JPH01124739A - Valve leak detector - Google Patents
Valve leak detectorInfo
- Publication number
- JPH01124739A JPH01124739A JP28200687A JP28200687A JPH01124739A JP H01124739 A JPH01124739 A JP H01124739A JP 28200687 A JP28200687 A JP 28200687A JP 28200687 A JP28200687 A JP 28200687A JP H01124739 A JPH01124739 A JP H01124739A
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- signal
- leakage
- valve
- oscillator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001228 spectrum Methods 0.000 claims abstract description 21
- 238000001514 detection method Methods 0.000 claims description 14
- 239000012530 fluid Substances 0.000 claims description 9
- 230000010355 oscillation Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/24—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
〈産業上の利用分舒)
本発明はAE(アコースティック・エミッション以下A
Eという)センサを使用して弁シート部からの流体の漏
洩時に発生する超音波を測定して漏洩の有無と漏洩量を
検出するための弁漏洩検出装置に関する。[Detailed Description of the Invention] [Object of the Invention] <Industrial Applications>
This invention relates to a valve leakage detection device for detecting the presence or absence of leakage and the amount of leakage by using a sensor (referred to as E) to measure ultrasonic waves generated when fluid leaks from a valve seat.
(従来の技術)
発電プラントや化学プロセスプラントにはプラントコン
トロールのために多数の弁が配置されており、これらの
弁は流量制御、圧力制御、温度側Wまたは系統を分離す
るために用いられる。(Prior Art) A large number of valves are arranged in a power generation plant or a chemical process plant for plant control, and these valves are used for flow rate control, pressure control, temperature side W, or system separation.
これらの弁の内、プラントの通常運転中に比較的高い圧
力の流体を遮断する必要がある弁においては一般に完全
な遮断が要求される。もし弁に漏洩があると、流体の損
失を生じるばかりでなく、異物の噛込みあるいは僅かな
欠陥等によって高圧の流体が長期開場れ続ける事になり
、初期に発見できれば異物の除去あるいは簡単な修理等
によって再び使用できるものも使用不可能になったり、
修理等が非常に大変となる。また流体の漏洩がプラント
の運転効率を低下させ、結果的にプラント運転コストが
増大するという問題がある。このため、弁からの流体漏
洩を早期に発見するために従来、第3図に示すような弁
漏洩検出装置が用いられていた。Among these valves, those that require relatively high pressure fluid shutoff during normal operation of the plant generally require complete shutoff. If there is a leak in the valve, not only will there be a loss of fluid, but high-pressure fluid will remain open for a long time due to foreign objects getting stuck or a slight defect.If detected early, the foreign object can be removed or a simple repair can be performed Things that can be used again may become unusable due to
Repairs etc. will be extremely difficult. Further, there is a problem in that fluid leakage reduces the operating efficiency of the plant, resulting in an increase in plant operating costs. Therefore, in order to detect fluid leakage from a valve at an early stage, a valve leakage detection device as shown in FIG. 3 has conventionally been used.
すなわち、弁1に設置したAEセンサ2により検出した
漏洩信号をAE計測装置3で増幅し、フィルタリングを
行ない信号解析装置4で実効値と周波数スペクトルを求
め、処理装置5で、処理装置う内にあらかじめ蓄えられ
ている周波数スペクトルデータと、漏洩信号を解析して
得られた周波数スペクトルデータとを比較して、弁1に
おける流体の漏洩発生の有無を検出、出力装置6に結果
を表示する構成になっている。That is, the leakage signal detected by the AE sensor 2 installed in the valve 1 is amplified by the AE measurement device 3, filtered, and the effective value and frequency spectrum are determined by the signal analysis device 4. The configuration is configured to compare pre-stored frequency spectrum data with frequency spectrum data obtained by analyzing the leakage signal, detect whether or not fluid leakage occurs in the valve 1, and display the result on the output device 6. It has become.
いま信号解析装24で解析した周波数スペクトルをaと
し処理装置5内にあらかじめ蓄えられている基準周波数
スペクトルをbとする。そして、第4図の流れ線図で示
すように処理装置5でスペクトルのaとbを比較し、ス
ペクトルの差Cを求め、この差Cが処理装置5内に蓄え
られている基準値αより大きい場合に漏洩量と判断して
いる。Let the frequency spectrum analyzed by the signal analyzer 24 be a, and the reference frequency spectrum stored in advance in the processing device 5 be b. Then, as shown in the flow diagram of FIG. 4, the processing device 5 compares spectra a and b to obtain the difference C between the spectra, and this difference C is calculated from the reference value α stored in the processing device 5. If it is large, it is determined to be a leakage amount.
漏洩信号を周波数スペクトルに解析する事により詳細な
信号の比較ができる。By analyzing the leakage signal into its frequency spectrum, detailed signal comparisons can be made.
また、信号解析装置4で求めた漏洩信号の実効値と弁に
おける漏洩量とは第5図に示す様な対応関係が有る。そ
こで処理装置5でこの関係に基づいて漏洩量を算出して
、出力装置6に結果を表示する構成になっている0以上
の様な構成により弁での漏洩を早期に発見する事ができ
、プラントの効率低下を防ぎ、また弁体への損傷を軽減
する事ができる。Further, there is a correspondence relationship between the effective value of the leakage signal obtained by the signal analysis device 4 and the amount of leakage in the valve as shown in FIG. Therefore, by using a configuration such as 0 or more in which the processing device 5 calculates the leakage amount based on this relationship and displays the result on the output device 6, leakage at the valve can be detected early. It can prevent a drop in plant efficiency and reduce damage to the valve body.
(発明が解決しようとする問題点)
弁での漏洩量の周波数は数十KHz以上と高く広域なた
め、センサには高周波数帯で検出効率の高いAE(アコ
ースティック・エミッション)センサが用いられている
。AEセンサは、内部に圧電形素子を装着し、取付面で
生じる超音波を検出する構造になっており、第6図にそ
の周波数特性aの一例を示す。(Problem to be solved by the invention) Since the frequency of the amount of leakage in the valve is high and wide, at several tens of KHz or more, an AE (acoustic emission) sensor with high detection efficiency in a high frequency band is used as a sensor. There is. The AE sensor has a structure in which a piezoelectric element is mounted inside to detect ultrasonic waves generated on the mounting surface, and FIG. 6 shows an example of its frequency characteristic a.
ところがこの周波数特性aは経年的に変化するため、時
間が経過すると周波数特性が第6図の点線すの様に変化
してj−まう、第3図に示す従来の弁漏洩検出装置でこ
のセンサ2の特性変化が起こると、弁1において漏洩が
光“生しているのにもかかわらすセンサ2で正しく測定
されずに処理装置5内で信号処理される。そのため、弁
漏洩がある程、度大きくならなければ検出されないため
漏洩の発見が遅れることになる。However, this frequency characteristic a changes over time, so as time passes, the frequency characteristic changes as shown by the dotted line in Figure 6. When characteristic change 2 occurs, even though leakage occurs in the valve 1, the sensor 2 does not measure it correctly and the signal is processed in the processing device 5. Therefore, the more valve leakage, the more Since it will not be detected unless the leakage becomes large enough, the discovery of the leakage will be delayed.
また、弁における漏洩量を算出する場合、AEセンサの
特性変化のために漏洩信号が低く検出されるため実効値
が低下して正しい漏洩量を求める事ができなくなるとい
う問題点が有った。Furthermore, when calculating the amount of leakage in the valve, there is a problem in that the leakage signal is detected to be low due to changes in the characteristics of the AE sensor, resulting in a decrease in the effective value, making it impossible to determine the correct amount of leakage.
本発明は上記問題点を解決するためになされたもので、
上記の弁漏洩検出装置において問題点となるセンサの経
年的周波数特性変化を補正し、弁漏洩発生有無の正しい
評価と正確な漏洩Iの算出を行うことができる弁漏洩検
出装置を提供することにある。The present invention has been made to solve the above problems,
An object of the present invention is to provide a valve leakage detection device that corrects the change in frequency characteristics of the sensor over time, which is a problem in the valve leakage detection device described above, and can correctly evaluate the presence or absence of valve leakage and accurately calculate the leakage I. be.
[発明の構成]
(問題点を解決するための手段)
本発明は弁のシート部からの流体の漏洩の有無および漏
洩量を推定する弁漏洩検出装置において、前記弁のシー
ト部近傍に設けられたAEセンサと、このAEセンサか
らの出力を計測するAE計測装置と、このAE計測装置
からのAE波形およびAEスペクトルパターンを観察記
録する信号解析装置と、この信号解析装置の出力側に接
続された特性調整器と、この特性調整器の出力側に接続
されたデータ記憶および漏洩検知する処理装置と、この
処理装置の出力側に接続された出力装置と、前記処理装
置から発振器を介し前記弁のシート部に設けられた発振
体とからなることを特徴とする。[Structure of the Invention] (Means for Solving the Problems) The present invention provides a valve leakage detection device for estimating the presence or absence of fluid leakage from a seat portion of a valve and the amount of leakage. an AE sensor, an AE measurement device that measures the output from this AE sensor, a signal analysis device that observes and records the AE waveform and AE spectrum pattern from this AE measurement device, and a signal analysis device that is connected to the output side of this signal analysis device. a processing device for data storage and leakage detection connected to the output side of the characteristic regulator; an output device connected to the output side of the processing device; and an oscillator provided on the seat portion of the oscillator.
(作 用)
AEセンサの経年的周波数特性の変化を検出するため特
性的に安定な発振体をAEセンサの近傍に設け、この発
振体へ信号を検出する発振器は処理装置からの信号によ
って行なわれる0発振器からの信号を受けた発振体は振
動を発生ずる。この振動をAEセンサで検出して信号解
析装置で解析し、その結果を特性調整器に記憶する0発
振器の信号と発振体の振動は経年的に変化しないので、
AEセンサで検出した信号の解析結果が以前に解析した
結果と比較して変化している場合には特性調整器によっ
て以前の解析結果と一致するように調整する。つぎにあ
る期間経過した時に上記と同様の手段で信号解析を行な
う、この結果と特性調整器に記憶された解析結果とを比
較し、特性調整器でのtA整値を求めることによってA
Eセンサの特性変化に影響されない弁漏洩検出装置を提
供できる。(Function) In order to detect changes in the frequency characteristics of the AE sensor over time, a characteristically stable oscillator is provided near the AE sensor, and the oscillator that detects the signal to this oscillator is activated by the signal from the processing device. The oscillator that receives the signal from the 0 oscillator generates vibrations. This vibration is detected by the AE sensor, analyzed by the signal analyzer, and the result is stored in the characteristic adjuster.The signal of the 0 oscillator and the vibration of the oscillator do not change over time, so
If the analysis result of the signal detected by the AE sensor has changed compared to the previous analysis result, the characteristic adjuster adjusts it to match the previous analysis result. Next, when a certain period of time has elapsed, signal analysis is performed using the same means as above. This result is compared with the analysis result stored in the characteristic adjuster, and the tA set value in the characteristic adjuster is determined.
It is possible to provide a valve leakage detection device that is not affected by changes in the characteristics of the E-sensor.
(実施例)
第1図および第2図を参照しながら本発明に係る弁漏洩
検出装置の一実施例を説明する。なお、図中第3図と同
一部分には同一符号で示す。(Embodiment) An embodiment of the valve leakage detection device according to the present invention will be described with reference to FIGS. 1 and 2. Note that the same parts in the figure as in FIG. 3 are indicated by the same reference numerals.
本発明が従来例と異なる点は発振体1oを弁1のシート
部近傍に設け、この発振体゛に信号を供給する発振器1
1と、信号解析袋fi!4と処理装置5との間に特性調
整器12を設けたことにある。The present invention differs from the conventional example in that an oscillator 1o is provided near the seat portion of the valve 1, and an oscillator 10 that supplies a signal to this oscillator
1 and signal analysis bag fi! The characteristic adjuster 12 is provided between the processing device 4 and the processing device 5.
すなわち、この実施例では第1図に示すように弁1に設
置されたAEセンサ2の近傍に発振体1Oを設け、この
発振体10に発振器11から信号が供給できる様に結線
されている0発振体10はAEセンサ2との間の振動媒
体の影響を極力少なくするためできるだけ近づける必要
がある0発振器11からの信号の発生は処理装置5がら
の指令信号により行なわれる。AEセンサ2で検出され
た信号はAE計測装置3で増幅し、フィルタリングされ
、信号解析装置4で実効値と周波数スペクトルが求めら
れる。解析された周波数スペクトル信号は特性調整器1
2に接線され、特性調整されて処理装置うに送られ弁1
での漏洩の有無が判断される。いま初期膜!状態におけ
るAEセンサの周波数特性を求めるために、処理装置5
から発振器11に発振要求信号が供給されると発振器1
1はホワイトノイズ信号Sを発振体10に供給し、発振
体10は信号Sを受けて発振する。信号にホワイトノイ
ズを用いるのは弁からの漏洩信号がかなり広い周波数域
で発生するため、特定の周波数帯のみの補正では不十分
で広い周波数帯域の補正が必要だからである。(第2図
参照のこと)発振体10からの振動はAEセンサ2で電
気信号に変換され、次にAE計測装置3で増幅、フィル
タリングされ信号解析装置4で実効値と周波数スペクト
ルが求められる。この周波数スペクトルは初期状態にお
ける解析結果として特性調整器12に記憶される。That is, in this embodiment, as shown in FIG. 1, an oscillator 1O is provided near the AE sensor 2 installed in the valve 1, and an oscillator 10 is connected to the oscillator 10 so that a signal can be supplied from the oscillator 11. The oscillator 10 needs to be placed as close as possible to the AE sensor 2 in order to minimize the influence of the vibrating medium between the oscillator 10 and the 0 oscillator 11. The signal generation from the oscillator 11 is performed by a command signal from the processing device 5. The signal detected by the AE sensor 2 is amplified and filtered by the AE measurement device 3, and the effective value and frequency spectrum are determined by the signal analysis device 4. The analyzed frequency spectrum signal is sent to characteristic adjuster 1.
2, the characteristics are adjusted, and the valve 1 is sent to the processing device.
The presence or absence of leakage is determined. Initial membrane now! In order to obtain the frequency characteristics of the AE sensor in the state, the processing device 5
When an oscillation request signal is supplied to the oscillator 11 from
1 supplies a white noise signal S to an oscillator 10, and the oscillator 10 receives the signal S and oscillates. The reason why white noise is used as a signal is because the leakage signal from the valve occurs in a fairly wide frequency range, so correction of only a specific frequency band is insufficient and correction of a wide frequency band is required. (See FIG. 2) Vibration from the oscillator 10 is converted into an electrical signal by the AE sensor 2, then amplified and filtered by the AE measurement device 3, and the effective value and frequency spectrum are determined by the signal analysis device 4. This frequency spectrum is stored in the characteristic adjuster 12 as an analysis result in the initial state.
次にある時間が経過した時に上記と同様の手順によって
AEセンサ2の周波数特性を計測する。Next, when a certain period of time has elapsed, the frequency characteristics of the AE sensor 2 are measured using the same procedure as above.
AEセンサ2の周波数特性が変化していると、このとき
計測された周波数特性と初期状態で計測したものの間に
は差が生じている。この差から周波数特性が初期の状態
と同様になるように特性調整器12の調整ゲインを求め
、AEセンサの特性変化を補正している。これによりA
Eセンサの特性変化に影響されない漏洩信号の検出が可
能となり基準値αとの比較において漏洩発生の有無の判
断を正しく行う事ができる。また正確な漏洩量の推定が
可能となる。When the frequency characteristics of the AE sensor 2 change, a difference occurs between the frequency characteristics measured at this time and those measured in the initial state. From this difference, the adjustment gain of the characteristic adjuster 12 is determined so that the frequency characteristic becomes similar to the initial state, and the change in the characteristic of the AE sensor is corrected. This allows A
It becomes possible to detect a leakage signal that is not affected by changes in the characteristics of the E-sensor, and it is possible to correctly determine whether or not leakage has occurred by comparing it with the reference value α. It also becomes possible to estimate the amount of leakage accurately.
つぎに上記実施例の作用について第2図を参照しながら
述べる。発振器11は信号Sを発振体10に供給する。Next, the operation of the above embodiment will be described with reference to FIG. Oscillator 11 supplies signal S to oscillator 10 .
信号Sは較正信号である4発振体10は発振器11から
の信号Sを受けて発振する。The signal S is a calibration signal.The four oscillator 10 receives the signal S from the oscillator 11 and oscillates.
この校正信号をAEセンサ2で検出しAE計測装置3で
増幅、フィルタリングされ信号解析装置4で実効値と周
波数スペクトルが求められる。この時間経過後の周波数
スペクトルと初期状態における周波数スペクトルを特性
調整器12で比較し、調整ゲインを算出し、AEセンサ
2の利得の劣化を補正している。これより正確な漏洩の
検出と、漏洩量の推定が可能となる。This calibration signal is detected by an AE sensor 2, amplified and filtered by an AE measurement device 3, and an effective value and a frequency spectrum are determined by a signal analysis device 4. The characteristic adjuster 12 compares the frequency spectrum after this time has elapsed with the frequency spectrum in the initial state, calculates an adjustment gain, and corrects the deterioration of the gain of the AE sensor 2. This makes it possible to more accurately detect leakage and estimate the amount of leakage.
これにより、正確な漏洩の検出と漏洩量の推定が可能と
なる。This makes it possible to accurately detect leakage and estimate the amount of leakage.
なお、上記実施例における発振器の信号としてホワイト
ノイズの替りに信号の周波数をDCから補正を必要とす
る周波数までスィーブすることもできる。この場合の装
置の構成は基本的には第1図に示した構成と同様である
。Note that instead of using white noise as the oscillator signal in the above embodiment, the frequency of the signal may be swept from DC to a frequency that requires correction. The configuration of the apparatus in this case is basically the same as that shown in FIG.
装置を設置後、初期状態におけるAEセンサの周波数特
性を求めるため、処理装置5から発振器11に発振要求
信号が供給されると発振器11は周波数がDCから、装
置として補正を必要とする周波数まで発振器11は周波
数がDCから装置として補正を必要とする周波数までス
イープする信号(以下スイープ信号)を発振体10に供
給する。After installing the device, in order to obtain the frequency characteristics of the AE sensor in its initial state, when an oscillation request signal is supplied from the processing device 5 to the oscillator 11, the oscillator 11 changes the frequency from DC to the frequency that requires correction as the device. 11 supplies the oscillator 10 with a signal whose frequency sweeps from DC to a frequency that requires correction as a device (hereinafter referred to as a sweep signal).
発振体10はスィーブ信号を受けて発振し、発振体10
からの振動はAEセンサ2で電気信号に変換され、次に
AE計測装置3で増幅、フィルタリングされ信号解析装
置4で実効値と周波数スペクトルが求められる。この周
波数スペクトルは初期状態における解析結果として特性
調整器12に記憶される。The oscillator 10 oscillates in response to the sweep signal, and the oscillator 10
The vibrations from are converted into electrical signals by the AE sensor 2, then amplified and filtered by the AE measurement device 3, and the effective value and frequency spectrum are determined by the signal analysis device 4. This frequency spectrum is stored in the characteristic adjuster 12 as an analysis result in the initial state.
次にある時間経過した時に、上記と同様の手順によって
AEセンサの周波数特性を計測する。特性が変化してい
る場合にはこれを特性調整器で補正する。これによりA
Eセンサの特性変化に影響されない漏洩信号の測定が可
能となり、正確な漏洩発生の検出と漏洩量の推定が可能
となる。Next, when a certain period of time has elapsed, the frequency characteristics of the AE sensor are measured using the same procedure as above. If the characteristics change, this is corrected using the characteristics adjuster. This allows A
It becomes possible to measure leakage signals that are not affected by changes in the characteristics of the E-sensor, and it becomes possible to accurately detect the occurrence of leakage and estimate the amount of leakage.
[発明の効果]
本発明によれば、AEセンサの劣化を特性調整器で補正
する事により弁漏洩検出装置の性能劣化を防止する事が
でき常に正しい弁における漏洩量を求める事ができる効
果がある。[Effects of the Invention] According to the present invention, by correcting the deterioration of the AE sensor with the characteristic adjuster, it is possible to prevent the performance deterioration of the valve leakage detection device and to always obtain the correct amount of leakage from the valve. be.
第1図は本発明に係る弁漏洩検出装置の一実施例を示す
ブロック図、第2図は第1図における作用を説明するた
めの流れ線図、第3図は従来の弁漏洩検出装置を示すブ
ロック図、第4図は第3図における作用を説明するため
の流れ線図、第5図は第3図における信号解析装置で求
めた漏洩量と実効値との関係を示す特性図、第6図は第
3図におけるAEセンサの利得と周波数との関係を示す
特性図である。
1・・・・・・弁
2・・・・・・AEセンサ
3・・・・・・AE計測装置
4・・・・・・信号解析装置
5・・・・・・処理装置
6・・・・・・出力装置
10・・・・・・発振体
11・・・・・・発振器
12・・・・・・特性調整器
代理人 弁理士 則 近 憲 佑
同 第子丸 健
竿1 :
第2=
第4図
第5図
圓5反N f
第6図Fig. 1 is a block diagram showing an embodiment of the valve leakage detection device according to the present invention, Fig. 2 is a flow diagram for explaining the operation in Fig. 1, and Fig. 3 is a block diagram showing an embodiment of the valve leakage detection device according to the present invention. 4 is a flow diagram for explaining the action in FIG. 3, and FIG. 5 is a characteristic diagram showing the relationship between the leakage amount and effective value determined by the signal analysis device in FIG. FIG. 6 is a characteristic diagram showing the relationship between the gain and frequency of the AE sensor in FIG. 3. 1... Valve 2... AE sensor 3... AE measuring device 4... Signal analysis device 5... Processing device 6... ... Output device 10 ... Oscillator 11 ... Oscillator 12 ... Characteristic adjuster agent Patent attorney Nori Chika Ken Yudo Daishimaru Kenkan 1: 2nd = Fig. 4 Fig. 5 Circle 5 anti-N f Fig. 6
Claims (1)
定する弁漏洩検出装置において、前記弁のシート部近傍
に設けられたAE(アコースティック・エミッション、
以下AEと記す)センサと、このAEセンサからの出力
を計測するAE計測装置と、このAE計測装置からのA
E波形及びAEスペクトルパターンを観察記録する信号
解析装置と、この信号解析装置の出力側に接続された出
データ記憶及び漏洩検知する処理装置と、この処理装置
の出力側に接続された出力装置と、前記処理装置から発
振器を介し前記弁のシート部に設けられた発振体とから
なることを特徴とする弁漏洩検出装置。In a valve leakage detection device that estimates the presence or absence of fluid leakage from a valve seat and the amount of leakage, an AE (acoustic emission,
(hereinafter referred to as AE) sensor, an AE measuring device that measures the output from this AE sensor, and an A sensor that measures the output from this AE sensor;
A signal analysis device for observing and recording E waveforms and AE spectrum patterns, a processing device for storing output data and detecting leakage connected to the output side of this signal analysis device, and an output device connected to the output side of this processing device. A valve leakage detection device comprising: an oscillator provided on the seat portion of the valve via an oscillator from the processing device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28200687A JPH01124739A (en) | 1987-11-10 | 1987-11-10 | Valve leak detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28200687A JPH01124739A (en) | 1987-11-10 | 1987-11-10 | Valve leak detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01124739A true JPH01124739A (en) | 1989-05-17 |
Family
ID=17646913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28200687A Pending JPH01124739A (en) | 1987-11-10 | 1987-11-10 | Valve leak detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01124739A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100764092B1 (en) * | 2006-05-03 | 2007-10-09 | 한국원자력연구원 | System and method for monitoring condition of check valve using acoustic emission sensor |
JP2009510443A (en) * | 2005-09-29 | 2009-03-12 | ローズマウント インコーポレイテッド | Leak detector for process valve |
JP2010117330A (en) * | 2008-11-14 | 2010-05-27 | Kanto Chem Co Inc | Method of diagnosing air operation valve, air operation valve diagnosis device, and air operation valve |
CN106679948A (en) * | 2016-12-15 | 2017-05-17 | 北京航天测控技术有限公司 | Online fault diagnosis method of rapid valve |
CN110411677A (en) * | 2019-07-31 | 2019-11-05 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | A kind of valve leaks and cavitation monitoring device and monitoring method based on underwater sound signal |
JP2019219268A (en) * | 2018-06-20 | 2019-12-26 | 横河電機株式会社 | Valve diagnosing device, valve device, and valve diagnosing method |
US10641412B2 (en) | 2012-09-28 | 2020-05-05 | Rosemount Inc. | Steam trap monitor with diagnostics |
-
1987
- 1987-11-10 JP JP28200687A patent/JPH01124739A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009510443A (en) * | 2005-09-29 | 2009-03-12 | ローズマウント インコーポレイテッド | Leak detector for process valve |
JP4896139B2 (en) * | 2005-09-29 | 2012-03-14 | ローズマウント インコーポレイテッド | Leak detector for process valve |
KR100764092B1 (en) * | 2006-05-03 | 2007-10-09 | 한국원자력연구원 | System and method for monitoring condition of check valve using acoustic emission sensor |
JP2010117330A (en) * | 2008-11-14 | 2010-05-27 | Kanto Chem Co Inc | Method of diagnosing air operation valve, air operation valve diagnosis device, and air operation valve |
US10641412B2 (en) | 2012-09-28 | 2020-05-05 | Rosemount Inc. | Steam trap monitor with diagnostics |
CN106679948A (en) * | 2016-12-15 | 2017-05-17 | 北京航天测控技术有限公司 | Online fault diagnosis method of rapid valve |
JP2019219268A (en) * | 2018-06-20 | 2019-12-26 | 横河電機株式会社 | Valve diagnosing device, valve device, and valve diagnosing method |
CN110411677A (en) * | 2019-07-31 | 2019-11-05 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | A kind of valve leaks and cavitation monitoring device and monitoring method based on underwater sound signal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4898021A (en) | Quantitative air inleakage detection system and method for turbine-condenser systems | |
US5576480A (en) | System and method for testing the integrity of porous elements | |
KR960007442B1 (en) | Steam trap operation detector | |
US6854318B2 (en) | Method and apparatus of nondestructive testing a sealed product for leaks | |
US7853416B2 (en) | Flow rate verification failure diagnosis apparatus, flow rate verification failure diagnosis system, flow rate verification failure diagnosis method, and control program product for flow rate verification failure diagnosis | |
JP4499332B2 (en) | Method for inspecting and locating leaks and apparatus suitable for carrying out the method | |
CA2394293C (en) | Nondestructive testing a sealed product for leaks | |
US5579244A (en) | Pressure controller | |
US20120316834A1 (en) | Passive capacitively-coupled electrostatic (cce) probe method for detecting plasma instabilities in a plasma processing chamber | |
US20090132185A1 (en) | Leak Inspection Method and Leak Inspector | |
JP3585841B2 (en) | Fluid temperature measuring method and apparatus | |
JPH0157728B2 (en) | ||
US4542643A (en) | Fluid leak testing method | |
JPH01124739A (en) | Valve leak detector | |
EP0667954A1 (en) | System and method for testing the integrity of porous elements | |
KR102034781B1 (en) | Apparatus and method for dynamic pressure sensor test | |
JP2575810B2 (en) | Valve leak monitoring device | |
JP3871290B2 (en) | Gas piping airtightness / leakage inspection method and apparatus, and pressure measuring instrument | |
US6886412B2 (en) | Ultrasonic-wave propagation-time measuring method and gas concentration sensor | |
JP3646551B2 (en) | Seal member inspection method | |
JP2008203000A (en) | Device and method for clogging diagnosis | |
WO2014180505A1 (en) | Apparatus for detecting leakage in a cooling system and method of detecting leakage | |
KR20200137295A (en) | Apparatus for detecting combustor instability and method thereof | |
US7299676B1 (en) | Acoustic pressure calibrator | |
JPH04164220A (en) | Gas pressure abnormality detecting device |