[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH011114A - thin film magnetic head - Google Patents

thin film magnetic head

Info

Publication number
JPH011114A
JPH011114A JP62-155817A JP15581787A JPH011114A JP H011114 A JPH011114 A JP H011114A JP 15581787 A JP15581787 A JP 15581787A JP H011114 A JPH011114 A JP H011114A
Authority
JP
Japan
Prior art keywords
thin film
head
film
magnetic
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62-155817A
Other languages
Japanese (ja)
Other versions
JP2617185B2 (en
JPS641114A (en
Inventor
光司 大塚
量二 南方
一義 今江
吉良 徹
Original Assignee
シャープ株式会社
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP62155817A priority Critical patent/JP2617185B2/en
Priority claimed from JP62155817A external-priority patent/JP2617185B2/en
Publication of JPH011114A publication Critical patent/JPH011114A/en
Publication of JPS641114A publication Critical patent/JPS641114A/en
Application granted granted Critical
Publication of JP2617185B2 publication Critical patent/JP2617185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は一軸磁気異方性を有する磁性薄膜に信号磁界を
印加し、それを磁化容易軸方向の電気抵抗変化として検
出する磁気抵抗効果素子(以下MR素子という)を具備
して磁気記録媒体に記録される信号の検出を行なう、薄
膜磁気ヘッド(以下薄膜MRヘッドという)に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a magnetoresistive element that applies a signal magnetic field to a magnetic thin film having uniaxial magnetic anisotropy and detects it as a change in electrical resistance in the direction of the axis of easy magnetization. The present invention relates to a thin film magnetic head (hereinafter referred to as a thin film MR head) that is equipped with an MR element (hereinafter referred to as an MR element) and detects a signal recorded on a magnetic recording medium.

〈従来の技術〉 従来、薄膜MRヘッドは巻線型の磁気ヘッドと比較して
、多くの利点があることが知られている○この薄膜MR
ヘッドは磁気テープ等の磁気記録媒体に書き込まれた信
号磁界を受けることにょシ、MR素子内部の磁化方向が
変化し、この磁化方向の変化に応じたMR水素子内部抵
抗の変化を外部出力として取り出すものである。従って
、薄膜MRヘッドは磁束応答型のヘッドであり磁気記録
媒体の移送速度に依存せずに信号磁界を再生できる。又
、この薄膜MRヘッドは半導体の微細加工技術を適用す
ることによ勺高集積化及び多素子化が容易であるので、
高密度記録が行なわれる固定ヘッド弐PCM録音機の再
生用磁気ヘッドとして有望視されている。
<Prior art> Thin film MR heads have been known to have many advantages compared to wire-wound magnetic heads.
When the head receives a signal magnetic field written on a magnetic recording medium such as a magnetic tape, the magnetization direction inside the MR element changes, and the change in the internal resistance of the MR hydrogen element corresponding to the change in the magnetization direction is output as an external output. It is something to take out. Therefore, the thin film MR head is a magnetic flux responsive head and can reproduce a signal magnetic field without depending on the transport speed of the magnetic recording medium. In addition, this thin film MR head can be easily integrated with high density and multi-element by applying semiconductor microfabrication technology.
It is seen as a promising magnetic head for playback in fixed head PCM recorders that perform high-density recording.

このようなMR水素子外部磁界に対して2乗変化を示す
感応特性ケもつことから、MR水素子再生ヘッドとして
構成する場合、所定のバイアス磁界が必要となる。この
バイアス磁界を印加する方法には導体に直流電流を流す
ことによりバイアス磁界を誘起する方法及びCo−P層
等の高抗磁力薄膜を用いてバイアス磁界を印加する方法
等が知られでいる。
Since the MR hydrogen element has a sensitivity characteristic showing a square change with respect to an external magnetic field, a predetermined bias magnetic field is required when configured as an MR hydrogen element read head. Known methods for applying this bias magnetic field include a method of inducing a bias magnetic field by flowing a direct current through a conductor, and a method of applying a bias magnetic field using a high coercive force thin film such as a Co--P layer.

一方、MR素子単体で構成した薄膜MRヘッドよりも、
MR水素子ヘッド先端から離して磁気記録媒体に発生し
た磁束をMRヘッドまで導く磁束導入路(ヨーク)を配
置したヨーク型MRヘッド(以下、YMRヘッドという
)と呼ばれる薄膜磁気ヘッドの方が信号の分解能の向上
やMR水素子耐久性の向上に有利であることが知られて
いる。
On the other hand, compared to a thin film MR head composed of a single MR element,
A thin-film magnetic head called a yoke-type MR head (hereinafter referred to as YMR head), which has a magnetic flux introducing path (yoke) that is placed away from the tip of the MR hydrogen head and guides the magnetic flux generated in the magnetic recording medium to the MR head, has a better signal quality. It is known to be advantageous in improving resolution and MR hydrogen element durability.

従来のYMRヘッドになるMR素子部の製造方法を第6
図及び第7図に示す。但し、第7図は第6図のA−B断
面の構造を示す。
The sixth section describes the method for manufacturing the MR element part of a conventional YMR head.
As shown in FIG. However, FIG. 7 shows the structure of the cross section A-B in FIG. 6.

基板1上にMR水素子なる強磁性薄膜5 Ni −Fe
合金膜が蒸着法等により形成され、同図(a)に示す如
く目的の形状に加工される。MR水素子トラック幅は多
トラツク構成となるため50〜200μm程度に設定さ
れる。MR水素子トラック幅が小さくなると、磁区状態
が不可逆的に変化して、ツ寵特性にバルクハウゼンノイ
ズが発生しやすくなる。
A ferromagnetic thin film 5 of MR hydrogen atoms is formed on the substrate 1.
An alloy film is formed by a vapor deposition method or the like, and processed into a desired shape as shown in FIG. The MR hydrogen track width is set to about 50 to 200 μm since it has a multi-track configuration. When the MR hydrogen track width becomes smaller, the magnetic domain state changes irreversibly, and Barkhausen noise tends to occur in the steering characteristics.

そこで、同図ら)のようにMR素子両端部にCo −P
層からなる高保磁力薄膜6を備えて、容易軸方向に弱い
磁界を印加して磁壁を消失させ、バルクハウゼン・ノイ
ズのないMR水素子得る必要がある。
Therefore, as shown in the same figure et al., Co-P is added to both ends of the MR element.
It is necessary to provide a high coercive force thin film 6 consisting of layers, apply a weak magnetic field in the easy axis direction to eliminate the domain walls, and obtain MR hydrogen atoms without Barkhausen noise.

上記、高保磁力薄膜6は無電解メツキにより作成される
The high coercive force thin film 6 mentioned above is created by electroless plating.

〈発明が解決しようとする問題点〉 しかし無電解メツキ膜はメツキされる面積が小さくなる
ほどメツキの前処理条件及びメツキ条件が厳しくなる。
<Problems to be Solved by the Invention> However, as the area of the electroless plated film becomes smaller, the pretreatment conditions and conditions for plating become more severe.

従って、MR水素子トラック幅が小さくなるほど、被着
面積部分が小さくなり、無電解メツキにより作成される
高抗磁力薄膜の再現性が悪かった。即ちメツキ前処理条
件を厳しくすると、MR水素子なる強磁性薄膜の膜厚が
200〜500Aと非常に薄いため、前処理液で腐食さ
れる。またメツキがされやすい条件にすると、高抗磁力
薄膜の特性が劣化する問題があった。
Therefore, as the MR hydrogen track width becomes smaller, the deposited area becomes smaller, and the reproducibility of the high coercive force thin film produced by electroless plating becomes worse. That is, if the plating pretreatment conditions are made severe, the ferromagnetic thin film of MR hydrogen atoms is corroded by the pretreatment liquid because the film thickness is very thin at 200 to 500A. Furthermore, if the conditions are such that plating is likely to occur, there is a problem in that the properties of the high coercive force thin film deteriorate.

更に、MR水素子リード部には同図(c)のようにAL
、At−Cu等の導電層7が蒸着法、RFスパッタ法に
よシ作成され、これがケミカルエツチング等により目的
の形状に加工されるが、上記の条件で形成されたMR水
素子、強磁性薄膜と導電層の接触面積が小さいので、コ
ンタクト抵抗が無視できず、トラック間でMR水素子抵
抗値にバラツキが生じるという問題もあった。
Furthermore, the MR hydrogen lead part has an AL as shown in the same figure (c).
A conductive layer 7 made of , At-Cu, etc. is created by vapor deposition or RF sputtering, and then processed into a desired shape by chemical etching or the like. Since the contact area between the conductive layer and the conductive layer is small, the contact resistance cannot be ignored, and there is also the problem that the MR hydrogen element resistance value varies between tracks.

本発明は薄膜磁気ヘッドに使用される再生用薄膜MRヘ
ッドに於いて、MR素子部となる高抗磁力薄膜を再現性
良く作成し、リードとの接触抵抗の向上を図るものであ
る。
The present invention aims to improve the contact resistance with the leads by producing a high coercive force thin film serving as an MR element portion with good reproducibility in a thin film MR head for reproduction used in a thin film magnetic head.

く問題点を解決するための手段〉 印加される信号磁界の変化を一軸磁気異方性を有する強
磁性薄膜の電気抵抗変化として検出する磁気抵抗効果型
薄膜磁気ヘッドにおいて、MR素子部のリード部は強磁
性薄膜と高抗磁力薄膜との少なくとも2層を積層して構
成する〇 く作 用〉 MR素子部のリードが強磁性薄膜だけでなく少なくとも
高抗磁力薄膜を重ねて堆積した2層膜を使用するため、
信号検出のためのリードが安定に作製することができ、
磁気ヘッドの動作の信頼性を高め得゛る。
Means for Solving Problems〉 In a magnetoresistive thin film magnetic head that detects changes in an applied signal magnetic field as changes in electrical resistance of a ferromagnetic thin film having uniaxial magnetic anisotropy, a lead portion of an MR element portion The lead of the MR element is a two-layered film in which not only a ferromagnetic thin film but also at least a high coercive force thin film is laminated. In order to use
Leads for signal detection can be made stably,
The reliability of the operation of the magnetic head can be improved.

〈実施例1.〉 平面構成を示す。第2図(a)は第1図のA−B断面の
構造を示し、第2図(b)は第1図のC−D断面の構造
を示す。
<Example 1. 〉 Shows the planar configuration. 2(a) shows the structure taken along the line AB in FIG. 1, and FIG. 2(b) shows the structure taken along the line CD in FIG. 1.

下部ヨークを形成する基板11はNiZnフェライト基
板等から成る。この基板11上にS iO+5iOz等
の第1絶縁層2がRF’スパッタ法等により形成される
。次にこのM1絶縁層2上にAt等の導体層3がRFス
パッタ法等により形成される。
The substrate 11 forming the lower yoke is made of a NiZn ferrite substrate or the like. A first insulating layer 2 of SiO+5iOz or the like is formed on this substrate 11 by RF' sputtering or the like. Next, a conductor layer 3 made of At or the like is formed on this M1 insulating layer 2 by RF sputtering or the like.

この導体層3を目的の形状にドライエツチング法等によ
り加工される。次に導体層3を被う第2絶縁層4を介し
てMR水素子なる強磁性薄膜5が形成される。上記強磁
性薄膜(Ni−Fe合金膜)5は図に示すようにMR素
子部5a及びリード部5b、5cの形状にケミカルエツ
チング法により加工される。次に、リード部5b+  
5cに第2図(b)に示す如く高抗磁力薄膜Co−P等
6を1層程度無電解メツキする。上記Co−Pメツキ膜
はリード部の広い面積にわたるため従来と比較して30
0〜1000倍と大きくなシ、再現性良(Co−Pメノ
キ層を形成することができる。またN i F e合金
膜とCo−Pメツキ膜の接触面積が大きいので、コンタ
クト抵抗も無視できる。Co−Pメツキ膜を厚膜形成し
ても、メツキ膜の特徴により断面形状がまるくなり、強
磁性薄膜を被う第3絶縁層8による段差被覆も良好とな
る。
This conductor layer 3 is processed into a desired shape by dry etching or the like. Next, a ferromagnetic thin film 5 made of MR hydrogen atoms is formed with a second insulating layer 4 covering the conductor layer 3 interposed therebetween. The ferromagnetic thin film (Ni--Fe alloy film) 5 is processed by chemical etching into the shape of an MR element section 5a and lead sections 5b and 5c as shown in the figure. Next, lead part 5b+
5c, about one layer of a high coercive force thin film 6 such as Co--P is electrolessly plated as shown in FIG. 2(b). The above Co-P plating film covers a wide area of the lead part, so compared to the conventional one, the Co-P plating film has a
0 to 1000 times larger size, good reproducibility (Co-P agate layer can be formed. Also, since the contact area between the NiFe alloy film and the Co-P plating film is large, the contact resistance can be ignored. Even if a thick Co--P plating film is formed, the cross-sectional shape is rounded due to the characteristics of the plating film, and the step coverage by the third insulating layer 8 covering the ferromagnetic thin film is also good.

その後従来のYMRヘッドの作製工程と同様にフロント
ギツプ部及び上部ヨーク9と下部ヨーク11間に位置す
る絶縁層をエツチング後、上部ヨーク9を形成してYM
Rヘッドが完成する。
Thereafter, in the same manner as in the conventional YMR head manufacturing process, the front gap and the insulating layer located between the upper yoke 9 and the lower yoke 11 are etched, and the upper yoke 9 is formed.
The R head is completed.

〈実施例2〉 本発明をMR素子に適用した場合の例を示す。 。<Example 2> An example in which the present invention is applied to an MR element will be shown. .

第3図(a)〜(c)において、まず基板上に被着した
Ni−Fe合金膜5をMR素子部5d及びリード部5e
、5fの形状にケミカルエツチングにより加工後、リー
ド部6e+ 6fの形状にCo−P膜6を無電解メツキ
により選択メツキする。次にAt等からなる導電層を全
面形成(RFスパッタ法等)後、リード形状7e+ 7
fにケミカルエツチングにより(エツチング液= KO
H+(NH3)282g5 +H20)加工し、第3図
(c)に示すMR素子が完成する0 第4図(a)、 (b)において、N i −F e合
金膜5を基板全面に形成後、リード形状6 h + 6
1にCo−P6を無電解メツキにより選択メツキする。
In FIGS. 3(a) to 3(c), first, the Ni-Fe alloy film 5 deposited on the substrate is placed on the MR element part 5d and the lead part 5e.
, 5f by chemical etching, the Co-P film 6 is selectively plated by electroless plating in the shape of the lead portions 6e+6f. Next, after forming a conductive layer made of At or the like on the entire surface (RF sputtering method, etc.), the lead shape is 7e+ 7.
f by chemical etching (etching solution = KO
H+(NH3)282g5 +H20) is processed to complete the MR element shown in FIG. 3(c). In FIGS. 4(a) and (b), after forming the Ni-Fe alloy film 5 on the entire surface of the substrate. , lead shape 6h + 6
Co--P6 was selectively plated on No. 1 by electroless plating.

次にN i −F e合金膜5をMR素子形状5g及び
リード形状にHNO3+H3PO4+H20組成のエツ
チング液を利用してエツチングすることによりMR素子
が完成する。
Next, the MR element is completed by etching the Ni-Fe alloy film 5 into the MR element shape 5g and the lead shape using an etching solution having a composition of HNO3+H3PO4+H20.

第5図(a)〜(C)において、基板上にNi−Fe合
金膜5を全面に形成後、リード形状6に、61にCo−
P6を無電解メツキにより選択メツキする。
In FIGS. 5(a) to 5(C), after forming the Ni-Fe alloy film 5 on the entire surface of the substrate, a lead shape 6 and a Co-Fe alloy film 61 are formed.
P6 is selectively plated by electroless plating.

次に導電層Atを全面蒸着後、リード形状7k。Next, after depositing a conductive layer At on the entire surface, a lead shape 7k is formed.

71にケミカルエツチングにより加工する。さらに、M
R素子部5j及びリード部7に、71の形状にNi−F
e合金膜5を加工して、完成する。
71 by chemical etching. Furthermore, M
Ni-F is applied to the R element portion 5j and the lead portion 7 in the shape of 71.
e The alloy film 5 is processed and completed.

上記第3図〜第5図に於いても無電解メツキ膜の面積が
大きいので再現性良くメツキされ、コンタクト抵抗も無
視できる。
Also in FIGS. 3 to 5 above, since the area of the electroless plating film is large, it can be plated with good reproducibility and the contact resistance can be ignored.

尚、本実施例ではYMRヘッドに適用した場合について
、説明したが、ノンシールド型MRヘッド、両面シール
ド型MRヘッド等の他のMRヘッドに適用した場合も同
様の効果が得られる。
Although this embodiment has been described with reference to the case where the present invention is applied to a YMR head, similar effects can be obtained when applied to other MR heads such as a non-shielded MR head, a double-sided shielded MR head, and the like.

〈発明の効果〉 以上、詳述したように、本発明の構造によれば、MR素
子部を形成する高抗磁力薄膜が再現性良く得られ、コン
タクト抵抗のバラツキも少なく、良好なMRヘッドが得
られる。
<Effects of the Invention> As described in detail above, according to the structure of the present invention, a high coercive force thin film forming the MR element part can be obtained with good reproducibility, there is little variation in contact resistance, and a good MR head can be obtained. can get.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るYMRヘッドの平面図、第2図(
a)は第1図のA−B断面構造図、第2図(b)はC−
D断面構造図、第3図、第4図、第5図は本発明に係る
他の実施例のYMRヘッドのMR素子部の平面図、第6
図は従来の実施例のYMRヘッドのMR素子部の平面図
、第7図は要部断面構造図である。 1=基板 2,4.8=絶絶縁 3,7−導電層 5−
強磁性薄膜 6=高抗磁力薄膜 9=上部ヨーク 代理人 弁理士 杉 山 毅 至(他1名う■ 1に3 図 く     0 7に Jt 第5 図 \ 岑6vA (C)    7 覗 $ 7 可
FIG. 1 is a plan view of a YMR head according to the present invention, and FIG.
a) is a cross-sectional structural view taken along line A-B in Figure 1, and figure 2 (b) is taken along line C-
D cross-sectional structural diagrams, FIGS. 3, 4, and 5 are plan views of the MR element portion of YMR heads of other embodiments according to the present invention, and FIGS.
The figure is a plan view of the MR element portion of the YMR head of the conventional example, and FIG. 7 is a cross-sectional structural view of the main part. 1=Substrate 2,4.8=Insulated 3,7-Conductive layer 5-
Ferromagnetic thin film 6 = High coercive force thin film 9 = Upper yoke agent Patent attorney Takeshi Sugiyama (and 1 other person) 1 to 3 Figure 0 7 to Jt Figure 5 \ 6vA (C) 7 Peek $ 7 Possible

Claims (1)

【特許請求の範囲】[Claims] 1、印加される信号磁界の変化を一軸磁気異方性を有す
る強磁性薄膜の電気抵抗変化として検出する磁気抵抗効
果型薄膜磁気ヘッドに於いて、磁気抵抗効果素子に接続
されたリード部は少なくとも強磁性薄膜と高抗磁力薄膜
が積層されてなることを特徴とする薄膜磁気ヘッド
1. In a magnetoresistive thin film magnetic head that detects changes in the applied signal magnetic field as changes in electrical resistance of a ferromagnetic thin film having uniaxial magnetic anisotropy, the lead portion connected to the magnetoresistive element has at least A thin-film magnetic head characterized by a laminate of a ferromagnetic thin film and a high coercive force thin film.
JP62155817A 1987-06-22 1987-06-22 Thin film magnetic head Expired - Fee Related JP2617185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62155817A JP2617185B2 (en) 1987-06-22 1987-06-22 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62155817A JP2617185B2 (en) 1987-06-22 1987-06-22 Thin film magnetic head

Publications (3)

Publication Number Publication Date
JPH011114A true JPH011114A (en) 1989-01-05
JPS641114A JPS641114A (en) 1989-01-05
JP2617185B2 JP2617185B2 (en) 1997-06-04

Family

ID=15614128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62155817A Expired - Fee Related JP2617185B2 (en) 1987-06-22 1987-06-22 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JP2617185B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8704196D0 (en) * 1987-02-23 1987-04-01 British American Tobacco Co Tobacco reconstitution
JP2857286B2 (en) * 1991-09-27 1999-02-17 シャープ株式会社 Magnetoresistive thin film magnetic head
US5896251A (en) * 1994-12-26 1999-04-20 Kabushiki Kaisha Toshiba Magnetoresistance effect head with conductor film pair and magnetic field proving film pair disposed between substrate and magnetoresistance effect film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059518A (en) * 1983-09-09 1985-04-05 Sharp Corp Thin film magnetic head

Similar Documents

Publication Publication Date Title
JP3022023B2 (en) Magnetic recording / reproducing device
US5729410A (en) Magnetic tunnel junction device with longitudinal biasing
KR100295289B1 (en) Magnetic tunnel junction magnetoresistive readhead with sensing layer as rear magnetic flux guide
US5434826A (en) Multilayer hard bias films for longitudinal biasing in magnetoresistive transducer
US5898547A (en) Magnetic tunnel junction magnetoresistive read head with sensing layer as flux guide
US6005753A (en) Magnetic tunnel junction magnetoresistive read head with longitudinal and transverse bias
US5684658A (en) High track density dual stripe magnetoresistive (DSMR) head
US6034847A (en) Apparatus and thin film magnetic head with magnetic membrane layers of different resistivity
JP2002304711A (en) Shielded magnetic tunnel junction magneto-resistive read head and assembly
JPH10143820A (en) Inductive/mr composite type thin film magnetic head
US5436779A (en) Integrated yoke magnetoresistive transducer with magnetic shunt
JPH0916915A (en) Magneto-resistive transducer and magnetic recorder
US6101067A (en) Thin film magnetic head with a particularly shaped magnetic pole piece and spaced relative to an MR element
US6556391B1 (en) Biasing layers for a magnetoresistance effect magnetic head using perpendicular current flow
JPH10289417A (en) Thin-film magnetic head
US5140484A (en) Magnetoresistive head having electrodes with a predetermined length and positioned to form a predetermined angle with the head surface
JPH011114A (en) thin film magnetic head
JP2617185B2 (en) Thin film magnetic head
US6529352B1 (en) Magnetoresistive sensing element and magnetic head using the magnetoresistive sensing element
JPH0473210B2 (en)
JPH0447890B2 (en)
JPS5856223A (en) Thin film magnetic head
US6851179B2 (en) Magnetic head producing method
JP3036587B2 (en) Magnetoresistive head and method of manufacturing the same
JPS61248214A (en) Thin film magnetic head