JPH01116471A - Magnetoresistance element assembly - Google Patents
Magnetoresistance element assemblyInfo
- Publication number
- JPH01116471A JPH01116471A JP62273586A JP27358687A JPH01116471A JP H01116471 A JPH01116471 A JP H01116471A JP 62273586 A JP62273586 A JP 62273586A JP 27358687 A JP27358687 A JP 27358687A JP H01116471 A JPH01116471 A JP H01116471A
- Authority
- JP
- Japan
- Prior art keywords
- magnetoresistive element
- magnetoresistance element
- thick film
- magnetoresistive
- elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000010408 film Substances 0.000 claims description 15
- 239000010409 thin film Substances 0.000 claims description 10
- 230000005294 ferromagnetic effect Effects 0.000 claims description 3
- 230000005291 magnetic effect Effects 0.000 abstract description 7
- 238000012937 correction Methods 0.000 abstract description 6
- 238000009966 trimming Methods 0.000 abstract description 2
- 230000003321 amplification Effects 0.000 abstract 1
- 238000003199 nucleic acid amplification method Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 244000089486 Phragmites australis subsp australis Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Hall/Mr Elements (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、主としてファクシミリ、電話機等の電話線ラ
イン入力電流検出用素子、各種電子回路の電流検出用素
子、あるいは位置検出素子などに使用される強磁性体薄
膜素子による磁気抵抗素子アセンブリーに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is mainly used in facsimiles, telephone line input current detection elements such as telephones, current detection elements in various electronic circuits, or position detection elements. The present invention relates to a magnetoresistive element assembly using ferromagnetic thin film elements.
第9図は従来の磁気抵抗素子の外観斜視図であり、第1
0図はそのファインパターンの構成図。FIG. 9 is an external perspective view of a conventional magnetoresistive element.
Figure 0 is a configuration diagram of the fine pattern.
第11図はその等価回路図である。11は磁気抵抗素子
全体を示し、その構造は基板71(シリコンあるいはア
ルミナ基板)の上にファインパターン部分112が蒸着
あるいはス一ぐツタ−などにより形成されておシ、基板
71がモールド樹脂21によりモールドされ、外部端子
31,32.33゜34が出ており、34.32より出
力電圧がとシ出されるようになっている。又一方磁気抵
抗素子口の裏側には、バイアス用マグネット81が接着
されている。FIG. 11 is an equivalent circuit diagram thereof. Reference numeral 11 indicates the entire magnetoresistive element, and its structure is such that a fine pattern portion 112 is formed on a substrate 71 (silicon or alumina substrate) by vapor deposition or swiping, and the substrate 71 is formed by molding resin 21. It is molded, and external terminals 31, 32, 33, and 34 are exposed, and the output voltage is output from terminals 34 and 32. On the other hand, a bias magnet 81 is bonded to the back side of the magnetoresistive element opening.
ファインパターン112の構成は第10図に示すごとく
、折り返しの磁気抵抗素子エレメント102.103が
互に接近されて配置され、その外側に薄膜ヨーク105
.106が配置され、−方エレメント101,104が
互にはなされて。As shown in FIG. 10, the fine pattern 112 has a structure in which folded magnetoresistive elements 102 and 103 are arranged close to each other, and a thin film yoke 105 is placed on the outside thereof.
.. 106 are arranged, and the negative elements 101 and 104 are mutually arranged.
しかも、102.103と段差をつけて配置されている
。エレメント102,103及び101゜104は第1
1図の等価回路に示すごとく、ブリッジ回路構成での互
に対抗する辺の組合せと対応している。Moreover, it is arranged with a step difference from 102 and 103. Elements 102, 103 and 101° 104 are the first
As shown in the equivalent circuit of FIG. 1, this corresponds to the combination of mutually opposing sides in a bridge circuit configuration.
第12図に電流検出用としての従来の応用例を示す。9
はヘッド(・母−マロイ材)であり、そのエアギャッf
部分はファインパターンのニレメン)102,103を
はさみ込むように配置されている。FIG. 12 shows a conventional application example for current detection. 9
is the head (Malloy wood), and its air gap f
The parts are arranged so as to sandwich fine pattern elmmen) 102 and 103.
第13図は、■、■端子間に電源電圧全印加し。In Figure 13, the full power supply voltage is applied between the ■ and ■ terminals.
0.0間の出力電圧V■■(■端子側を十とする。)を
測定した場合の出力電圧V(ホ)対−次電流Iの特性例
である。室温25℃中の特性に着目するとバイアスMg
81の磁場がエレメント102,103の長て方向と直
角に加わシ、従りてバイアス磁界の効果によりて電流の
負方向、正方向にまたがってほぼ直線的な特性が得られ
る。This is an example of the characteristics of the output voltage V (E) versus the secondary current I when the output voltage V (■) between 0.0 (the terminal (■) is set as 10) is measured. Focusing on the characteristics at room temperature 25°C, bias Mg
The magnetic field 81 is applied perpendicularly to the longitudinal direction of the elements 102 and 103, and therefore, due to the effect of the bias magnetic field, nearly linear characteristics are obtained across the negative and positive directions of the current.
ここで検出すべき電流に対応して例えば閾値電圧vA及
びVBヲ設定すると(後段の処理回路にて設定する。)
これと対応してマイナス側電流−11゜及びプラス側電
流十11を検出できる。Here, for example, threshold voltages vA and VB are set corresponding to the current to be detected (set by a subsequent processing circuit).
Correspondingly, a negative current of -11° and a positive current of 111° can be detected.
ここで従来の問題点は、第13図にて第1にオフセット
電圧V。ff自体がロット内でパラツク事であシ第2に
オフセット電圧V。ff自体が温度特性をもつ事で、第
13図の例では0℃、25°C1606Cと温度が上昇
するのに対して特性全体が上側へ移行する傾向が出る。Here, the first problem with the conventional method is the offset voltage V in FIG. ff itself may vary within a lot.Secondly, the offset voltage V. Since the ff itself has temperature characteristics, in the example shown in FIG. 13, the temperature increases from 0° C. to 25° C. and 1606° C., but the overall characteristics tend to shift upward.
従って、あらかじめ設定された閾値電圧に対してロフト
内及び温度変動によって検出電流値が大巾に変動すると
いう問題点がある。Therefore, there is a problem in that the detected current value fluctuates widely due to temperature fluctuations within the loft with respect to a preset threshold voltage.
上記オフセット電圧のバラツキ及び温度変動の原因は、
第10図会エレメント101,102゜103.104
自体のバラツキ及び熱的ひずみの不均一性圧よるブリッ
ジ回路の抵抗バランスのくずれが主要因と考えられ、第
14図のごとく温度上昇に対してオフセット電圧が上昇
傾向を示す口2トあるいは、ロフトによりては点線のご
とく下降傾向を示すものもある。The causes of the above offset voltage variations and temperature fluctuations are:
Illustration 10 Element 101, 102゜103.104
It is thought that the main cause is the breakdown of the resistance balance of the bridge circuit due to variations in the bridge circuit itself and non-uniformity of thermal strain, and as shown in Figure 14, the offset voltage tends to increase with increasing temperature. In some cases, it shows a downward trend as shown by the dotted line.
従来、これらオフセット電圧の温度変動の補正方法とし
ては第15図に示す如く後段の増幅回路に、 NTCサ
ーミスタ等の素子を追加して後段増幅回路によって補正
を行なう等の方法がとられているが、実際の磁気抵抗素
子と増幅回路とは1例えば1体型のケースに入っていて
も両者間には若干の温度差が生じこの影響によりて正確
なオフセット電圧の温特補正が出来ず、又、磁気抵抗素
子と増幅回路とが互に離されて設置される場合には大巾
な温度差の影響が生じ、従って電流値測定の温特による
誤差を完全に補正できないという問題点が生じていた。Conventionally, as a method for correcting temperature fluctuations in the offset voltage, methods such as adding an element such as an NTC thermistor to the subsequent stage amplifier circuit and performing correction by the latter stage amplifier circuit, as shown in Fig. 15, have been used. For example, even if the actual magnetoresistive element and amplifier circuit are housed in a one-piece case, there will be a slight temperature difference between them, and due to this effect, it is not possible to accurately correct the temperature characteristics of the offset voltage. When the magnetoresistive element and the amplifier circuit are installed apart from each other, the influence of a wide temperature difference occurs, and therefore, there is a problem that errors due to temperature characteristics in current value measurement cannot be completely corrected. .
本発明の目的は、増幅回路以前のセンサ一部分の範囲に
てオフセット電圧の温特補正を行い、しかも従来の方法
よりもより補正の精度を改善できる磁気抵抗素子アセン
ブリーを提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetoresistive element assembly that performs temperature characteristic correction of offset voltage in a portion of the sensor before the amplifier circuit, and that can improve the accuracy of correction more than conventional methods.
本発明は強磁性体薄膜素子よりなる磁気抵抗素子エレメ
ントと薄膜ヨークにて構成され樹脂モールドされた磁気
抵抗素子が、厚膜抵抗素子を印刷した外づけ基板上に電
気的に接続され、前記磁気抵抗素子のノJ?ターン構成
は互にブリッジ接続された4個の磁気抵抗素子エレメン
トが、その一方の対抗する2個のエレメントが互に近接
されていて。In the present invention, a resin-molded magnetoresistive element composed of a magnetoresistive element made of a ferromagnetic thin film element and a thin film yoke is electrically connected to an external substrate on which a thick film resistance element is printed, and the magnetic resistance element is electrically connected to an external substrate on which a thick film resistance element is printed. Resistance element NoJ? In the turn configuration, four magnetoresistive element elements are bridge-connected to each other, and two opposing elements are placed close to each other.
その両側には薄膜ヨークが配置され、−万能の対抗する
2個のエレメントは上記薄膜の両側まで離されているこ
とを特徴とする磁気抵抗素子アセンブリーである。The magnetoresistive element assembly is characterized in that a thin film yoke is disposed on both sides thereof, and the two universally opposed elements are separated to both sides of the thin film.
また、前記外づけ基板上に印刷された厚膜抵抗素子は前
記磁気抵抗素子のA’ターン中の少くとも互に離された
磁気抵抗ニレメントラ並列回路に含さらに前記厚膜抵抗
素子は抵抗値の温度係数が負のNTCサーミスタまたは
抵抗値の温度係数が正のPTCサーミスタとすることも
できる。Further, the thick film resistive element printed on the external substrate is included in a parallel magnetoresistive parallel circuit separated from each other at least in the A' turn of the magnetoresistive element, and the thick film resistive element has a resistance value. An NTC thermistor with a negative temperature coefficient or a PTC thermistor with a positive temperature coefficient of resistance can also be used.
第1図に本発明による磁気抵抗素子アセンブリーの外観
図を示す。磁気抵抗素子1はその下側にバイアス用マグ
ネット8が接着されて、配線・やターンが印刷された基
板5に電気的に接続されている。FIG. 1 shows an external view of a magnetoresistive element assembly according to the present invention. The magnetoresistive element 1 has a bias magnet 8 adhered to its lower side, and is electrically connected to a substrate 5 on which wiring and turns are printed.
磁気抵抗素子1のファインパターン部分の構成は第10
図と同様であり、互にブリッジ接続された磁気抵抗素子
エレメント101.102,103゜104がそれぞれ
ブリッジの辺の相対抗する組合せ102と103は互に
近接し、−万能の組合せ101.104は離されている
。ヨーク105゜106は磁気抵抗素子ニレメン)10
2,103の両側にあシ、印加磁場をニレメン)102
゜103へ効率良く作用させる働きをもつ。The structure of the fine pattern part of the magnetoresistive element 1 is as follows.
Similar to the figure, magnetoresistive element elements 101, 102, 103 and 104 are bridge-connected to each other, and the opposite combinations 102 and 103 of the bridge sides are close to each other, - the universal combination 101, 104 is separated. Yoke 105° and 106 are magnetoresistive elements (Niremen) 10
Reeds on both sides of 2,103, the applied magnetic field is
It has the function of efficiently acting on ゜103.
ここで102,103は外部磁界を受ける役目を持ち、
一方101.104は外部磁界は受けずにブリッジ回路
の対抗する固定抵抗としての作用をもつ。第3図に磁気
抵抗素子10等価回路を示す。ファインパターンは基板
7の上に形成され。Here, 102 and 103 have the role of receiving an external magnetic field,
On the other hand, resistors 101 and 104 act as fixed resistors opposed to each other in the bridge circuit without receiving any external magnetic field. FIG. 3 shows an equivalent circuit of the magnetoresistive element 10. A fine pattern is formed on the substrate 7.
外部端子3ヘゼンデイングワイヤー311を介して電気
的に接続されている。端子■、■は電源入力端子、端子
■、■が出力端子であシ、第3図の等価回路にてR2と
R3が抵抗値が少となる方向に変化した場合、出力電圧
〃(■端子を+側とする)が正方向へ変化する傾向を示
す。The external terminal 3 is electrically connected via a hexending wire 311. The terminals ■ and ■ are power input terminals, and the terminals ■ and ■ are output terminals. In the equivalent circuit shown in Figure 3, when R2 and R3 change in the direction where the resistance value decreases, the output voltage (■ terminal (=+ side) indicates a tendency to change in the positive direction.
基板4上には配線パターン及び厚膜抵抗素子5(抵抗値
の初期値R5o)が印刷されておシ第1図の例では磁気
抵抗素子1の■、■端子に厚膜抵抗素子5が並列に挿入
されておシ、第2図の磁気抵抗素子アセンブリーの等価
回路に示すごとく、磁気抵抗素子りのパターン上の固定
抵抗R4に並列に接続されている。A wiring pattern and a thick film resistive element 5 (initial resistance value R5o) are printed on the substrate 4. In the example of FIG. As shown in the equivalent circuit of the magnetoresistive element assembly in FIG. 2, the magnetoresistive element is connected in parallel to the fixed resistor R4 on the pattern.
基板4には外部への接続端子61,62.63゜64が
もうけられている。The board 4 is provided with external connection terminals 61, 62, 63° 64.
第4図は、厚膜抵抗素子5を付加した場合の■′と固′
間(端子64と63間)の電圧V(4)’III’の変
化の傾向を示した図である。Figure 4 shows ■' and solid' when thick film resistor element 5 is added.
FIG. 4 is a diagram showing a tendency of change in voltage V(4)'III' between terminals 64 and 63.
抵抗比Rso/R4が5以下ではR50の変化に対して
急激にV4 / s tが低下しておシオフセット調整
用としての使用目的としては不適当であシ、一般にR5
o/R4が5以上の範囲にてR50を設定してオフセッ
ト電圧を
しない前の電圧)の間隔がV4 t 5 tの変動幅Δ
Vであり一方V215/ (端子61.62間の電圧)
は固定されているので、オフセット電圧V。ff4’2
’の変動幅ΔVof fは上記の変動ΔVと等しくΔ■
off =ΔVの関係となる。If the resistance ratio Rso/R4 is less than 5, V4 / s t will drop rapidly in response to a change in R50, making it unsuitable for use as an offset adjustment.
V4 t 5 t fluctuation width Δ
V and on the other hand V215/ (voltage between terminals 61 and 62)
is fixed, so the offset voltage V. ff4'2
The fluctuation width ΔVof f is equal to the above fluctuation ΔV Δ■
The relationship is: off = ΔV.
第5図は、厚膜抵抗5にオフセット電圧■。ff4’2
’をモニターしなからレーザトリミング、あるいはサン
ドブラストによりカット部分51を加えて所定のオフセ
ット電圧値V。となるまで抵抗値を調整する例を示した
。Figure 5 shows the offset voltage ■ on the thick film resistor 5. ff4'2
' and then add a cut portion 51 by laser trimming or sandblasting to a predetermined offset voltage value V. An example is shown in which the resistance value is adjusted until .
前記第5図に示した方法により常温中でのオフセント電
圧の規格値への調整が可能となシ、従来問題となってい
た磁気抵抗素子自体のオフセット電圧のバラツキの改善
対策となる。The method shown in FIG. 5 allows the offset voltage to be adjusted to the standard value at room temperature, and is a measure to improve the conventional problem of variations in the offset voltage of the magnetoresistive element itself.
第6図は本発明による他の実施例であシ調整用の厚膜抵
抗に負の抵抗温度係数をもつNTCサーミスタ5“(第
6図(b)参考)を用いた場合の例である。FIG. 6 shows another embodiment of the present invention in which an NTC thermistor 5'' (see FIG. 6(b)) having a negative temperature coefficient of resistance is used as a thick film resistor for adjustment.
この場合、もとの磁気抵抗素子1のオフセット電圧が正
の温度係数をもつ場合について、そのオフセット電圧の
温特補正に対して有効である。In this case, when the offset voltage of the original magnetoresistive element 1 has a positive temperature coefficient, it is effective for temperature characteristic correction of the offset voltage.
第6図(C)に示すごとく、温度係数はぼ零なる調整用
抵抗5′の場合に比べて、オフセット電圧の温度特性を
平坦におさえる事が可能である。As shown in FIG. 6(C), it is possible to keep the temperature characteristics of the offset voltage flat compared to the case of using the adjusting resistor 5' where the temperature coefficient is almost zero.
又、もとの磁気抵抗素子1のオフセット電圧が負の温度
係数をもつ場合については、補正抵抗5“としては抵抗
温度傾数が正であるPTCサーミスタの材質をもつ厚膜
抵抗素子とすればよい。Furthermore, in the case where the offset voltage of the original magnetoresistive element 1 has a negative temperature coefficient, a thick film resistance element made of a PTC thermistor material with a positive resistance temperature gradient can be used as the correction resistor 5''. good.
第7図は9本発明の更に他の実施例であシ、第、8図に
その等価回路を示す。磁気抵抗素子1のニレメン)10
1 、(抵抗値R1)に並列に調整用厚膜抵抗素子5″
を入れたものである。FIG. 7 shows still another embodiment of the present invention, and FIGS. 7 and 8 show its equivalent circuit. Niremen of magnetoresistive element 1) 10
1. Adjustment thick film resistance element 5'' in parallel with (resistance value R1)
It contains
前記第1図の実施例と、はぼ同一の効果が得られる。但
し、厚膜抵抗5″の抵抗値変化の方向とオフセット電圧
V。ff4”2”の変化の方向とは第1図。Almost the same effect as the embodiment shown in FIG. 1 can be obtained. However, the direction of change in the resistance value of the thick film resistor 5'' and the direction of change in the offset voltage V.ff4''2'' are shown in FIG.
第5図、第7図の場合と丁度逆方向の効果となるが、実
用上の使用については全く問題とならない。Although the effect is exactly opposite to that shown in FIGS. 5 and 7, it poses no problem in practical use.
以上本発明によれば従来の磁気抵抗素子のオフセット電
圧のバラツキ及び、オフセット電圧の温特を処理増幅回
路の前段にて改善可能となシ、検出精度の高い磁気抵抗
素子アセンブリーを提供することができる。As described above, according to the present invention, it is possible to improve the offset voltage variations of conventional magnetoresistive elements and the temperature characteristics of the offset voltage at the front stage of the processing amplifier circuit, and to provide a magnetoresistive element assembly with high detection accuracy. can.
第1図は本発明による1実施例を示す斜視図。
第2図はその等価回路、第3図は磁気抵抗素子単体の等
価回路図、第4図は動作説明図、第5図。
第6図、第7図はそれぞれ本発明による他の実施例であ
り、第8図は第7図の等価回路、第9図は従来の磁気抵
抗素子単体の説明図、第10図はそのファインパターン
図、第11図はその等価回路。
第12図は従来の応用例、第13図、第14図は従来の
特性図、第15図は従来の対策例を示す。
1、と」・・・磁気抵抗素子、 12 、112−・・
ファインパターン部分、2.21・・・樹脂モールド。
31.32,33.34・・・端子、311・・・ポン
ディングクリヤー、4・・・回路基板$ 5 # 5’
l 5’j 5”・・・厚膜抵抗体、51.52.53
.54・・・抵抗値調整用カット部分、61,62,6
3.64・・・リード端子、8,81・・・バイアス−
,7,71・・・磁気抵抗素子内基板、9・・・ヘッド
。
鎮1図
−(入力電圧)
第4図
党5図
(α)(b)
第6図
地7図
第15図
鶴14図
温度(”C)FIG. 1 is a perspective view showing one embodiment of the present invention. FIG. 2 is an equivalent circuit thereof, FIG. 3 is an equivalent circuit diagram of a single magnetoresistive element, FIG. 4 is an operation explanatory diagram, and FIG. 5. 6 and 7 respectively show other embodiments of the present invention, FIG. 8 is an equivalent circuit of FIG. 7, FIG. 9 is an explanatory diagram of a conventional magnetoresistive element alone, and FIG. The pattern diagram and Figure 11 are its equivalent circuit. FIG. 12 shows a conventional application example, FIGS. 13 and 14 show conventional characteristic diagrams, and FIG. 15 shows a conventional countermeasure example. 1, and'' magnetoresistive element, 12, 112-...
Fine pattern part, 2.21...resin mold. 31.32, 33.34...Terminal, 311...Ponding clear, 4...Circuit board $5 #5'
l 5'j 5"...thick film resistor, 51.52.53
.. 54...Cut part for adjusting resistance value, 61, 62, 6
3.64...Lead terminal, 8,81...Bias-
, 7, 71... Magnetoresistive element internal substrate, 9... Head. Figure 1 - (Input voltage) Figure 4 Figure 5 (α) (b) Figure 6 Figure 7 Figure 15 Figure 14 Temperature ("C)
Claims (3)
トと薄膜ヨークにて構成され樹脂モールドされた磁気抵
抗素子が,厚膜抵抗素子を印刷した外づけ基板上に電気
的に接続され,前記磁気抵抗素子のパターン構成は互に
ブリッジ接続された4個の磁気抵抗素子エレメントが,
その一方の対抗する2個のエレメントが互に近接されて
いて,その両側には薄膜ヨークが配置され,一方他の対
抗する2個のエレメントは上記薄膜の両側まで離されて
いることを特徴とする磁気抵抗素子アセンブリー1. A resin-molded magnetoresistive element consisting of a magnetoresistive element made of a ferromagnetic thin film element and a thin film yoke is electrically connected to an external substrate on which a thick film resistance element is printed. The pattern configuration consists of four magnetoresistive elements connected to each other in a bridge.
One of the opposing two elements is close to each other and a thin film yoke is arranged on both sides thereof, while the other two opposing elements are spaced apart to both sides of the thin film. magnetoresistive element assembly
記磁気抵抗素子のパターン中の少くとも互に離された磁
気抵抗エレメントを並列回路に含むように電気的に配置
されていて外部よりトリーミングにより抵抗値の調整が
できる特許請求の範囲第1項記載の磁気抵抗素子アセン
ブリー2. The thick film resistive element printed on the external substrate is electrically arranged so as to include at least mutually separated magnetoresistive elements in a parallel circuit in the pattern of the magnetoresistive element, and is trimmed from the outside. Magnetoresistive element assembly according to claim 1, in which the resistance value can be adjusted.
Cサーミスタまたは抵抗値の温度係数が正のPTCサー
ミスタである特許請求の範囲第1項記載の磁気抵抗素子
アセンブリー3. The thick film resistance element is an NT having a negative temperature coefficient of resistance.
The magnetoresistive element assembly according to claim 1, which is a C thermistor or a PTC thermistor with a positive temperature coefficient of resistance value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62273586A JP2627279B2 (en) | 1987-10-30 | 1987-10-30 | Magnetoresistive element assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62273586A JP2627279B2 (en) | 1987-10-30 | 1987-10-30 | Magnetoresistive element assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01116471A true JPH01116471A (en) | 1989-05-09 |
JP2627279B2 JP2627279B2 (en) | 1997-07-02 |
Family
ID=17529858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62273586A Expired - Fee Related JP2627279B2 (en) | 1987-10-30 | 1987-10-30 | Magnetoresistive element assembly |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2627279B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012150084A (en) * | 2011-01-21 | 2012-08-09 | Panasonic Corp | Power measuring device |
-
1987
- 1987-10-30 JP JP62273586A patent/JP2627279B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012150084A (en) * | 2011-01-21 | 2012-08-09 | Panasonic Corp | Power measuring device |
Also Published As
Publication number | Publication date |
---|---|
JP2627279B2 (en) | 1997-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4937521A (en) | Current detecting device using ferromagnetic magnetoresistance element | |
KR100338611B1 (en) | Magnetic sensor | |
US4908527A (en) | Hall-type transducing device | |
EP0725923B1 (en) | Two terminal temperature transducer having circuitry which controls the entire operating current to be linearly proportional with temperature | |
US5055768A (en) | Temperature compensator for hall effect circuit | |
JPH0351733A (en) | Amplifying and compensating circuit for semiconductor pressure sensor | |
JPH046887B2 (en) | ||
JPH02238365A (en) | Temperature compensating circuit | |
JP2002116105A (en) | Physical quantity detecting device | |
JPH01116471A (en) | Magnetoresistance element assembly | |
JPH0674975A (en) | Current detecting circuit | |
US4413192A (en) | Transistor firing circuit | |
JPH0719019Y2 (en) | Temperature correction circuit | |
US6490926B2 (en) | Acceleration sensor module | |
JP2562652B2 (en) | Inverter power IC protection circuit and hybrid integrated circuit in which the protection circuit is integrated | |
JPH04279071A (en) | Hall element | |
JP3273889B2 (en) | Hall element drive circuit | |
JP2610736B2 (en) | Amplification compensation circuit of semiconductor pressure sensor | |
JP2934538B2 (en) | Transducer circuit and manufacturing method thereof | |
JPH09229962A (en) | Acceleration sensor circuit | |
JPH10339680A (en) | Semiconductor pressure sensor | |
JPH0921715A (en) | Temperature compensation circuit for sensor | |
JPS6122766B2 (en) | ||
JPH0720155A (en) | Temperature coefficient measuring method for hall element and temperature compensation method for current detector | |
JPH08307160A (en) | Temperature compensation circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |