been cast using the construction method described above, and crushed stone matsutoro has been placed on top of the molding sand 21. That is, when the construction method of the present invention is used, consolidation of the lower soft ground 17 is promoted and the upper mold sand 21 is
The same strip-shaped drain material 1 can prevent liquefaction of the drain material 1, and the process can be shortened.
(発明の効果)
以上説明したように本発明の地盤の液状化防止工法では
、従来の帯状ドレーン材を改良した帯状ドレーン材を用
いて液状化防止を図るので、現在の帯状ドレーン材打設
機を用いて施工を行うことができ、このため比較的軟弱
な悪路においても施工が可能であり、且つ打設方法も確
立されていて施工上問題がない利点がある。かつまた、
本発明で用いる帯状ドレーン材は通水材の両道水板面に
その幅方向に沿った溝が長手方向に間隔をおいて設けら
れているので、運搬時の巻取りが容易であり、従って現
地への搬入も容易であり、しかも地盤の圧密には湾曲し
てこれに対応できる利点がある。更に、この帯状ドレー
ン材は両道水板面とその間の複数のリブとにより通水路
の必要な断面積がつぶれないように確保されており、し
かも表面には不織布よりなるフィルターがあって通水路
の目詰りを防止するようになっているので、排水性能の
低下を防止できて、地震時に発生する過剰間隙水の排水
を早期に行わせることができ、液状化防止性能が優れて
いる利点がある。(Effects of the Invention) As explained above, the ground liquefaction prevention method of the present invention aims to prevent liquefaction by using a belt-shaped drain material that is an improved version of the conventional belt-shaped drain material. Therefore, it is possible to perform construction even on relatively soft and rough roads, and the casting method has been established, so there are no problems in construction. And also,
The strip-shaped drain material used in the present invention has grooves along the width direction at intervals in the longitudinal direction on the double-channel water plate surface of the water-permeable material, so it is easy to roll up during transportation, and therefore it can be easily rolled up at the site. It is easy to transport to the ground, and it has the advantage of being curved to accommodate the consolidation of the ground. Furthermore, this strip-shaped drain material has a double-channel water plate surface and a plurality of ribs between them to ensure that the necessary cross-sectional area of the water passageway will not be crushed.Moreover, there is a filter made of non-woven fabric on the surface to prevent the water passageway from being crushed. Since it is designed to prevent clogging, it can prevent deterioration in drainage performance, allow for early drainage of excess pore water that occurs during earthquakes, and has the advantage of excellent liquefaction prevention performance. .
第1図は本発明で用いる帯状ドレーン材の一例の不織布
を一部除去した状態の平面図、第2図は同側面図、第3
図は同縦断側面図、第4図は第3図中のIV−TV線断
面図、第5図は本発明と従来の帯状ドレーン材の側圧に
対する通水量の変化の比較図、第6図は本発明の施工状
態の一例を示す地盤の縦断面図、第7図(A)、第8図
(A)及び第9図(A)は飽和砂中に何も対策を施さな
い場合と、グラベルドレーン材を設置した場合と、本発
明の帯状ドレーン材を設置した場合の実験設備の縦断面
図、第7図(B)、第8図(B)及び第9図(B)は前
述した各実験設備での前震時における過剰間隙水圧比の
変化を示す過剰間隙水圧比特性図、第10図は構造物の
近傍での本発明の工法の実施状態を示す縦断面図、第1
1図は未圧密軟弱地盤と緩い密度の砂質地盤からなる層
構造の地盤に対する本発明の施工状態を示す縦断面図、
第12図及び第13図は第11図に示す施工状態での圧
密時と地震時の働きを示す説明図、第14図(八)〜(
D)は従来の軟弱地盤の圧密促進と液状化防止を行う場
合の工程図、第15図(A)〜(C)は本発明の工法で
軟弱地盤の圧密促進と液状化防止を行う場合の工程図で
ある。
1・・・帯状ドレーン材、2・・・通水材、2A・・・
通水板面、2B・・・通水路、2C・・・リブ、2D・
・・溝、2E・・・通水孔、3・・・不織布、4・・・
砂質地盤、6・・・砕〕φ:) (E)唇)It収
、−1。
ゴ、[11
7△−9/rlV
区
7△≠V
区
ト
沫
、△≠V
区
■
派FIG. 1 is a plan view of an example of the belt-shaped drain material used in the present invention with a portion of the nonwoven fabric removed, FIG. 2 is a side view of the same, and FIG.
The figure is a vertical side view of the same, Figure 4 is a cross-sectional view taken along the line IV-TV in Figure 3, Figure 5 is a comparison diagram of the change in water flow rate with respect to lateral pressure of the present invention and the conventional belt-shaped drain material, and Figure 6 is Vertical cross-sectional views of the ground showing an example of the construction state of the present invention, Fig. 7 (A), Fig. 8 (A), and Fig. 9 (A) show the case where no measures are taken in saturated sand, and the case where no measures are taken in saturated sand, and The vertical cross-sectional views of the experimental equipment when the drain material is installed and when the belt-shaped drain material of the present invention is installed, FIG. 7 (B), FIG. 8 (B), and FIG. 9 (B) are the above-mentioned Excess pore water pressure ratio characteristic diagram showing changes in excess pore water pressure ratio during foreshock in experimental equipment;
Figure 1 is a longitudinal cross-sectional view showing the construction state of the present invention on a layered ground consisting of unconsolidated soft ground and loose sandy ground;
Figures 12 and 13 are explanatory diagrams showing the operation during consolidation and earthquake in the construction state shown in Figure 11, and Figures 14 (8) to (8)
D) is a process diagram for promoting consolidation of soft ground and preventing liquefaction using the conventional method, and Figures 15 (A) to (C) are process diagrams for promoting consolidation of soft ground and preventing liquefaction using the construction method of the present invention. It is a process diagram. 1... Belt-shaped drain material, 2... Water-permeable material, 2A...
Water flow plate surface, 2B... Water flow path, 2C... Rib, 2D.
...Groove, 2E...Water hole, 3...Nonwoven fabric, 4...
Sandy ground, 6... crushed〕φ:) (E) lip) It yield, -1. Go, [11 7△-9/rlV ward 7△≠V kuto, △≠V ku■ faction
Claims (2)
通水板面となっている通水材と、前記通水材の表面を覆
う不織布とを備え、前記通水材内にはその長手方向に連
続する通水路が前記両通水板面間を幅方向に間隔をおい
て連結する複数のリブで仕切られて幅方向に複数個並設
され、前記両通水板面にはその幅方向に沿った溝が長手
方向に間隔をおいて多数それぞれ形成され、前記各溝に
は前記通水路に通じる多数の通水孔がそれぞれ形成され
て成る帯状ドレーン材を用い、 該帯状ドレーン材を砂質地盤に打ち込み、前記帯状ドレ
ーン材から地震時における前記砂質地盤中の過剰間隙水
の排水を行うことを特徴とする帯状ドレーン材による地
盤の液状化防止工法。(1) A water-permeable material having a substantially rectangular cross section and opposite wide surfaces serving as water-permeable plate surfaces, and a nonwoven fabric covering the surface of the water-permeable material; has a plurality of water passages that are continuous in the longitudinal direction and are partitioned by a plurality of ribs that connect the two water passage plate surfaces at intervals in the width direction, and are arranged in parallel in the width direction; uses a band-shaped drain material in which a large number of grooves are formed along the width direction at intervals in the longitudinal direction, and each groove has a large number of water holes communicating with the water passage, A method for preventing ground liquefaction using a strip-shaped drain material, characterized in that a drain material is driven into sandy ground, and excess pore water in the sandy ground is drained from the strip-shaped drain material during an earthquake.
通水板面となっている通水材と、前記通水材の表面を覆
う不織布とを備え、前記通水材内にはその長手方向に連
続する通水路が前記両通水板面間を幅方向に間隔をおい
て連結する複数のリブで仕切られて幅方向に複数個並設
され、前記両通水板面にはその幅方向に沿った溝が長手
方向に間隔をおいて多数それぞれ形成され、前記各溝に
は前記通水路に通じる多数の通水孔がそれぞれ形成され
て成る帯状ドレーン材を用い、 該帯状ドレーン材を未圧密状態の軟弱地盤上に砂質地盤
が存在する地盤中に該砂質地盤を貫通させて軟弱地盤中
に打ち込み、軟弱地層中の水を排水させて圧密を促進さ
せるとともに地震時における砂質地盤中の過剰間隙水の
排水を行うことを特徴とする帯状ドレーン材による地盤
の液状防止工法。(2) A water-permeable material having a substantially rectangular cross section and opposite wide surfaces serving as water-permeable plate surfaces, and a nonwoven fabric covering the surface of the water-permeable material; has a plurality of water passages that are continuous in the longitudinal direction and are partitioned by a plurality of ribs that connect the two water passage plate surfaces at intervals in the width direction, and are arranged in parallel in the width direction; uses a band-shaped drain material in which a large number of grooves are formed along the width direction at intervals in the longitudinal direction, and each groove has a large number of water holes communicating with the water passage, A drain material is driven into the soft ground where sandy ground exists on unconsolidated soft ground, penetrating the sandy ground and driving it into the soft ground to drain water in the soft ground to promote consolidation and to prevent earthquakes. A construction method for preventing ground liquefaction using a belt-shaped drain material, which is characterized by draining excess pore water in sandy ground.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62283120A JPH0617570B2 (en) | 1987-11-11 | 1987-11-11 | Soil liquefaction prevention method using strip drain material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62283120A JPH0617570B2 (en) | 1987-11-11 | 1987-11-11 | Soil liquefaction prevention method using strip drain material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01125415A true JPH01125415A (en) | 1989-05-17 |
JPH0617570B2 JPH0617570B2 (en) | 1994-03-09 |
Family
ID=17661484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62283120A Expired - Lifetime JPH0617570B2 (en) | 1987-11-11 | 1987-11-11 | Soil liquefaction prevention method using strip drain material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0617570B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100645332B1 (en) * | 2006-07-11 | 2006-11-15 | 주식회사 상지엔지니어링 | Multiple rice straw drain for improving soft ground |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0197715A (en) * | 1987-10-08 | 1989-04-17 | Penta Ocean Constr Co Ltd | Paper draining material for ground improvement |
-
1987
- 1987-11-11 JP JP62283120A patent/JPH0617570B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0197715A (en) * | 1987-10-08 | 1989-04-17 | Penta Ocean Constr Co Ltd | Paper draining material for ground improvement |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100645332B1 (en) * | 2006-07-11 | 2006-11-15 | 주식회사 상지엔지니어링 | Multiple rice straw drain for improving soft ground |
Also Published As
Publication number | Publication date |
---|---|
JPH0617570B2 (en) | 1994-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5815360B2 (en) | Improved ground and its construction method | |
AU2018216633A1 (en) | Method of constructing a foundation | |
JPS58101932A (en) | Board material and civil work therewith | |
JPH01125415A (en) | Preventing work for liquefaction of ground by banded drain material | |
RU2594379C1 (en) | Earthwork on swamps with support ground cartridge of widened type | |
KR102576395B1 (en) | Reinforced earth walls | |
CN206298869U (en) | Free drainage concrete retaining wall structure | |
CN106381774B (en) | Construction method and device with film geotextiles reinforcing flexible foundation | |
CN111997030B (en) | Soft soil reinforcing and curing method | |
JPS6332021A (en) | Light-weight banking work for land-slidable and soft ground | |
JP7436970B2 (en) | Ground improvement method and structure | |
JP3145263B2 (en) | Drainage material used for temporary construction roads | |
JPH03206211A (en) | Drain material, soft ground improving structure using drain material and foundation pillar using the same structure | |
RU2411360C1 (en) | Method of underground mining of massive steep ore deposits | |
JP2765327B2 (en) | Ground surface drainage method | |
JP2005200868A (en) | Reinforcing method of weak ground | |
JPH01127717A (en) | Preventing work for liquidizing of sandy ground | |
JP2003105746A (en) | Design method for in-soil drainage layer and in-soil drainage structure | |
JP2001182046A (en) | Consolidation accelerating method | |
CN219157754U (en) | Retaining wall structure for river side slope | |
CN114775620B (en) | Construction method for progressive excavation of plain riverbank under mucky soil condition | |
JPH08338027A (en) | Construction of slope of embankment | |
JPH08302661A (en) | Mat constructing method for prevention of sand spout | |
JPS61134434A (en) | Method of building concrete retaining wall | |
CN106702954A (en) | Free drainage concrete retaining wall structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080309 Year of fee payment: 14 |