[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01113227A - Manufacture of composite material bomb - Google Patents

Manufacture of composite material bomb

Info

Publication number
JPH01113227A
JPH01113227A JP62270310A JP27031087A JPH01113227A JP H01113227 A JPH01113227 A JP H01113227A JP 62270310 A JP62270310 A JP 62270310A JP 27031087 A JP27031087 A JP 27031087A JP H01113227 A JPH01113227 A JP H01113227A
Authority
JP
Japan
Prior art keywords
plastic
inner cylinder
mandrel
reinforced
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62270310A
Other languages
Japanese (ja)
Other versions
JPH0588665B2 (en
Inventor
Shiro Yamamoto
山本 至郎
Masanao Yamaguchi
正直 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP62270310A priority Critical patent/JPH01113227A/en
Publication of JPH01113227A publication Critical patent/JPH01113227A/en
Publication of JPH0588665B2 publication Critical patent/JPH0588665B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Moulding By Coating Moulds (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a light and cheap composite material bomb which is easy to wind and finishes well, having favorable physical properties, by coating an outer periphery of a plastic inner cylinder with a sheet of reinforced fibers, and then forming thereon a fiber-reinforced plastic layer through the filament winding method. CONSTITUTION:An inner cylinder made of plastic in small thickness is used for an inner cylinder of a composite material bomb, which is preferably formed by the blow-molding method. According to the blow molding, after one end of a plastic pipe is sealed, the pipe is heated and expanded into an aimed shape mechanically or by adding pressure. The product formed by the blow molding is high in strength, but low in hardness. Therefore, in order to reinforce a mandrel in a circumferential direction, at least the drum portion of the mandrel which is the inner cylinder is wound by a reinforced fiber sheet. The material of the reinforced fiber sheet is glass fibers, carbon fibers, aramid fibers, etc. Over the reinforced fiber sheet, there is formed fiber-reinforced plastic layer by hardening a mold of the reinforced fibers and plastic by the filament winding method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は軽量で且つ十分な耐圧性を有する複合材料ボン
ベを工業的に製造する方法に関する。更に詳しくは、ブ
ロー成形等により製造した軽石のプラスチック製内筒を
マンドレルとして用いその表面にフィラメントワインタ
ング法によりm維強化プラスチックを成形して複合材料
ボンベを製造する方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for industrially manufacturing a composite material cylinder that is lightweight and has sufficient pressure resistance. More specifically, the present invention relates to an improvement in a method for manufacturing a composite material cylinder by using a pumice plastic inner cylinder manufactured by blow molding or the like as a mandrel, and molding m-fiber reinforced plastic on the surface thereof by the filament wine tongue method.

[従来の技術] ガス及び/又は液化ガスを収納する容器としてボンベが
用いられているが、従来、一般に販売。
[Prior Art] Cylinder is used as a container for storing gas and/or liquefied gas, and until now, it has not been sold to the general public.

使用されているボンベは鋼製である。しかし鋼製のボン
ベは、耐圧容器であるため、肉厚であり、ff1ffi
が大きい欠点がある。このため、比較的近年になり、ア
ルミニウム等の軽金属及びその合金で作ったボンベが製
造されるようになり、市販もされている。
The cylinders used are made of steel. However, steel cylinders are pressure-resistant containers, so they have thick walls, and ff1ffi
There is a big drawback. For this reason, in relatively recent years, cylinders made of light metals such as aluminum and their alloys have been manufactured and are also commercially available.

更に、最近に至り、複合材料のボンベが開発され、市販
されるようになった。例えば「ウルトレッサ」 (登録
商標)という商品名で市販されているSCI社(S t
ractual  Compositel ndust
ries )製のボンベがこれに当る。このような従来
公知の複合材料ボンベは、金属内筒の外側にフィラメン
トワインタング法で繊維強化プラスチック層を形成した
ものである。
Furthermore, recently, cylinders made of composite materials have been developed and become commercially available. For example, SCI Inc. (St.
Ractual Compositel ndust
This is the case for cylinders made by Ries. Such a conventionally known composite material cylinder has a fiber-reinforced plastic layer formed on the outside of a metal inner cylinder by the filament Weintongue method.

[発明が解決しようとする問題点] このような従来公知の複合材料ボンベは、従来の金属製
ボンベの肉厚の一部を補強繊維とプラスチック(樹脂)
で置きかえたものであり、従来の金属製ボンベに比して
軽量になっている。しかしながら、この軽量化を更に推
し進めるには金属部を無くすか、金属部を更に軽くしな
ければならない。
[Problems to be Solved by the Invention] Such a conventionally known composite material cylinder has a part of the wall thickness of a conventional metal cylinder made of reinforcing fibers and plastic (resin).
It is lighter than the conventional metal cylinder. However, in order to further reduce the weight, the metal parts must be eliminated or the metal parts must be made even lighter.

このための手段として、マンドレルとなる金属製の内筒
を除去することが考えられるが、フィラメントワインタ
ング法にて巻き上げて製造したボンベからマンドレルを
除去するには、マンドレルの破壊もしくは変形が必要で
、この方法は理論的には実施可能であっても、現状の技
術ではコスト的にも技術的にも難点がある。また、繊維
強化プラスチック(FRP)のガス透過性の問題もあり
(例えば、特開昭62−10!1701号には、FRP
車輪リムにおいて補強tiJ[を増やすとガスが通り易
くなることが記載されている)、ガスもしくは液化ガス
のボンベとして、マンドレルを残さないフィラメントワ
インデング製品は適当でないという問題もある。
One possible means for this is to remove the metal inner cylinder that serves as the mandrel, but removing the mandrel from a cylinder manufactured by winding it using the filament wine tongue method requires destruction or deformation of the mandrel. Although this method is theoretically possible to implement, current technology has drawbacks in terms of cost and technology. There is also the problem of gas permeability of fiber-reinforced plastics (FRP) (for example, in JP-A-62-10!1701, FRP
There is also the problem that filament winding products that do not leave mandrels are not suitable for use as reinforcing tiJ in wheel rims (it is stated that increasing tiJ makes it easier for gas to pass through) and as gas or liquefied gas cylinders.

一方、金属マンドレルを軽くするに当り、その肉厚を小
さくする方法は容易に考えられるところであるが、肉厚
の小さい(薄肉の)マンドレルは作りにくく、場合によ
っては甚だ高価なものになってしまう。また、金属マン
ドレルは当然のことながら同じ厚さのプラスチックマン
ドレルより重く、かつ同じ重量で比較した場合上手に設
計された繊維強化プラスチック複合材料よりも弱い。
On the other hand, in order to make a metal mandrel lighter, it is easy to think of ways to reduce its wall thickness, but mandrels with small (thin) walls are difficult to make and, in some cases, extremely expensive. . Metal mandrels are also naturally heavier than plastic mandrels of the same thickness, and weaker than well-designed fiber-reinforced plastic composites when compared at the same weight.

従って、安価な、軽量のマンドレルを得る方法として、
プラスチックのマンドレル、しかも、肉厚の小さいマン
ドレルを開発採用することが一つの解決策になる。この
ようなプラスチックマンドレルを得る方法としては、例
えばブロー成形などが好ましい方法として挙げられる。
Therefore, as a way to obtain a cheap and lightweight mandrel,
One solution is to develop and adopt a plastic mandrel with a small wall thickness. A preferable method for obtaining such a plastic mandrel is blow molding, for example.

特にポリエチレンテレフタレート等のブロー成形容器は
、成形の際の延伸の効果により、肉厚が小さくても極め
て優れた強度を示すことが知られている。
In particular, it is known that blow-molded containers made of polyethylene terephthalate or the like exhibit extremely high strength even if the wall thickness is small due to the effect of stretching during molding.

しかしながら、ブロー成形で得られる肉厚の小さい(特
に胴部の肉厚が小さい)マンドレルは、その材質を問わ
ず軟らかく、フィラメントワインタング法の成形用マン
ドレルとしては、成形に際して歪むため、不適当である
However, mandrels with small wall thickness (particularly small wall thickness in the body) obtained by blow molding are soft regardless of the material they are made of, and are therefore unsuitable for use as molding mandrels in the filament wine tongue method because they become distorted during molding. be.

更に、強度上の問題として、プラスチックマンドレルは
表面が平滑であり、フィラメン1−ワインデング加工に
際して繊維が滑りやすくて均一な巻き上げが難しく、従
って、所定の位置に繊維を揃えることが困難である。こ
の結果、得られる成形物の強度等の物性が所期の値に達
しないことがしばしば発生する。
Furthermore, as a strength problem, the plastic mandrel has a smooth surface, making it difficult to wind the fibers evenly because the fibers are slippery during the filament winding process, and therefore it is difficult to align the fibers in a predetermined position. As a result, physical properties such as strength of the obtained molded product often fail to reach desired values.

強度に関しては、更に、フィラメントワインタング法に
よるボンベでは補強繊維が軸に対して斜めに角痕を持っ
て巻かれるため、該ボンベに力が加わることにより、場
合によっては補強繊維の模様が微妙にずれる可能性があ
る。そしてボンベの内圧等により軸方向に力が加わると
軸方向に伸び、円周方向に詰る力が動き、内圧が働いた
場合にボンベが変形し易い問題がある。
Regarding strength, in the case of cylinders made using the filament Wine Tongue method, the reinforcing fibers are wound diagonally to the axis with square marks, so in some cases the pattern of the reinforcing fibers may be slightly distorted due to force being applied to the cylinder. There is a possibility of deviation. When force is applied in the axial direction due to internal pressure of the cylinder, the cylinder stretches in the axial direction, and the clogging force moves in the circumferential direction, causing the cylinder to easily deform when internal pressure is applied.

しかるに、プラスチック等剛性の低い材料からなる肉厚
の小さいマンドレルを用いた場合に、内筒つまりマンド
レルが変形し易いため、この問題が助長され、場合によ
ってはフィラメントワインデング複合材料の層間剥離の
問題につながる場合もあり得る。
However, when a mandrel with a small wall thickness made of a material with low rigidity such as plastic is used, the inner cylinder, that is, the mandrel, is easily deformed, which exacerbates this problem, and in some cases may cause the problem of delamination of filament winding composite materials. It may also lead to.

従って、これらの問題も併ゼて解決する必要がある。Therefore, it is necessary to solve these problems together.

[問題を解決する手段] 本発明者らは、肉厚の小さいプラスチックマンドレル(
ボンベとしては内筒に当る)を用いて、フィラメントワ
インデング法により複合材料ボンベを製造する際の前述
の如き問題を解決すべく鋭意研究の結果、十分に軽いプ
ラスチックマンドレルと複合材料補強mHのシートとを
用いてフィラメントワインデングに必要且つ十分な剛性
を確保出来る、軽量の新規マンドレルを作り、これとフ
ィラメントワインデング法とを組み合せることにより、
軽くて有用な複合材料ボンベを製造し得ることを見い出
し、本発明を完成したものである。
[Means for solving the problem] The present inventors have developed a small-walled plastic mandrel (
As a result of intensive research to solve the above-mentioned problems when manufacturing composite material cylinders using the filament winding method, we have developed a sufficiently light plastic mandrel and a composite material reinforced mH sheet. By creating a new lightweight mandrel that can secure the necessary and sufficient rigidity for filament winding, and combining this with the filament winding method,
The present invention has been completed by discovering that it is possible to manufacture a lightweight and useful composite material cylinder.

即ら、本発明は、プラスチック製内筒の外周を補強繊維
シートで覆った模、その上にフィラメントワインデング
法にて繊維強化プラスチックス層を形成せしめることを
特徴とする複合材料ボンベの製造方法である。
That is, the present invention provides a method for manufacturing a composite material cylinder, characterized in that the outer periphery of a plastic inner cylinder is covered with a reinforcing fiber sheet, and a fiber-reinforced plastic layer is formed thereon by a filament winding method. It is.

本発明方法では、複合材料ボンベの内筒として、肉厚の
小さいプラスチック製内筒を使用する。かかる内筒はブ
ロー成形によるものが好ましい。
In the method of the present invention, a plastic inner cylinder with a small wall thickness is used as the inner cylinder of the composite material cylinder. Such an inner cylinder is preferably formed by blow molding.

一般にプラスチ・lりのブロー成形は、該プラスチック
のパイプを作り、一方の端部を閉じ、加温して機械的及
び加圧により膨張させて目的形状にする。ポリエステル
等の場合にはプリフォームと呼ばれる試験管状の中間体
を作り、これを加熱して、I時的及び空気(又はガス)
吹き込みにより膨張させて目的形状にする。プリフォー
ム等の中間体の肉厚は多くの場合2〜5調程度であり、
得られる成形物の肉厚は1履以下が普通である。ブロー
成形物はポリエチレンテレフタレート等のポリエステル
の場合には延伸効果も考慮して、面積延伸倍率10倍程
度とし、胴部が0.2〜0.3am+厚さにすることが
多い。
In general, blow molding of plastic molding involves making a pipe of the plastic, closing one end, heating it, and expanding it mechanically and under pressure to form the desired shape. In the case of polyester, etc., a test tube-shaped intermediate called a preform is made, which is heated and then heated with air and air (or gas).
Expand it by blowing it into the desired shape. The wall thickness of intermediate bodies such as preforms is often about 2 to 5 tones,
The thickness of the molded product obtained is usually one shoe or less. In the case of a blow-molded product made of polyester such as polyethylene terephthalate, the area stretching ratio is approximately 10 times, taking into consideration the stretching effect, and the body portion is often 0.2 to 0.3 am+thick.

マンドレルとなるプラスチック製内筒の素材はボンベの
内容物により選択する。一般にはポリエステル(ポリエ
チレンテレフタレート、ポリブチレンテレフタレート等
)、ポリアミド(ナイロン6、ナイロン66等)、ポリ
オレフィン、ポリ塩化ビニル、ポリカーボネート、AB
S樹脂等より選ばれ、特にLPGの場合にはポリエステ
ルやナイロンが好ましい。ガス透過率の問題から、低ガ
ス透過率のプラスチックと複層化することも好ましい。
The material of the plastic inner cylinder that serves as the mandrel is selected depending on the contents of the cylinder. Generally, polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), polyamide (nylon 6, nylon 66, etc.), polyolefin, polyvinyl chloride, polycarbonate, AB
The material is selected from S resins, etc., and polyester and nylon are particularly preferred in the case of LPG. Due to the problem of gas permeability, it is also preferable to use a multi-layered material with a plastic having a low gas permeability.

例えば炭酸ガス用のボンベに対してはポリエステルのマ
ンドレルの中間層にポリ塩化ビニリデンの薄層を介在さ
せるのが好ましい。
For example, for carbon dioxide gas cylinders, it is preferable to interpose a thin layer of polyvinylidene chloride in the middle layer of a polyester mandrel.

また、ガス透過率を低減させる目的で、ブロー成形の吹
込用ガスとしてフッ素を含む窒素ガスを使用し、プラス
チック製内筒の内面をフッ素化処理してもよい。
Further, for the purpose of reducing gas permeability, the inner surface of the plastic inner cylinder may be fluorinated by using nitrogen gas containing fluorine as the blowing gas for blow molding.

このブロー成形物は強度はあるが極めて軟弱である。従
って、フィラメントワインデングのマンドレルとしてこ
のまま用いるのは不適当で、このような問題の解決のた
めに例えばマンドレル内に流体を圧入する案(例えば特
開昭61−169226号)もあるが、圧入・排出時の
マンドレルのサイズの変化その他の問題がある。本発明
者らは、マンドレルとなるプラスチック製内筒の周方向
の補強を兼ねた補強繊維シートを少くともマンドレルの
胴部に巻き付けることにより、これの解決を図った。
Although this blow molded product has strength, it is extremely soft. Therefore, it is inappropriate to use it as it is as a mandrel for filament winding.To solve this problem, there is a proposal to pressurize fluid into the mandrel (for example, Japanese Patent Application Laid-Open No. 169226/1982), but There are other problems such as changes in the size of the mandrel during ejection. The present inventors attempted to solve this problem by wrapping at least the body of the mandrel with a reinforcing fiber sheet that also serves as circumferential reinforcement of the plastic inner cylinder that becomes the mandrel.

補強織帷シートは予めプラスチック(樹脂)を含浸させ
たもの、つまりプリプレグであってもよいし、繊維シー
トのみを巻き付けてもよい。また、その上からプラスチ
ック(樹脂)を塗布してもよいし、予め塗布した上に巻
き付けてもよい。又、該プラスチック(樹脂)は硬化し
てもよく、硬化しなくてもよい。また、半硬化でもよい
The reinforcing woven sheet may be pre-impregnated with plastic (resin), that is, prepreg, or may be wrapped only with a fiber sheet. Furthermore, plastic (resin) may be applied over it, or it may be applied in advance and then wrapped. Further, the plastic (resin) may or may not be cured. Alternatively, it may be semi-cured.

マンドレルに巻き付ける補強I!維レシート素材は、フ
ィラメントワインデングに用いられるものと同様であり
、実用上はガラス繊維、炭素繊維。
Reinforcement I to wrap around the mandrel! The fiber receipt material is the same as that used for filament winding, and in practice it is glass fiber or carbon fiber.

アラミド繊維等が挙げられる。後述のフイラメントワイ
ンデングで使用するものと一致させることが好ましい。
Examples include aramid fibers. It is preferable to match that used in filament winding, which will be described later.

補強!l維シートの形態は、一方向引揃えプリプレグ、
これを互いに交叉するよう積層したもの、織物、不織布
等任意の形態をとることができる。
Reinforcement! The form of the fiber sheet is unidirectionally aligned prepreg,
It can take any form such as a stack of these layers intersecting each other, a woven fabric, a non-woven fabric, etc.

該補強繊維シートは、マンドレルとなるプラスチック製
内筒のノズル部以外の全表面に巻きつけてもよいが、マ
ンドレルの胴に当る部分にのみ巻きつけるだけでも十分
である。該補強シートはその幅がマンドレルの胴の長さ
に一致するような広幅のものでもよく、テープ状の幅の
狭いもの(この場合はらせん状に巻きつける)でもよい
。いずれの場合も巻き厚さは0.5〜2Mが適当である
The reinforcing fiber sheet may be wrapped around the entire surface of the plastic inner cylinder that becomes the mandrel, except for the nozzle part, but it is sufficient to wrap it only around the part that corresponds to the body of the mandrel. The reinforcing sheet may be wide enough to match the length of the mandrel body, or may be narrow in the form of a tape (in this case, it is wound spirally). In either case, the appropriate winding thickness is 0.5 to 2M.

本発明方法では、その上(外周)にフィラメントワイン
デング法により補強繊維とプラスチック(樹脂)とを成
形し、硬化させて繊維強化プラスチック層を形成する。
In the method of the present invention, reinforcing fibers and plastic (resin) are molded thereon (on the outer periphery) by a filament winding method and hardened to form a fiber-reinforced plastic layer.

本発明方法によるボンベのフィラメントワインデング法
成形に用いる補強繊維は、この方法で用いられる一般の
繊維でよく、種類を特に問わないが、実用上はガラス繊
維、炭素繊維、アラミド繊維等が用いられる。コストと
物性のバランスからはガラス繊維が最も好ましい。
The reinforcing fibers used in the filament winding method of forming cylinders according to the method of the present invention may be general fibers used in this method and are not particularly limited in type, but in practice, glass fibers, carbon fibers, aramid fibers, etc. are used. . Glass fiber is most preferable from the viewpoint of balance between cost and physical properties.

繊維に付着させるプラスチック(樹脂)としては前述と
同様に一般にフィラメントワインデングで用いるプラス
チック(樹脂)でよく、不飽和ポリエステル樹脂、エポ
キシ樹脂、ビニルエステル樹脂等が用いられ、低温で溶
融する一部の熱可塑性樹脂であってもよい。プラスチッ
クの硬化等、後処理の温度はマンドレルの素材ポリマー
の耐熱性で選ばれる。つまり、プラスチックの選択はそ
の硬化温度とマンドレルの素材との関係も考慮して行わ
れる。
The plastic (resin) to be attached to the fibers may be the plastic (resin) generally used in filament winding as described above, such as unsaturated polyester resin, epoxy resin, vinyl ester resin, etc. It may also be a thermoplastic resin. The temperature for post-processing, such as curing the plastic, is selected depending on the heat resistance of the polymer used to make the mandrel. In other words, the selection of plastic is made by taking into consideration the relationship between its curing temperature and the material of the mandrel.

フィラメントワインデングの方式としては、乾式、湿式
のいずれでもよく、巻き上げ紋様としてはスパイラル、
ポーラ−のいずれでもよい。低圧用ボンベでは、薄手の
フィラメントワインデングであるため、伸びを抑えるた
めにポーラ−巻きの好ましい場合がある。スパイラル又
はポーラ−巻きの上に更にフープ巻きを重ねるのが普通
である。
The filament winding method can be dry or wet, and the winding pattern can be spiral,
Either polar type may be used. For low-pressure cylinders, since the filament winding is thin, polar winding may be preferable to suppress elongation. It is common to superimpose a hoop winding on top of the spiral or polar winding.

空気9w1素、その他の通常のガスの容器としては上述
の方法で製造した複合材料ボンベで十分である。しかし
ながら、LPG等の可燃物の場合にはガス透過の問題を
生ずることがあるが、この問題を避けるため、ブロー成
形したプラスチックマンドレル(ボンベの内筒となる)
に金属メッキしておくことが好ましい場合があり、また
、プロー成形したプラスチックマンドレルの外側又はシ
ート巻ぎ付は後の外側を金属箔等の薄葉金属で覆うこと
が好ましい場合もある。
A composite material cylinder manufactured by the method described above is sufficient as a container for air 9w1 or other ordinary gases. However, in the case of combustible materials such as LPG, gas permeation problems may occur.To avoid this problem, a blow-molded plastic mandrel (which becomes the inner cylinder of the cylinder) is
It may be preferable to plate the plastic mandrel with metal, and it may also be preferable to cover the outside of the blow-molded plastic mandrel or the outside after sheet wrapping with a thin metal such as metal foil.

必要に応じて用いる金属箔は、アルミニウム。The metal foil used as needed is aluminum.

すす、銅等のほか、金、銀等金属箔になるものなら何で
もよい。ガスバリア性、コストのバランスからはアルミ
ニウムが特に好ましい。
In addition to soot, copper, etc., anything that can be made into metal foil, such as gold and silver, can be used. Aluminum is particularly preferred from the viewpoint of gas barrier properties and cost balance.

第1図は本発明方法による複合材料ボンベの一例を示す
断面図である。図中(1)はブロー成形等により形成さ
れたプラスチック内筒(フィラメントワインデングのマ
ンドレルとなる)、(2はその胴部に巻回した補強繊維
シート層、(3)はスパイラル巻きフィラメントワイン
デング層、(4)はボンベのノズル、(5)はガス透過
性を改善するための金属箔(無くともよい)であり、(
6)はボンベの最外層となるフープ巻きフィラメントワ
インデング層である。
FIG. 1 is a sectional view showing an example of a composite material cylinder produced by the method of the present invention. In the figure, (1) is a plastic inner cylinder formed by blow molding etc. (which becomes the mandrel for filament winding), (2 is a reinforcing fiber sheet layer wound around the body of the cylinder, and (3) is a spirally wound filament winding. layer, (4) is the nozzle of the cylinder, (5) is a metal foil (optional) to improve gas permeability, and (
6) is a hoop-wound filament winding layer which is the outermost layer of the cylinder.

なお、このボンベは、更にその表面を塗装したり、薄い
プラスチック層で被覆してもよい。
The cylinder may further have its surface painted or covered with a thin plastic layer.

[実施例] 次に、本発明の実施例を詳述するが、本発明はこれらの
実施例によって限定されるものではない。
[Examples] Next, Examples of the present invention will be described in detail, but the present invention is not limited to these Examples.

実施例1 ポリエチレンテレフタレートを用いインジェクション法
で試験管状の成形物(プリフォーム)を作った。これを
ブロー成形してビン状にした。プロー成形物の直径は2
50m11.艮ざは650IllI11であった。
Example 1 A test tube-shaped molded product (preform) was made using polyethylene terephthalate by an injection method. This was blow molded into a bottle shape. The diameter of the blow molding is 2
50m11. The weight was 650IllI11.

この上(外周)にエポキシ樹脂を塗り、市販のガラス、
繊維の織物を巻き、糸で止め、更にエポキシ樹脂を塗っ
て固めた。シートを巻いた厚さは0.4馴であった。
Apply epoxy resin on top of this (outer circumference) and use commercially available glass.
The fiber fabric was rolled up, secured with thread, and then coated with epoxy resin to harden it. The thickness of the rolled sheet was 0.4 mm.

その上からフィラメントワインデング法によりガラス繊
維にエポキシ樹脂を含浸させたガラス繊11i(Eガラ
ス4!I>を巻き角度13.6°でスパイラル状に巻き
付けた。この層の厚さは1.2jemとした。
Glass fiber 11i (E glass 4!I>), which is a glass fiber impregnated with epoxy resin, was spirally wound thereon at a winding angle of 13.6° using the filament winding method.The thickness of this layer was 1.2jem. And so.

更にその上に胴部のみにフープ状に上記のエポキシ樹脂
含浸ガラス繊維を巻き付けた。この層の厚さは2.2a
mとした。
Furthermore, the above epoxy resin-impregnated glass fiber was wound in a hoop shape only around the body. The thickness of this layer is 2.2a
It was set as m.

本実滴例ではフィラメントワインデング法により良好に
成形することができた。樹脂を硬化させて得られた複合
材料ボンベは水圧テストの結果、少なくとも内圧100
に9/aiまで耐えることが確認された。
This actual droplet example could be successfully formed using the filament winding method. The composite material cylinder obtained by curing the resin has an internal pressure of at least 100% as a result of a water pressure test.
It was confirmed that it can withstand up to 9/ai.

実施例2 ポリプロピレンの樹脂でブロー成形してマンドレルを作
った。該マンドレルは直径 +50m、長さ300、で
あプた。これにノズル部を残してアルミニウム箔を全面
に巻き付けた。
Example 2 A mandrel was made by blow molding a polypropylene resin. The mandrel had a diameter of +50 m and a length of 300 m. Aluminum foil was wrapped around the entire surface of this, leaving the nozzle portion.

このマントルの胴部に、ガラス!INクロスに不飽和ポ
リエステル樹脂を含浸させてプリプレグを巻き付け、そ
の上にフィラメントワインデング法により不飽和ポリエ
ステル樹脂を含浸させたガラス繊維をさき角度30°で
巻き付けた。その上に胴部にのみ、フープ巻きを行った
Glass in the body of this mantle! An IN cloth was impregnated with an unsaturated polyester resin and a prepreg was wound thereon, and a glass fiber impregnated with an unsaturated polyester resin was wound thereon at a winding angle of 30° using a filament winding method. On top of that, a hoop was wrapped only around the torso.

フィラメントワインデング法で良好な成形が出来、シー
ト(プリプレグ)部の厚さ0.6.、フィラメントワイ
ンデング部の厚さはスパイラル巻き層が1.811+s
+、フープ巻き層が2.4aa+であった。得られたボ
ンベは第1図の如き構造を有し、水圧テストの結果、少
なくとも100KFI / ctiに耐えた。
Good molding can be achieved using the filament winding method, and the thickness of the sheet (prepreg) part is 0.6. , the thickness of the filament winding part is 1.811+s for the spiral winding layer.
+, the hoop-wound layer was 2.4 aa+. The obtained cylinder had a structure as shown in FIG. 1, and as a result of a water pressure test, it withstood at least 100 KFI/cti.

比較例 実施例1のマンドレルにシートを巻かずにそのままフィ
ラメントワインデング加工した。巻き角度1366°で
巻いたが、均一な巻き上げが難しく粗密が生じた。実施
例1と同じ1だけ巻いた後、この上に胴部のみフープ巻
きした。フープ巻ぎは実施例1の2割増分だけ巻いた。
Comparative Example A filament winding process was performed on the mandrel of Example 1 without wrapping the sheet. Although the film was wound at a winding angle of 1366°, it was difficult to wind it evenly, resulting in irregularities. After wrapping only one layer as in Example 1, only the body portion was wound with a hoop. The hoop winding was carried out by 20% of that in Example 1.

見栄えにも問題を残したが、水圧テストで85 Kg/
 cM程度で破壊した。
Although there were some problems with the appearance, the water pressure test showed that the weight was 85 kg/
It was destroyed at about cM.

[発明の効果] 本発明方法によれば、軽量、安価で、美麗な、物性の優
れた複合材料ボンベが得られる。そして、本発明方法に
よるボンベはマンドレルが比較的薄いプラスチックなの
で、金属マンドレルの上に巻きマンドレルを抜かない複
合材料ボンベより軽く、かつ基本のマンドレルが軟らか
くそのままではフィラメントワインデング困難なのに対
して、巻きやすく、従って美麗に仕上がり、物性も良好
である。
[Effects of the Invention] According to the method of the present invention, a lightweight, inexpensive, beautiful composite material cylinder with excellent physical properties can be obtained. Since the cylinder manufactured by the method of the present invention has a relatively thin plastic mandrel, it is lighter than a composite material cylinder in which the mandrel is not wound on a metal mandrel and is not removed, and it is easy to wind, whereas the basic mandrel is soft and difficult to wind the filament as it is. Therefore, it has a beautiful finish and good physical properties.

また、プラスナック製内筒が存在すること及びフィラメ
ントワインデングにおいて均一で隙間のない巻き上げが
できることにより、複合材料のみのボンベに比べてガス
の透過も著しく少ないという利点を有する。
Furthermore, due to the presence of the inner cylinder made of plastic nac and the ability to wind the filament uniformly and without any gaps, it has the advantage of significantly less gas permeation than a cylinder made only of composite materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による複合材料ボンベの1例を示す断面
図である。図において(1)はプラスチック製内筒、(
aは補強繊維シート、(3)はスパイラル巻きフィラメ
ントワインデング層、(4)はノズル、(5)は金属箔
、(6)はフープ巻フィラメントワインデング層ぐある
。 特許出願人 帝 人 株 式 会 礼 式  理  人  弁理士  匍  1) 純  傅、
i:”:”l]1.5  、′丁 \゛(1 −に−
FIG. 1 is a sectional view showing an example of a composite material cylinder according to the present invention. In the figure, (1) is a plastic inner cylinder, (
a is a reinforcing fiber sheet, (3) is a spiral-wound filament winding layer, (4) is a nozzle, (5) is a metal foil, and (6) is a hoop-wound filament winding layer. Patent Applicant: Teijin Co., Ltd. Courtesy: Patent Attorney: 1) Jun Fu,
i:”:”l]1.5 ,'ding\゛(1 -ni-

Claims (1)

【特許請求の範囲】 1、プラスチック製内筒の外周を補強繊維シートで覆っ
た後、その上にフィラメントワインデング法により繊維
強化プラスチック層を形成することを特徴とする複合材
料ボンベの製造方法。 2、プラスチック製内筒がブロー成形したものである特
許請求の範囲第1項記載の製造方法。 3、ブロー成形の吹込用ガスとしてフッ素を含む窒素ガ
スを用いプラスチック製内筒の内面をフッ素化処理する
特許請求の範囲第2項記載の製造方法。 4、プラスチック製内筒がその表面を金属メッキしたも
のである特許請求の範囲第1項又は第2項記載の製造方
法。 5、プラスチック製内筒がその表面を薄葉金属で覆つた
ものである特許請求の範囲第1項又は第2項記載の製造
方法。 6、補強繊維シートをプラスチック製内筒の胴に当る部
分に巻きつける特許請求の範囲第1項又は第2項記載の
製造方法。 7、補強繊維シートがプリプレグシートである特許請求
の範囲第1項又は第6項記載の製造方法。 8、補強繊維シートが織物である特許請求の範囲第1項
又は第6項記載の製造方法。 9、補強繊維シートが不織布である特許請求の範囲第1
項又は第6項の製造方法。 10、外周を補強繊維シートで覆ったプラスチック製内
筒の表面を薄葉金属で覆い、その上にフィラメントワイ
ンデング法により繊維強化プラスチック層を形成させる
特許請求の範囲第1項記載の製造方法。
[Claims] 1. A method for manufacturing a composite material cylinder, which comprises covering the outer periphery of a plastic inner cylinder with a reinforcing fiber sheet, and then forming a fiber-reinforced plastic layer thereon by a filament winding method. 2. The manufacturing method according to claim 1, wherein the plastic inner cylinder is blow molded. 3. The manufacturing method according to claim 2, wherein the inner surface of the plastic inner cylinder is fluorinated using nitrogen gas containing fluorine as the gas for blow molding. 4. The manufacturing method according to claim 1 or 2, wherein the plastic inner cylinder has a surface plated with metal. 5. The manufacturing method according to claim 1 or 2, wherein the plastic inner cylinder has its surface covered with a thin metal sheet. 6. The manufacturing method according to claim 1 or 2, wherein the reinforcing fiber sheet is wound around the part of the plastic inner cylinder that corresponds to the body. 7. The manufacturing method according to claim 1 or 6, wherein the reinforcing fiber sheet is a prepreg sheet. 8. The manufacturing method according to claim 1 or 6, wherein the reinforcing fiber sheet is a woven fabric. 9. Claim 1 in which the reinforcing fiber sheet is a nonwoven fabric
or the manufacturing method of paragraph 6. 10. The manufacturing method according to claim 1, wherein the surface of a plastic inner cylinder whose outer periphery is covered with a reinforcing fiber sheet is covered with a thin metal sheet, and a fiber-reinforced plastic layer is formed thereon by a filament winding method.
JP62270310A 1987-10-28 1987-10-28 Manufacture of composite material bomb Granted JPH01113227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62270310A JPH01113227A (en) 1987-10-28 1987-10-28 Manufacture of composite material bomb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62270310A JPH01113227A (en) 1987-10-28 1987-10-28 Manufacture of composite material bomb

Publications (2)

Publication Number Publication Date
JPH01113227A true JPH01113227A (en) 1989-05-01
JPH0588665B2 JPH0588665B2 (en) 1993-12-24

Family

ID=17484494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62270310A Granted JPH01113227A (en) 1987-10-28 1987-10-28 Manufacture of composite material bomb

Country Status (1)

Country Link
JP (1) JPH01113227A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997026128A1 (en) * 1996-01-19 1997-07-24 Rabe Juergen Method of producing a hollow body for high internal or external pressure
JPH09323365A (en) * 1996-06-06 1997-12-16 Toyota Autom Loom Works Ltd Gas fuel tank and its molding method
JP2011245796A (en) * 2010-05-28 2011-12-08 Yokohama Rubber Co Ltd:The Method for manufacturing plastic liner for tank
JP2013522066A (en) * 2010-03-09 2013-06-13 イナジー・オートモーティブ・システムズ・リサーチ・(ソシエテ・アノニム) Method of manufacturing a fuel tank and its use in a hybrid vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1014290C2 (en) * 2000-02-04 2001-08-07 Advanced Lightweight Const Gro Fiber-reinforced pressure vessel and method for making a fiber-reinforced pressure vessel.
JP6459164B2 (en) * 2013-10-25 2019-01-30 横浜ゴム株式会社 Aircraft water tank manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997026128A1 (en) * 1996-01-19 1997-07-24 Rabe Juergen Method of producing a hollow body for high internal or external pressure
JPH09323365A (en) * 1996-06-06 1997-12-16 Toyota Autom Loom Works Ltd Gas fuel tank and its molding method
JP2013522066A (en) * 2010-03-09 2013-06-13 イナジー・オートモーティブ・システムズ・リサーチ・(ソシエテ・アノニム) Method of manufacturing a fuel tank and its use in a hybrid vehicle
US8967418B2 (en) 2010-03-09 2015-03-03 Inergy Automotive Systems Research S.A. Process for manufacturing a fuel tank and use thereof in a hybrid vehicle
JP2011245796A (en) * 2010-05-28 2011-12-08 Yokohama Rubber Co Ltd:The Method for manufacturing plastic liner for tank

Also Published As

Publication number Publication date
JPH0588665B2 (en) 1993-12-24

Similar Documents

Publication Publication Date Title
US5262118A (en) Method for producing a hollow FRP article
US6508731B1 (en) Composite bat with metal barrel area and method of fabrication
US11680683B2 (en) High-pressure tank, high-pressure tank mounting apparatus and method for manufacturing high-pressure tank
AU2002318781B2 (en) Fiber reinforced thermoplastic pressure vessels
EP1009622B1 (en) Method for the moulding of hollow bodies which comprise at least one layer of reinforced plastic
US4983430A (en) Fiber reinforced composite product having a hollow interior
AU611815B2 (en) Container for high pressure gases
KR20180112821A (en) Polycap reinforced pressure vessel
US20130313266A1 (en) Method to improve the barrier properties of composite gas cylinders and high pressure gas cylinder having enhanced barrier properties
JP2002542966A (en) Hollow composite product and method for producing hollow composite product
US20210404603A1 (en) Compressed gas storage unit with preformed endcaps
JPH01113227A (en) Manufacture of composite material bomb
JP4578068B2 (en) Laminated body for shell and pressure vessel using the same
US20130306652A1 (en) Method to improve the barrier properties of composite gas cylinders and high pressure gas cylinder having enchanced barrier properties
US20020155232A1 (en) Multilayer composite pressure vessel
JPH0392346A (en) Axial member prepared by combining metal film and carbon fiber and preparation thereof
JPH0668359B2 (en) Composite material cylinder and method of manufacturing the same
WO1996007533A1 (en) Method of making composite product of tubular structure using clamshell mold
JPH10274391A (en) Frp pressure vessel excellent in external pressure tightness
JPS6222038B2 (en)
IE43554B1 (en) Synthetic resin containers
WO2005070668A1 (en) Hollow composite body of fiber reinforced thermoplastic material
JPH0634845B2 (en) Method for manufacturing fiber-reinforced plastic bat
EP0500538B1 (en) Vessel construction
JPH0620546Y2 (en) Extinguisher casing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees