[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01118806A - Composite optical waveguide type device - Google Patents

Composite optical waveguide type device

Info

Publication number
JPH01118806A
JPH01118806A JP27766787A JP27766787A JPH01118806A JP H01118806 A JPH01118806 A JP H01118806A JP 27766787 A JP27766787 A JP 27766787A JP 27766787 A JP27766787 A JP 27766787A JP H01118806 A JPH01118806 A JP H01118806A
Authority
JP
Japan
Prior art keywords
light
lens
waveguide
optical waveguide
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27766787A
Other languages
Japanese (ja)
Inventor
Masafumi Seki
雅文 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP27766787A priority Critical patent/JPH01118806A/en
Publication of JPH01118806A publication Critical patent/JPH01118806A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12109Filter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the coupling efficiency by forming V grooves in the surface of a 1st surface of a transparent body closely to waveguides, reflecting light propagated in the waveguides toward the 2nd surface, and converging the reflected propagated light through a lens and arranging a packaged light receiving and emitting element at the convergence position. CONSTITUTION:There are the waveguides 2, 2a, and 2b near the 1st surface 11 of a substrate and light is propagated. When the light is sent to the waveguide 2 from the left side, it is reflected by an interference filter 6 to enter the waveguide 2a and reaches the V groove 31 and the light is reflected there, converged by the lens 41, and photodetected by the light receiving element 7. Light emitted by the light emitting element 8, on the other hand, is converged into converged light by an internal spherical lens and a lens 42 and the converged light is reflected by a V groove 32 to enter the waveguide 2b, and the light is transmitted through the interference filter 6 and enters the waveguide 2, wherein the light is transmitted to the left. Consequently, the coupling efficiency is improved.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、透明体の表面付近に形成された光導波路とそ
の光導波路に光学的に結合された受光発光素子とからな
る複合光導波型デバイスに関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a composite optical waveguide type comprising an optical waveguide formed near the surface of a transparent body and a light-receiving/emitting element optically coupled to the optical waveguide. Regarding devices.

[従来の技術] 従来この種の複合光導波型デバイスとしては、第4図に
示すもの(例えば特開昭82−35305)が知られて
いた。この装置では基板402の導波路401の終端に
ミラー404を設け、導波路401の伝搬光を基板上側
に反射させている。
[Prior Art] Conventionally, as this type of composite optical waveguide device, the one shown in FIG. 4 (for example, Japanese Patent Laid-Open No. 82-35305) has been known. In this device, a mirror 404 is provided at the end of the waveguide 401 on the substrate 402, and the light propagating through the waveguide 401 is reflected onto the upper side of the substrate.

もしミラー404の上側に受光発光素子403を配置す
れば、伝搬光を受光したり、その受光発光素子403か
らの光を伝搬光として励振したりすることが可能となる
。そのためこの装置では光導波路401を含む光デバイ
スと受光発光素子403の間を接続する光ファイバが不
要となるので、装置全体を小形化でき、また光のアライ
メントの箇所が減らせるなどの利点があった。
If the light-receiving and light-emitting element 403 is placed above the mirror 404, it becomes possible to receive propagating light and to excite the light from the light-receiving and light-emitting element 403 as propagating light. Therefore, this device does not require an optical fiber to connect the optical device including the optical waveguide 401 and the light-receiving/emitting element 403, which has the advantage that the entire device can be made smaller and the number of locations for light alignment can be reduced. Ta.

[発明の解決しようとする問題コ しかしながら、上記従来の複合光導波型デバイスでは、
受光発光素子403と導波路401の結合効率を上げる
ために受光発光素子403をミラー404に近接させて
配置することが必要である。
[Problems to be solved by the invention]However, in the above-mentioned conventional composite optical waveguide device,
In order to increase the coupling efficiency between the light receiving and emitting element 403 and the waveguide 401, it is necessary to arrange the light receiving and emitting element 403 close to the mirror 404.

そのため受光発光素子403をパッケージ内にシールす
ることが困難であった。一般に、受光発光素子の信頼性
を確保するためには、素子をパッケージ内にシールする
事が不可欠である。そのため、従来では受光発光素子4
03の信頼性を確保する事が困難であった。なお、この
他パッケージ化した受光発光素子を直接配置する試作例
もあるが、導波路と受光発光素子の間にレンズを配置す
る方法は実現されておらず、導波路と受光発光素子との
結合効率は高くできなかった。このため、従来例では受
光発光素子の信頼性が低いという問題点、もしくはレン
ズがないために受光発光素子との結合効率が低いという
問題点の何れかがあった。
Therefore, it was difficult to seal the light receiving/emitting element 403 inside the package. Generally, in order to ensure the reliability of a light receiving/emitting device, it is essential to seal the device within a package. Therefore, in the past, the light receiving and emitting element 4
It was difficult to ensure the reliability of 03. In addition, there are other prototypes in which packaged light-receiving and light-emitting elements are directly arranged, but a method of placing a lens between the waveguide and the light-receiving and light-emitting elements has not been realized, and the coupling between the waveguide and the light-receiving and light-emitting elements has not been realized. The efficiency could not be increased. Therefore, in the conventional example, either the reliability of the light-receiving/emitting element is low, or the coupling efficiency with the light-receiving/emitting element is low due to the lack of a lens.

[問題点を解決するための手段] 上記問題点を解決するために、本発明は透明体の導波路
に接してもしくは近接してV溝を設け、導波路中の伝搬
光を導波路の形成された表面と対向する表面の方に反射
させる。その表面の付近にはレンズを設置して、反射さ
れた伝搬光を集光させ、その集光位置にパッケージ化さ
れた受光発光素子を配置するものである。必要に応じて
、このパッケージ中に集光用の補助レンズ、例えば球レ
ンズ等が含まれていても良い。本発明に使用できる透明
体としては、ガラス、シリコン、化合物半導体、高分子
体などがある。また、本発明に使用できるレンズとして
は、種々の方法で透明体の表面上にもしくは内部に形成
されたレンズがある。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a V-groove in contact with or in the vicinity of the waveguide of a transparent body, and the propagating light in the waveguide is transferred to the waveguide. reflect it toward the surface opposite the surface where it was applied. A lens is installed near the surface to condense the reflected propagating light, and a packaged light-receiving/emitting element is placed at the condensing position. If necessary, an auxiliary lens for condensing light, such as a ball lens, may be included in this package. Transparent bodies that can be used in the present invention include glass, silicon, compound semiconductors, and polymers. Further, as lenses that can be used in the present invention, there are lenses formed on the surface or inside of a transparent body by various methods.

例えば、ガラス基板表面の一部分を選択的にイオン交換
させて形成した平板マイクロレンズが使用できる。また
、イオン交換でフレネルのゾーンプレートを形成して作
ったフレネルレンズも使用できる。この他、スクリーン
印刷で透明液状物を基板表面に部分的に塗布し、乾燥等
により固化されたレンズも使いうる。
For example, a flat microlens formed by selectively ion-exchanging a portion of the surface of a glass substrate can be used. Additionally, a Fresnel lens made by forming a Fresnel zone plate using ion exchange can also be used. In addition, lenses in which a transparent liquid material is partially applied to the substrate surface by screen printing and solidified by drying or the like may also be used.

[実 施 例] 第1図は本発明による一実施例の複合光導波型デバイス
の構造を示す斜視図である。基板1はイオン交換用に1
価イオンとしてNa及びKを少量含有し、5102.B
2O3を主たる網目形成酸化物とした研磨済みのガラス
基板であり、その厚みは例えば3嘗璽である。導波路2
,2a、2bは基板1の第1の表面11の付近にイオン
交換法で形成された単一モード導波路である。この製作
方法に関しては、雪原らが昭和62年電子情報通信学会
全国大会で発表した「2段自然イオン交換法によるシン
グルモード導波路の特性」 (予稿集番号915)等に
示されている方法が使用できる。
[Example] FIG. 1 is a perspective view showing the structure of a composite optical waveguide device according to an example of the present invention. Substrate 1 is for ion exchange.
Contains a small amount of Na and K as valence ions, 5102. B
It is a polished glass substrate whose main network-forming oxide is 2O3, and its thickness is, for example, 3 mm. Waveguide 2
, 2a, 2b are single mode waveguides formed near the first surface 11 of the substrate 1 by an ion exchange method. Regarding this manufacturing method, the method shown in "Characteristics of single mode waveguide by two-stage natural ion exchange method" (Proceedings No. 915), which was presented by Yukihara et al. at the 1986 IEICE National Conference, was used. Can be used.

■溝31.32はガラス基板1の第1の表面11の側に
プレス法で形成された断面V字形の溝であり、頂角が4
5°深さは約500μ醜である。第2図に拡大して示す
ようにV溝31には反射膜として金の薄膜33が蒸着さ
れており、V溝31に水平方向より光があたると、光は
下側に反射される。■溝32にも図に示されていない金
の薄膜が蒸着されている。レンズ41.42はイオン交
換法で形成した平板マイクロレンズである。レンズ41
.42の直径は240μ■、深さ120μ讃、焦点距離
465μmである。このレンズの製造方法等に関しては
、例えば経営システム研究新刊の「新しいガラスとその
物性」第15章に記載がある。
■The grooves 31 and 32 are grooves with a V-shaped cross section formed by a pressing method on the first surface 11 side of the glass substrate 1, and have an apex angle of 4.
A 5° depth is approximately 500μ deep. As shown in an enlarged view in FIG. 2, a thin gold film 33 is deposited as a reflective film on the V-groove 31, and when light hits the V-groove 31 from the horizontal direction, the light is reflected downward. (2) A thin gold film (not shown in the figure) is also deposited on the groove 32. Lenses 41 and 42 are flat microlenses formed by an ion exchange method. lens 41
.. 42 has a diameter of 240 μm, a depth of 120 μm, and a focal length of 465 μm. The method for manufacturing this lens is described, for example, in Chapter 15 of ``New Glass and its Physical Properties'' in the new publication of Management System Research.

溝5は導波路2.2at 2bからなるy形導波路部を
切断する幅50μ−1深さ400μ閣の溝である。干渉
フィルタ6は厚み45μ−のチップ形吠の長波長通過フ
ィルタ(1,0μ■以下の光を反射し、1.1μ■以上
の光を透過させる)であり、溝5中に挿入されて導波路
2* 2a* 2b中を伝搬する波長の異なった光な分
岐合波する。
The groove 5 is a groove having a width of 50 .mu.-1 and a depth of 400 .mu.m, which cuts the y-shaped waveguide section consisting of the waveguides 2.2at and 2b. The interference filter 6 is a chip-shaped long wavelength pass filter (reflects light of 1.0μ or less and transmits light of 1.1μ or more) with a thickness of 45μ, and is inserted into the groove 5 to guide the light. Light beams with different wavelengths propagating through the wave paths 2* 2a* 2b are branched and multiplexed.

受光素子7はSIアバランシュフォトダイオードのパッ
ケージであり、波長600〜900 nmの光を受光で
きる。このダイオードの受光領域は直径200μmの円
形であり、パッケージキャップからのセットパック量は
約0.5酊である。発光素子8はInGaAs系の発光
ダイオードのパッケージであり、中心波長1300nm
スペクトル半値全幅130nmの光を発する。この発光
ダイオードには図面に示されていない直径100μmの
球レンズが装着されており、ダイオードからの光はこの
レンズである程度集束され指向性を持たされてパッケー
ジから出射する。
The light receiving element 7 is an SI avalanche photodiode package, and can receive light with a wavelength of 600 to 900 nm. The light receiving area of this diode is circular with a diameter of 200 μm, and the set pack amount from the package cap is about 0.5 μm. The light emitting element 8 is an InGaAs light emitting diode package, and has a center wavelength of 1300 nm.
It emits light with a full width at half maximum of the spectrum of 130 nm. This light emitting diode is equipped with a ball lens with a diameter of 100 .mu.m, which is not shown in the drawings, and the light from the diode is focused to some extent by this lens and given directionality before being emitted from the package.

受光素子7と発光素子8は基板1の第2の表面12に接
着剤で固定されている。第1図では見やすくするために
、離して示している。第2図に導波路2aと受光素子7
の位置関係を示す。導波路2aから出射した伝搬光は、
溝31で全反射された後、拡散しつつ進みレンズ41で
集束光に変換され、基板1の外部的0.51で集光する
。この位置に受光素子7の受光領域が配置されている。
The light receiving element 7 and the light emitting element 8 are fixed to the second surface 12 of the substrate 1 with an adhesive. In FIG. 1, they are shown separated for ease of viewing. FIG. 2 shows a waveguide 2a and a light receiving element 7.
Indicates the positional relationship between The propagating light emitted from the waveguide 2a is
After being totally reflected by the groove 31, the light advances while being diffused, is converted into a focused light by the lens 41, and is focused at an external angle of 0.51 of the substrate 1. The light receiving area of the light receiving element 7 is arranged at this position.

導波路2bと発光素子8の位置関係もこれとほぼ同様で
ある。
The positional relationship between the waveguide 2b and the light emitting element 8 is also substantially the same.

一実施例において、第3図に示す工程で導波路2とレン
ズ41.42を基板1の両表面11゜12に作製した。
In one example, waveguides 2 and lenses 41 and 42 were fabricated on both surfaces 11° and 12 of the substrate 1 in the steps shown in FIG.

この図はV溝31を含む断面図である。まず、基板1を
準備しく工程a)これを高温プレス機の中に置き、精密
超硬金型を用いたプレスにより所定の位置にV溝31を
形成する(工程b)。次に、第2の表面12に金属のマ
スクff113を蒸着しフォトリソグラフィとエツチン
グにより、所定の位置にレンズのための開ロバターンを
形成する(工程C)。その後、基板を溶融塩中に浸漬し
て熱イオン交換法により平板マイクロレンズ41を形成
する(工程d)。この時、第1の表面11でイオン交換
が行なわれるのを防ぐため、カオリン等を含む粘土15
をそこに貼り付けておく。
This figure is a cross-sectional view including the V-groove 31. First, the substrate 1 is prepared in step a) and placed in a high-temperature press, and a V-groove 31 is formed in a predetermined position by pressing using a precision carbide mold (step b). Next, a metal mask ff113 is deposited on the second surface 12, and an open pattern for a lens is formed at a predetermined position by photolithography and etching (step C). Thereafter, the substrate is immersed in molten salt to form a flat microlens 41 by thermionic exchange method (step d). At this time, in order to prevent ion exchange from occurring on the first surface 11, clay 15 containing kaolin etc.
Paste it there.

次に、第1の表面11に金属のマスク膜14を蒸着しく
工程e)、同じくフォトリソグラフィとエツチングによ
り、所定の位置に導波路2t  2av2bのための開
ロバターンを形成する。その後、導波路2* 2 at
 2 bのための第1のイオン交換を行なう(工程f)
。この時、第2の表面12でイオン交換が行なわれるの
を防ぐため、粘土15をそこに貼り付けておく。次いで
、マスク膜14゜13を除去して第2のイオン交換を行
ない(工程g)、導波路2aが形成される。
Next, in step e), a metal mask film 14 is deposited on the first surface 11, and an open pattern for the waveguides 2t 2av2b is formed at predetermined positions by photolithography and etching. After that, the waveguide 2* 2 at
2 Perform the first ion exchange for b (step f)
. At this time, in order to prevent ion exchange from occurring on the second surface 12, clay 15 is pasted there. Next, the mask film 14.degree. 13 is removed and a second ion exchange is performed (step g) to form the waveguide 2a.

工程dに使われる溶融塩はTIもしくはAgの1価イオ
ンを含有する硫酸塩または硝酸塩の溶融塩である。工程
fに使われる溶融塩は基板1のマスク膜14の開口付近
の屈折率を増加させるために用いるもので、1価のイオ
ン(即ちN a s K +Cs、Rb、TI、Ag)
からなる群より選ばれた少なくとも1つの第1のイオン
を含有する溶融塩である。この溶融塩としては硫酸塩ま
たは硝酸塩の他に、イオン交換を均一にするためまた基
板1の損傷なく行なうために、必要に応じ塩化塩が添加
される。工程gで使われる溶融塩は基板1の屈折率を減
少させるために用いるもので、1価のイオンからなる群
より選ばれた少なくとも1つの第2のイオンを含有する
溶融塩である。第1のイオンと第2のイオンはガラス基
板1に対し屈折率を変化させる作用が、少なくとも相対
的に互いに反対でなければならない。
The molten salt used in step d is a molten salt of sulfate or nitrate containing monovalent ions of TI or Ag. The molten salt used in step f is used to increase the refractive index near the opening of the mask film 14 of the substrate 1, and contains monovalent ions (i.e. Na s K + Cs, Rb, TI, Ag).
A molten salt containing at least one first ion selected from the group consisting of: In addition to sulfate or nitrate, chloride salt is added to the molten salt as necessary in order to make the ion exchange uniform and to prevent damage to the substrate 1. The molten salt used in step g is used to reduce the refractive index of the substrate 1, and is a molten salt containing at least one second ion selected from the group consisting of monovalent ions. The first ions and the second ions must have at least relatively opposite effects on the glass substrate 1 to change the refractive index.

[作 用コ 本発明によれば、基板1の第1の表面11付近に導波路
2t 2a、 2bがあり光を伝搬させることができる
。導波路2に左側より0.78μmの光が伝送されると
、干渉フィルタ6で反射され導波路2aに入り、■溝3
1に達し下方に反射されレンズ41で集光され、受光素
子7に入射して受光される。一方、発光素子8より出射
した中心波&1.30μmの光は、その内部の球レンズ
とレンズ42で集束光に変換され、V溝32で反射され
て導波路2bに入射し、干渉フィルタ6を透過して導波
路2に入り左側へ伝送される。従って、一実施例は双方
向伝送用の分波合波器に受光発光素子を搭載した複合光
導波型モジュールとして機能する。一実施例は0.78
μ■の光が受光、1゜30μ−の光が発光の場合である
が、これと反対の場合も同様に可能である。
[Function] According to the present invention, the waveguides 2t 2a, 2b are provided near the first surface 11 of the substrate 1, allowing light to propagate. When light of 0.78 μm is transmitted into the waveguide 2 from the left side, it is reflected by the interference filter 6, enters the waveguide 2a, and enters the groove 3.
1, is reflected downward, is focused by the lens 41, enters the light receiving element 7, and is received. On the other hand, the center wave and 1.30 μm light emitted from the light emitting element 8 is converted into focused light by the ball lens and lens 42 inside the light emitting element 8, is reflected by the V groove 32, enters the waveguide 2b, and passes through the interference filter 6. The light passes through the waveguide 2 and is transmitted to the left. Therefore, one embodiment functions as a composite optical waveguide module in which a light receiving/emitting element is mounted on a demultiplexing/multiplexing device for bidirectional transmission. One example is 0.78
This is the case where the light of .mu.■ is received and the light of 1.degree. 30.mu.- is emitted, but the opposite case is also possible.

導波路の機能は、導波路のパターンや導波路のパラメー
タ等で定めることができるので、一実施例以外にも種々
のデバイスを作ることができる。
Since the function of the waveguide can be determined by the waveguide pattern, waveguide parameters, etc., various devices other than the one embodiment can be manufactured.

本発明を実施するに当っては、導波路と受光発光素子の
結合を高めるために、基板の厚み、レンズの直径および
開口数、受光発光素子のパッケージ仕様(受光発光素子
のパッケージ窓からの深さ等)を最適化することが望ま
しい。発明ではV溝31゜32に金薄膜を蒸着させて高
反射ミラーとしているが、入射する光の全てに対して全
反射が生じるような角度にV溝が形成されていれば、金
薄膜は無くても良い。
In implementing the present invention, in order to improve the coupling between the waveguide and the light-receiving/emitting element, the thickness of the substrate, the diameter and numerical aperture of the lens, the package specifications of the light-receiving/emitting element (the depth of the light-receiving/emitting element from the package window), etc. It is desirable to optimize the In the invention, a thin gold film is vapor-deposited on the V-grooves 31 and 32 to form a high-reflection mirror, but if the V-grooves were formed at an angle that causes total reflection of all incident light, the thin gold film would be eliminated. It's okay.

[発明の効果] 本発明によれば従来不可能であった信頼性が高く結合効
率の良い小形な複合光導波型デバイスが実現できる。基
板1の第2の表面12にはレンズ4が形成されているた
め、導波路2aから出射しV溝31で全反射された光は
拡散しながら進んでも、レンズ41で収束され、レンズ
41に近接配置されたパッケージ化した受光素子7の受
光領域に効率良く結合される。同様に発光素子8の場合
では、発光領域からの光をレンズ42で集束させV溝3
2での反射の後導波路に導くことができる。
[Effects of the Invention] According to the present invention, a compact composite optical waveguide device with high reliability and good coupling efficiency, which was previously impossible, can be realized. Since the lens 4 is formed on the second surface 12 of the substrate 1, even if the light emitted from the waveguide 2a and totally reflected by the V-groove 31 travels while being diffused, it is converged by the lens 41 and is reflected by the lens 41. The light is efficiently coupled to the light receiving area of the packaged light receiving element 7 arranged close to each other. Similarly, in the case of the light emitting element 8, the light from the light emitting region is focused by the lens 42 and the V groove 3
After reflection at 2, it can be guided into a waveguide.

この複合光導波型デバイスは、導波路と受光発光素子の
間をファイバで接続しないので、接続の箇所が減らせ同
時に小形化にできるという利点がある。また、基板1に
レンズ41.42を含んでいるため、受光発光素子はパ
ッケージに入って信頼性の確保された素子を使用するこ
とができ、複合光導波型デバイス全体の信頼性を高くす
ることができる。従って、本発明による複合光導波型デ
バイスは、双方向波長分割多重伝送用モジュールなどを
信頼性と毘効率性を確保しながら小形に生産することに
適している。
This composite optical waveguide device does not connect the waveguide and the light-receiving/emitting element with a fiber, so it has the advantage that the number of connection points can be reduced and the device can be made smaller. In addition, since the substrate 1 includes lenses 41 and 42, the light-receiving and emitting elements can be packaged and use elements whose reliability is ensured, thereby increasing the reliability of the entire composite optical waveguide device. Can be done. Therefore, the composite optical waveguide device according to the present invention is suitable for producing bidirectional wavelength division multiplex transmission modules and the like in a small size while ensuring reliability and performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例の複合光導波型デバイス
の概略を示す斜視図、第2図はその複合光導波型デバイ
スに使われる導波路およびレンズの部分を示す拡大断面
図、第3図は導波路およびレンズの製造工程を示す断面
図、第4図は従来の複合光導波型デバイスの一例を示す
断面図である。 図において、 1・・・・・・基板 2s 2at 2b・旧・・導波
路31.32・・・・・・V溝 41,42・・・・・
・レンズ5・・・・・・フィルタ挿入溝 6・旧・・干
渉フィルタ7・・・・・・受光素子 8・・・・・・発
光素子である。 第1図 第2図 41       ゛1 第3図 第4図 手続補正書
FIG. 1 is a perspective view schematically showing a composite optical waveguide device according to an embodiment of the present invention, FIG. 2 is an enlarged sectional view showing the waveguide and lens portion used in the composite optical waveguide device, and FIG. The figure is a cross-sectional view showing the manufacturing process of a waveguide and a lens, and FIG. 4 is a cross-sectional view showing an example of a conventional composite optical waveguide device. In the figure, 1... Substrate 2s 2at 2b Old waveguide 31. 32... V groove 41, 42...
- Lens 5... Filter insertion groove 6 - Old... Interference filter 7... Light receiving element 8... Light emitting element. Figure 1 Figure 2 41 ゛1 Figure 3 Figure 4 Procedural amendment

Claims (3)

【特許請求の範囲】[Claims] (1)透明体の第1の表面付近に形成された光導波路と
、該第1の表面の側に形成され該光導波路と交わるV溝
と、該光導波路の伝搬光が該V溝で反射され該第1の表
面と対向する第2の表面を通過するような位置に形成さ
れたレンズと、該レンズに近接して配置された少なくと
も1つのパッケージされた受光素子もしくは発光素子と
からなる複合光導波型デバイス。
(1) An optical waveguide formed near the first surface of the transparent body, a V-groove formed on the side of the first surface and intersecting with the optical waveguide, and light propagating in the optical waveguide is reflected by the V-groove. A composite comprising a lens formed at a position such that the lens passes through a second surface facing the first surface, and at least one packaged light-receiving element or light-emitting element disposed in close proximity to the lens. Optical waveguide device.
(2)該透明体がガラス基板であり、該光導波路がイオ
ン交換法で形成された光導波路である特許請求の範囲第
1項記載の複合光導波型デバイス。
(2) The composite optical waveguide device according to claim 1, wherein the transparent body is a glass substrate and the optical waveguide is an optical waveguide formed by an ion exchange method.
(3)該透明体がガラス基板であり、該レンズがイオン
交換法で形成されたレンズである特許請求の範囲第1項
記載の複合光導波型デバイス。
(3) The composite optical waveguide device according to claim 1, wherein the transparent body is a glass substrate and the lens is a lens formed by an ion exchange method.
JP27766787A 1987-11-02 1987-11-02 Composite optical waveguide type device Pending JPH01118806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27766787A JPH01118806A (en) 1987-11-02 1987-11-02 Composite optical waveguide type device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27766787A JPH01118806A (en) 1987-11-02 1987-11-02 Composite optical waveguide type device

Publications (1)

Publication Number Publication Date
JPH01118806A true JPH01118806A (en) 1989-05-11

Family

ID=17586619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27766787A Pending JPH01118806A (en) 1987-11-02 1987-11-02 Composite optical waveguide type device

Country Status (1)

Country Link
JP (1) JPH01118806A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063540A (en) * 1992-06-24 1994-01-14 Japan Aviation Electron Ind Ltd Optical waveguide substrate
US5497438A (en) * 1993-10-01 1996-03-05 Nippon Hoso Kyokai Optical transmission and reception module having coupled optical waveguide chips
US5499309A (en) * 1993-10-01 1996-03-12 Ngk Insulators, Ltd. Method of fabricating optical component including first and second optical waveguide chips having opposed inclined surfaces
US5724464A (en) * 1993-10-01 1998-03-03 Ngk Insulators, Ltd. Compound optical waveguide device
JP2000039530A (en) * 1998-07-22 2000-02-08 Sony Corp Optical signal transmission system and its manufacture
EP1610426A4 (en) * 2003-03-31 2006-07-26 Nippon Telegraph & Telephone Optical semiconductor device and optical semiconductor integrated circuit
WO2007139316A1 (en) * 2006-05-25 2007-12-06 Chung, Kyoung Hie Optical module and fabrication method of the same
US7313297B2 (en) 2003-09-12 2007-12-25 Nippon Telegraph And Telephone Corporation Wavelength multi/demultiplexer
WO2008050969A1 (en) * 2006-10-24 2008-05-02 Chung, Kyoung Hie Optical module and optical sensor using the same and method for manufacturing thereof
KR100865127B1 (en) * 2007-10-09 2008-10-24 정경희 Optical module and fabrication method of the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063540A (en) * 1992-06-24 1994-01-14 Japan Aviation Electron Ind Ltd Optical waveguide substrate
US5497438A (en) * 1993-10-01 1996-03-05 Nippon Hoso Kyokai Optical transmission and reception module having coupled optical waveguide chips
US5499309A (en) * 1993-10-01 1996-03-12 Ngk Insulators, Ltd. Method of fabricating optical component including first and second optical waveguide chips having opposed inclined surfaces
US5724464A (en) * 1993-10-01 1998-03-03 Ngk Insulators, Ltd. Compound optical waveguide device
JP2000039530A (en) * 1998-07-22 2000-02-08 Sony Corp Optical signal transmission system and its manufacture
US7471864B2 (en) 2003-03-31 2008-12-30 Nippon Telegraph And Telephone Corporation Optical semiconductor device and optical semiconductor integrated circuit
US7474817B2 (en) 2003-03-31 2009-01-06 Nippon Telegraph And Telephone Corporation. Optical semiconductor device and optical semiconductor integrated circuit
JP4669540B2 (en) * 2003-03-31 2011-04-13 日本電信電話株式会社 Optical semiconductor device and optical semiconductor integrated circuit
EP1813975A3 (en) * 2003-03-31 2007-10-17 Nippon Telegraph and Telephone Corporation Optical semiconductor device and optical semiconductor integrated circuit
US7738520B2 (en) 2003-03-31 2010-06-15 Nippon Telegraph And Telephone Corporation Optical semiconductor device and optical semiconductor integrated circuit
JP2009020538A (en) * 2003-03-31 2009-01-29 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor element and optical semiconductor integrated circuit
EP1610426A4 (en) * 2003-03-31 2006-07-26 Nippon Telegraph & Telephone Optical semiconductor device and optical semiconductor integrated circuit
US7313297B2 (en) 2003-09-12 2007-12-25 Nippon Telegraph And Telephone Corporation Wavelength multi/demultiplexer
KR100802199B1 (en) * 2006-05-25 2008-03-17 정경희 Optical module and fabrication method of the same
WO2007139316A1 (en) * 2006-05-25 2007-12-06 Chung, Kyoung Hie Optical module and fabrication method of the same
US8025444B2 (en) 2006-05-25 2011-09-27 Kyoung Hie CHUNG Optical module and fabrication method of the same
KR100889976B1 (en) * 2006-10-24 2009-03-24 이형종 Optical module and optical sensor using the same and method for manufacturing thereof
WO2008050969A1 (en) * 2006-10-24 2008-05-02 Chung, Kyoung Hie Optical module and optical sensor using the same and method for manufacturing thereof
KR100865127B1 (en) * 2007-10-09 2008-10-24 정경희 Optical module and fabrication method of the same

Similar Documents

Publication Publication Date Title
JP3302458B2 (en) Integrated optical device and manufacturing method
US4735677A (en) Method for fabricating hybrid optical integrated circuit
JP3782126B2 (en) Two-way optical communication and signal transmission transmitter and receiver module
US7076125B2 (en) Optical circuit element and production method therefor, array-form optical circuit element, optical circuit device using it
KR940001044B1 (en) Glass integrated optical component
CN110554459B (en) Method of manufacturing a device for adiabatic coupling, corresponding device and system
US6792181B2 (en) Wavelength-multiplexing bidirectional optical transmission module
CN102089689B (en) Optical splitter device
JP2000089054A (en) Manufacture of substrate for hybrid optical integrated circuit utilizing soi optical waveguide
US4739501A (en) Optical multiplexer/demultiplexer
JPH01118806A (en) Composite optical waveguide type device
KR100630804B1 (en) Multi-wavelength optical tranceiver modules, multiplexer and demultiplexer using thin film filter
GB2031182A (en) Optical waveguid arrangements
JP2001223642A (en) Optical communication unit
JPH09281302A (en) Flat plate microlens array with reflection surface and its production
CN114325954B (en) Novel optical fiber array structure and manufacturing method thereof
CN210605101U (en) Multipath wavelength demultiplexing light receiving component based on optical waveguide
JP2001324647A (en) Optical fiber array, optical waveguide chip and optical module connecting them
JP2008020720A (en) Optical waveguide and parallel optical transmitter-receiver
KR100858217B1 (en) Optical modulator package for bi-directional data communication
JPH0427904A (en) Substrate for optical surface packaging circuit and its production
EP0947861A1 (en) Hybrid waveguiding optical device
US7092601B2 (en) Thin film filter with waveguide substrate
JP2876871B2 (en) Optical module
JP3038847B2 (en) Three-dimensional branch type optical circuit element