JPH01114368A - Method of controlling dc/dc converter device - Google Patents
Method of controlling dc/dc converter deviceInfo
- Publication number
- JPH01114368A JPH01114368A JP27255687A JP27255687A JPH01114368A JP H01114368 A JPH01114368 A JP H01114368A JP 27255687 A JP27255687 A JP 27255687A JP 27255687 A JP27255687 A JP 27255687A JP H01114368 A JPH01114368 A JP H01114368A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- circuit
- converter
- circuits
- switching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 7
- 238000009499 grossing Methods 0.000 claims abstract description 13
- 239000003990 capacitor Substances 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 5
- 238000002955 isolation Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はD C/D Cコンバータ回路のDC/AC
変換用スイッチング回路に使用する半導体素子の定格電
圧に比して高い電圧をもち且つ電圧変動の大なる直流電
源回路に適用する多段接続形OC/DCコンバータ装置
の制御方法に関する。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a DC/AC converter circuit.
The present invention relates to a method for controlling a multistage OC/DC converter device that is applied to a DC power supply circuit that has a voltage higher than the rated voltage of a semiconductor element used in a conversion switching circuit and has large voltage fluctuations.
従来のこの種の多段接続形D C/D Cコンバータ装
置の制御方法としては、第1図に例示する該装置主回路
を第4図に例示する制御回路により制御するものが知ら
れている。第1図は2段直列接続形D C/D Cコン
バータ装置の例であり、■はDC/AC変換用スイッチ
ング回路であり半導体スイッチング素子のゲートターン
オンサイリスタGTO1lとGTO,□とダイオードD
IlとD1□とコンデンサCIlとCIZとから成る。As a conventional control method for this type of multi-stage connected DC/DC converter device, a method is known in which the main circuit of the device illustrated in FIG. 1 is controlled by a control circuit illustrated in FIG. 4. Figure 1 shows an example of a two-stage series-connected DC/DC converter device, where ■ is a switching circuit for DC/AC conversion, and semiconductor switching elements include gate turn-on thyristors GTO1l and GTO, □ and diode D.
It consists of Il, D1□, and capacitors CIl and CIZ.
5は変圧器であり前記スイッチング回路1の出力交流電
圧を変圧し次段の整流回路3へ交流電圧E+を供給する
。A transformer 5 transforms the output AC voltage of the switching circuit 1 and supplies the AC voltage E+ to the rectifier circuit 3 at the next stage.
該整流回路3はダイオードDffl〜D34の全波整流
ブリフジから成り直流電圧E、を出力する。前記のスイ
ッチング回路1と変圧器5と整流回路3との組合せはD
C/D Cコンバータの単位回路を構成し、同様に前
記各回路に対応するスイッチング回路2と変圧器6と整
流回路4との組合せもまたD C/D Cコンバータの
単位回路を構成する。前記スイッチング回路1の正極と
負極とはそれぞれ直流型?a10の正極と前記スイッチ
ング回路2の正極とに接続され、また該スイッチング回
路2の負極は前記直流電源10の負極に接続されること
により該両スイッチング回路1と2との入力側は前記直
流電源10に対し直列に接続される。同様に前記整流回
路3の負極が整流回路4の正極に接続されることにより
該両整流回路3と4との出力直流電圧E3とE4とは直
列に合成されて直流電圧E、となる。更に該電圧E、は
りアクトルアとコンデンサ8とから成る電圧平滑回路に
より平滑され直流電圧E0となって負荷9に給電される
。The rectifier circuit 3 is composed of a full-wave rectifier bridge of diodes Dffl to D34, and outputs a DC voltage E. The combination of the switching circuit 1, transformer 5 and rectifier circuit 3 is D.
A unit circuit of the C/DC converter is constituted, and similarly, a combination of the switching circuit 2, the transformer 6, and the rectifier circuit 4 corresponding to each of the above-mentioned circuits also constitutes a unit circuit of the D C/DC converter. Are the positive and negative poles of the switching circuit 1 DC type? The positive terminal of a10 is connected to the positive terminal of the switching circuit 2, and the negative terminal of the switching circuit 2 is connected to the negative terminal of the DC power supply 10, so that the input side of both switching circuits 1 and 2 is connected to the DC power supply. 10 in series. Similarly, the negative electrode of the rectifier circuit 3 is connected to the positive electrode of the rectifier circuit 4, so that the output DC voltages E3 and E4 of the rectifier circuits 3 and 4 are combined in series to form a DC voltage E. Further, the voltage E is smoothed by a voltage smoothing circuit consisting of a beam actuator and a capacitor 8 to become a DC voltage E0, which is supplied to a load 9.
次に第4図において、前記直流電圧E0に対する自動電
圧調整器であるAVR12は該電圧E0の検出値と電圧
設定器13によるその設定値E。、とを入力とし該両人
力の偏差を量的及び時間的゛に最適調整された値として
出力する。移相器14は前記AVR12の出力信号と発
振器11からの定周波基準パルス信号とを入力とし、該
基準パルス信号のパルス巾を前記AVR12の出力に応
じて制御し、この制御されたパルス巾に対応した位相の
パルス信号を出力する。パルス分配回路16は前記移相
器14の出力パルス信号を受は該出力パルス信号と特定
の位相関係にある2種類のパルス信号を作成し、該パル
ス信号を前記スイッチング回路1と2とにおけるスイッ
チング素子GTO+ + とGTOz+及びG T O
+ tとG T Oz zに対するゲート駆動回路18
と19とにそれぞれ人力するものである。上記のパルス
信号位相制御により前記スイッチング回路1と2とは変
圧器5と6とを介し互に同相の矩形波交流電圧E、とE
2とを出力し、該両型圧それぞれの全波整流電圧E、と
E4との直列加算電圧E5の平滑された平均電圧E0は
前記設定値E osに等しくなるように制御される。Next, in FIG. 4, the AVR 12, which is an automatic voltage regulator for the DC voltage E0, detects the detected value of the voltage E0 and its set value E by the voltage setting device 13. , and outputs the deviation between the two human forces as an optimally adjusted value both quantitatively and temporally. The phase shifter 14 inputs the output signal of the AVR 12 and the constant frequency reference pulse signal from the oscillator 11, controls the pulse width of the reference pulse signal according to the output of the AVR 12, and adjusts the pulse width to this controlled pulse width. Outputs a pulse signal with the corresponding phase. The pulse distribution circuit 16 receives the output pulse signal of the phase shifter 14, creates two types of pulse signals having a specific phase relationship with the output pulse signal, and sends the pulse signals to the switching circuits 1 and 2. Elements GTO+ + and GTOz+ and GTO
Gate drive circuit 18 for +t and G T Oz z
and 19 are both manually operated. By the pulse signal phase control described above, the switching circuits 1 and 2 generate rectangular wave alternating current voltages E and E which are in phase with each other via transformers 5 and 6.
2, and the smoothed average voltage E0 of the series addition voltage E5 of the full-wave rectified voltages E and E4 of both type voltages is controlled to be equal to the set value E os.
しかしながら上記従来方法においては、前記のりアクト
ルアとコンデンサ8とから成る電圧平滑回路の入力電圧
である前記電圧E、は第5図(ホ)の動作波形図に示す
如く大巾な変動を行なう矩形波となり、該矩形波より同
図に示す前記平均電圧E0を得る場合、前記リアクトル
7の通過電流ILの脈動成分Δ■を所定値以内に保つた
めの前記リアクトル7の所要インダクタンスは大となり
、該リアクトル7の大形化によりD C/D Cコンバ
ーク装置も大形且つ高価なものとなっていた。なお第5
図は前記D C/D Cコンバータ装置各部の動作波形
図であり、図(イ)と(ロ)とは前記のスイッチング回
路1と2とにおけるスイッチング素子G T O+ +
とG T Ot r及びG T O+ zとG T O
z zそれぞれの開閉模様を示し、図(ハ)は図(イ)
と(ロ)とに示す動作により得られた矩形波交流電圧E
1とE2とを示す。図(ニ)は図(ハ)に示す交流電圧
E、とE2それぞれの全波整流電圧E。However, in the above-mentioned conventional method, the voltage E, which is the input voltage of the voltage smoothing circuit consisting of the polarizing actuator and the capacitor 8, is a rectangular wave that fluctuates widely as shown in the operating waveform diagram of FIG. 5(e). When the average voltage E0 shown in the figure is obtained from the rectangular wave, the required inductance of the reactor 7 to keep the pulsating component Δ■ of the current IL passing through the reactor 7 within a predetermined value becomes large, and the inductance of the reactor 7 becomes large. 7, the D C/DC converter has also become large and expensive. Furthermore, the fifth
The figure is an operating waveform diagram of each part of the DC/DC converter device, and figures (a) and (b) represent the switching elements G T O+ + in the switching circuits 1 and 2.
and G T Ot r and G T O+ z and G T O
The opening and closing patterns of z and z are shown, and figure (c) is similar to figure (a).
The square wave AC voltage E obtained by the operations shown in and (b)
1 and E2 are shown. Figure (d) shows the full-wave rectified voltage E of each of the AC voltages E and E2 shown in figure (c).
とE4とを示し、図(ホ)は該両型圧E3とE4との加
算電圧E、を示しその平均電圧を図中E0で示す。図(
へ)は前記リアクトル通過電流ILがその平均値■。を
中心に両振巾ΔIにて脈動する模様を示し、周期Tは前
記発振器11からの定周波基準パルス信号の周期であり
、αは前記各スイッチング素子の導通開始時点を起点の
零としT/2時点を1とする該各スイッチング素子の導
通中指定係数である。従って前記電圧E、とE2とは周
期T、半波中αT/2の矩形波交流となる。and E4, and the figure (E) shows the added voltage E of the two mold pressures E3 and E4, and the average voltage is indicated by E0 in the figure. figure(
) is the average value of the reactor passing current IL. It shows a pulsating pattern with a width ΔI centered on , the period T is the period of the constant frequency reference pulse signal from the oscillator 11, and α is the zero starting point at the time when the conduction of each switching element starts, and T/ This is a designation coefficient during conduction of each switching element, with 1 at two points in time. Therefore, the voltages E and E2 are rectangular AC waves with period T and αT/2 in half wave.
上記の如〈従来技術における平滑リアクトルの大形化に
鑑み本発明は、該リアクトルの小形化を簡易且つ安価に
可能とする多段直列接続形DC/DCコンバータ装置の
制御方法を提供することを目的とするものである。As described above, in view of the increase in the size of smoothing reactors in the prior art, an object of the present invention is to provide a control method for a multi-stage series-connected DC/DC converter device that makes it possible to downsize the reactor easily and at low cost. That is.
〔問題点を解決するための手段〕
多段直列接続形D C/D Cコンバータ装置における
平滑リアクトルの入力矩形波直流電圧の電圧変動減少手
段を設けるものである。すなわち半導体スイッチング回
路と絶縁変圧器とダイオード整流回路とから成るDC/
DCコンバータ回路の複数回路の組合せと、リアクトル
とコンデンサとから成る電圧平滑回路とから構成される
D C/D Cコンバータ装置において、前記各コンバ
ータ回路それぞれの入力側を直列にして直流電源に接続
すると共に各出力側も直列にして前記平滑回路に接続し
、更に前記各コンバータ回路のスイッチング動作を該各
コンバータ回路相互に適当な位相差をもたせて制御する
ことを特徴とするものである。[Means for Solving the Problems] This invention provides means for reducing voltage fluctuations in the rectangular wave DC voltage input to the smoothing reactor in a multistage series-connected DC/DC converter device. That is, a DC/DC system consisting of a semiconductor switching circuit, an isolation transformer, and a diode rectifier circuit.
In a DC/DC converter device consisting of a combination of multiple DC converter circuits and a voltage smoothing circuit consisting of a reactor and a capacitor, the input sides of each of the converter circuits are connected in series to a DC power source. At the same time, each output side is also connected in series to the smoothing circuit, and the switching operation of each of the converter circuits is controlled by giving an appropriate phase difference between the converter circuits.
多段直列接続形D C/D Cコンバータ装置を構成す
る単位のD C/D Cコンバータ回路それぞれの矩形
波出力直流電圧を同相で加算することなく適当な位相差
をもたせて加算することにより前記各出力直流電圧の合
成値が零に至ることは回避されその電圧変動中は減少す
る。例えば2段直列接続形コンバータ装置の場合、前記
適当な位相差として基準スイッチング周波数の1/4周
期相当の位相差を選ぶならば、前記出力電圧の合成値は
前記各コンバータ回路単独の出力直流電圧とその2倍の
電圧との間にあり、前記同相加算時に比してその電圧変
動中は1/2に減少する。従って前記の如き位相差をも
たせた出力電圧加算を行なってその合成電圧の、電圧変
動中を減少させることにより該合成電圧平滑用リアクト
ルの所要容量の低減を計ることができる。本発明は前記
の如き位相差をもだせた電圧加算を行なうために、前記
各DC/DCコンバータ回路のスイッチング回路毎にそ
れぞれ1組の移相器とパルス分配回路と2組のゲート駆
動回路とから成る点弧パルス演算部を設け、発振器とA
VRと電圧設定器とから成る電圧偏差演算部の出力信号
を共通指令として前記各点弧パルス演算部に与え、該共
通指令を基準に前記スイッチング回路の各スイッチング
素子を相互に所定の位相差をもってそれぞれ単独に開閉
動作をさせるようにしたものである。By adding the rectangular wave output direct current voltages of the unit DC/DC converter circuits constituting the multi-stage series connected DC/DC converter device with an appropriate phase difference without adding them in the same phase, each of the above-mentioned The combined value of the output DC voltage is prevented from reaching zero and decreases during the voltage fluctuation. For example, in the case of a two-stage series-connected converter device, if a phase difference equivalent to 1/4 period of the reference switching frequency is selected as the appropriate phase difference, the composite value of the output voltages will be the output DC voltage of each converter circuit alone. and twice the voltage, and decreases to 1/2 during the voltage fluctuation compared to the time of the in-phase addition. Therefore, by adding the output voltages with a phase difference as described above and reducing the voltage fluctuations of the combined voltage, it is possible to reduce the required capacity of the combined voltage smoothing reactor. In order to perform voltage addition with a phase difference as described above, the present invention provides one set of phase shifter, one pulse distribution circuit, and two sets of gate drive circuits for each switching circuit of each DC/DC converter circuit. An ignition pulse calculation section consisting of an oscillator and a
The output signal of the voltage deviation calculation unit consisting of a VR and a voltage setting device is given to each of the firing pulse calculation units as a common command, and each switching element of the switching circuit is controlled with a predetermined phase difference from each other based on the common command. Each of them is designed to open and close independently.
以下この発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図は2段直列接続形D C/D Cコンバータ装置
の主回路図の例示であり、第2図は第1図上回路に対す
る制御回路ブロック図であり本発明の実施例を示すもの
である。第3図は第2図の制御回路により制御された第
1回生回路各部の動作波形図である。なお第1図の主回
路は従来技術においても共通に用いられるものである。FIG. 1 is an example of a main circuit diagram of a two-stage series-connected DC/DC converter device, and FIG. 2 is a control circuit block diagram for the circuit shown in FIG. 1, which shows an embodiment of the present invention. be. FIG. 3 is an operational waveform diagram of each part of the first regeneration circuit controlled by the control circuit of FIG. 2. The main circuit shown in FIG. 1 is commonly used in the prior art.
また第2図においては第4図に示す従来技術の場合と同
一機能構成要素に対しては同一表示符号を附している。Further, in FIG. 2, the same reference numerals are given to the same functional components as in the case of the prior art shown in FIG. 4.
第2図は第4図に示す制御回路ブロック図において、移
相器15とパルス分配回路17とゲート駆動回路20と
21とを設け、該両駆動回路を含むゲート駆動回路18
〜21の出力信号によって前記スイッチング回路1と2
との半導体スイッチング素子GTO,,−GTO,□を
それぞれ独立に点弧位相制御して第3図に示す各動作波
形を得るようになしたものである。第3図において図(
イ)〜(ニ)はそれぞれ前記スイッチング素子GTO,
。FIG. 2 is a control circuit block diagram shown in FIG. 4, in which a phase shifter 15, a pulse distribution circuit 17, and gate drive circuits 20 and 21 are provided, and a gate drive circuit 18 including both drive circuits is provided.
The switching circuits 1 and 2 are controlled by the output signals of ~21.
The firing phases of the semiconductor switching elements GTO, , -GTO, and □ are independently controlled to obtain the operating waveforms shown in FIG. 3. In Figure 3, the figure (
A) to (D) are the switching elements GTO,
.
〜GTO□2が相互に時間差T/4を以って開閉する動
作模様を示す。ここに時間Tは前記発振器11からの定
周波基準パルス信号の周期である。図(ホ)と(へ)と
は図(イ)と(ロ)及び(ハ)と(ニ)とに示す開閉動
作によりそれぞれ得られた矩形波交流電圧E、とE2と
を示す。図(ト)と(チ)とはそれぞれ前記交流電圧E
、はE2との全波整流圧E、とE4とを示す。図(す)
は該両型圧E。- This shows the operation pattern in which GTO□2 opens and closes with a time difference of T/4. Here, time T is the period of the constant frequency reference pulse signal from the oscillator 11. Figures (E) and (F) show rectangular wave AC voltages E and E2 obtained by the opening and closing operations shown in Figures (A), (B), (C) and (D), respectively. Figures (G) and (H) respectively indicate the AC voltage E.
, represents the full-wave rectified pressure E2, and E4. Figure
is the pressure E of both molds.
とE、との加算電圧E、を示し、その平均電圧を図中E
0で示す。図(ヌ)は図1におけるリアクトル7の通過
電流■、がその平均値■。を中心に両振巾Δlにて脈動
する模様を示す。ここで前記交流電圧E1とEtとは前
記周期Tと巾αT/2とをもち且つ相互に時間T/4相
当の位相差をもつ矩形波交流であり、また前記加算電圧
E、は、図(す)に示す如く、周期T/4をもち巾(2
α−1)T/4間は前記電圧E3とE4との和電圧とな
り巾(1−α)T/4間は前記電圧E3またはE4の何
れか一方の電圧となって変動する直流電圧となる0次に
上記の如くして得られた前記電圧E、を前記電圧平滑回
路により平滑しその平均電圧E0を得る場合に、図(ヌ
)に示す如く、前記リアクトルの通過電流■、の脈動分
電流をΔ■に制限するための該リアクトルの所要インダ
クタンスL1は次式(1)により与えられる。and E, and the average voltage is E in the figure.
Indicated by 0. The figure (N) shows the average value of the passing current (■) of the reactor 7 in FIG. 1. It shows a pulsating pattern with both amplitudes Δl centered on . Here, the alternating current voltages E1 and Et are rectangular wave alternating currents having the period T and the width αT/2, and a phase difference corresponding to time T/4, and the added voltage E is As shown in (2), it has a period T/4 and a width (2).
Between α-1)T/4, it becomes the sum voltage of the voltages E3 and E4, and between width (1-α)T/4, it becomes either one of the voltages E3 or E4, and becomes a fluctuating DC voltage. 0 Next, when the voltage E obtained as described above is smoothed by the voltage smoothing circuit to obtain the average voltage E0, the pulsating component of the current passing through the reactor The required inductance L1 of the reactor to limit the current to Δ■ is given by the following equation (1).
因に図5の(へ)に示す従来技術の場合に前記インダク
タンスL1に対応する所要のインダクタンスL2は次式
(2)により与えられる。Incidentally, in the case of the prior art shown in FIG. 5(f), the required inductance L2 corresponding to the inductance L1 is given by the following equation (2).
上記の式(1)と(2)とにおける導通中指定係数αは
、D C/D Cコンバータ装置としての所要の直流電
圧E0をその設定値E。、に保つために該装置の直流電
源電圧の変動に応じて自動的に変更制御されるが、その
変動域を0.5≦α≦1となすように前記コンバータ装
置のスイッチング回路出力変圧器5と6との変圧比は前
記直流電源電圧変動の予想値に対応して事前に決定され
る。従って前記αの変動域における前記インダクタンス
L+とL2それぞれの最大値Ll+aとL2emと該両
者の比及び対応α値は次式(3)の如くなる。The conduction designation coefficient α in the above equations (1) and (2) sets the required DC voltage E0 of the DC/DC converter device to its set value E. , the switching circuit output transformer 5 of the converter device is automatically changed and controlled according to fluctuations in the DC power supply voltage of the device, and the switching circuit output transformer 5 of the converter device is controlled so that the fluctuation range is 0.5≦α≦1. The transformation ratio of and 6 is determined in advance in accordance with the expected value of the DC power supply voltage fluctuation. Therefore, the maximum values Ll+a and L2em of the inductances L+ and L2 in the variation range of α, the ratio of the two, and the corresponding α value are as shown in the following equation (3).
すなわち本発明によればりアクドルの所要インダクタン
スは従来方式に比し約1/6とできる。That is, according to the present invention, the required inductance of the axle can be reduced to about 1/6 compared to the conventional system.
この発明によれば、多段直列接続形D C/D Cコン
バータ装置において、該装置を構成する各DC/DCコ
ンバータ回路におけるスイッチング素子それぞれに対し
相互に所定の位相差をもたせた開閉動作を行なはせるこ
とにより、前記各コンバータ回路の出力直流電圧の合成
加算電圧の変動中を減少させ、該加算電圧平滑回路リア
クトルの所要インダクタンス値の大巾低減による平滑リ
アクトルの小形化とその結果として前記コンバータ装置
自体の小形軽量化が可能となる。According to the present invention, in a multi-stage series-connected DC/DC converter device, switching elements in each DC/DC converter circuit constituting the device are opened and closed with a predetermined phase difference between them. By increasing the height, the fluctuation of the combined voltage of the output DC voltages of the respective converter circuits is reduced, and the required inductance value of the summation voltage smoothing circuit reactor is significantly reduced, thereby reducing the size of the smoothing reactor, and as a result, the converter The device itself can be made smaller and lighter.
第1図は2段直列接続形D C/D Cコンバータ装置
の主回路図例、第2図は第1図上回路に対する制御回路
ブロック図であり本発明の実施例である。第3図は第2
図制御回路に対応する主回路各部の動作波形図である。
第4図と第5図とは第2図と第3図とにそれぞれ対応す
る従来技術の実施例である。
1.2・・・スイッチング回路、3.4・・・整流回路
、5.6・・・変圧器、7・・・リアクトル、8・・・
コンデンサ、9・・・負荷、10・・・直流電源、11
・・・発振器、12・・・AVR,13・・・電圧設定
器、14.15・・・移相器、16.17・・・パルス
分配回路、18〜21・・・ゲート駆動回路、CI 1
””’ Ct t・・・コンデンサ、D。
〜D44・・・ダイオード、G T Or I−G T
Otz−ゲートターンオンサイリスク。
第3図
GTOII、GTO21
第5図FIG. 1 is an example of a main circuit diagram of a two-stage series-connected DC/DC converter device, and FIG. 2 is a control circuit block diagram for the circuit shown in FIG. 1, which is an embodiment of the present invention. Figure 3 is the second
FIG. 3 is an operation waveform diagram of each part of the main circuit corresponding to the control circuit. FIGS. 4 and 5 are examples of prior art corresponding to FIGS. 2 and 3, respectively. 1.2... Switching circuit, 3.4... Rectifier circuit, 5.6... Transformer, 7... Reactor, 8...
Capacitor, 9...Load, 10...DC power supply, 11
...Oscillator, 12...AVR, 13...Voltage setter, 14.15...Phase shifter, 16.17...Pulse distribution circuit, 18-21...Gate drive circuit, CI 1
""' Ct t...Capacitor, D. ~D44...Diode, G T Or I-G T
Otz-Gate Turn-On Sairisk. Figure 3 GTOII, GTO21 Figure 5
Claims (1)
整流回路とから成るDC/DCコンバータ回路の複数回
路の組合せと、リアクトルとコンデンサとから成る電圧
平滑回路とから構成されるDC/DCコンバータ装置に
おいて前記各コンバータ回路それぞれの入力側を直列に
して直流電源に接続すると共に各出力側も直列にして前
記平滑回路に接続し、更に前記各コンバータ回路のスイ
ッチング動作を該各コンバータ回路相互に適当な位相差
をもたせて制御することを特徴とするDC/DCコンバ
ータ装置の制御方法。1) A DC/DC converter device consisting of a combination of multiple circuits of a DC/DC converter circuit consisting of a semiconductor switching circuit, an isolation transformer, and a diode rectifier circuit, and a voltage smoothing circuit consisting of a reactor and a capacitor. The input sides of each converter circuit are connected in series to a DC power source, and the output sides of each converter circuit are also connected in series to the smoothing circuit, and the switching operations of each converter circuit are controlled by adjusting a suitable phase difference between the converter circuits. A method for controlling a DC/DC converter device, characterized in that the control method is performed in a controlled manner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27255687A JPH01114368A (en) | 1987-10-28 | 1987-10-28 | Method of controlling dc/dc converter device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27255687A JPH01114368A (en) | 1987-10-28 | 1987-10-28 | Method of controlling dc/dc converter device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01114368A true JPH01114368A (en) | 1989-05-08 |
Family
ID=17515551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27255687A Pending JPH01114368A (en) | 1987-10-28 | 1987-10-28 | Method of controlling dc/dc converter device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01114368A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003026111A2 (en) * | 2001-09-19 | 2003-03-27 | Cooper Cameron Corporation | Dc voltage converting device |
US7453170B2 (en) | 2001-09-19 | 2008-11-18 | Cameron International Corporation | Universal energy supply system |
WO2014141353A1 (en) * | 2013-03-11 | 2014-09-18 | 株式会社 日立製作所 | Dc/dc converter |
US10256737B2 (en) | 2016-08-08 | 2019-04-09 | Hyundai Motor Company | Integrated magnetic apparatus and DC-DC converter including the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5327705U (en) * | 1976-08-16 | 1978-03-09 | ||
JPS5499922A (en) * | 1978-01-24 | 1979-08-07 | Toshiba Corp | Switching regulator |
JPS5963975A (en) * | 1982-10-01 | 1984-04-11 | Origin Electric Co Ltd | Controlling method for rectifier |
-
1987
- 1987-10-28 JP JP27255687A patent/JPH01114368A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5327705U (en) * | 1976-08-16 | 1978-03-09 | ||
JPS5499922A (en) * | 1978-01-24 | 1979-08-07 | Toshiba Corp | Switching regulator |
JPS5963975A (en) * | 1982-10-01 | 1984-04-11 | Origin Electric Co Ltd | Controlling method for rectifier |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003026111A2 (en) * | 2001-09-19 | 2003-03-27 | Cooper Cameron Corporation | Dc voltage converting device |
WO2003026111A3 (en) * | 2001-09-19 | 2003-11-27 | Cooper Cameron Corp | Dc voltage converting device |
GB2398188A (en) * | 2001-09-19 | 2004-08-11 | Cooper Cameron Corp | DC voltage converting device |
GB2398188B (en) * | 2001-09-19 | 2006-06-28 | Cooper Cameron Corp | DC voltage converting device |
US7453170B2 (en) | 2001-09-19 | 2008-11-18 | Cameron International Corporation | Universal energy supply system |
US7759827B2 (en) | 2001-09-19 | 2010-07-20 | Cameron International Corporation | DC voltage converting device having a plurality of DC voltage converting units connected in series on an input side and in parallel on an output side |
WO2014141353A1 (en) * | 2013-03-11 | 2014-09-18 | 株式会社 日立製作所 | Dc/dc converter |
JP5899374B2 (en) * | 2013-03-11 | 2016-04-06 | 株式会社日立製作所 | DC / DC converter |
JPWO2014141353A1 (en) * | 2013-03-11 | 2017-02-16 | 株式会社日立製作所 | DC / DC converter |
US10256737B2 (en) | 2016-08-08 | 2019-04-09 | Hyundai Motor Company | Integrated magnetic apparatus and DC-DC converter including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4885675A (en) | Transformer isolated AC to DC power conditioner with resistive input current | |
US5241256A (en) | Method and apparatus for controlling the supply of power to an induction motor to maintain high efficiency under varying load conditions | |
US4742535A (en) | Inverter type X-ray apparatus | |
US5283727A (en) | Independent control of the AC line current and output DC voltage of a high power factor AC-to-DC converter | |
US20240128883A1 (en) | Single stage power factor correcting synchronous harmonic converter | |
US5301098A (en) | Feedforward inverter phase control | |
US5657214A (en) | Stepped waveform PWM inverter | |
JPH01114368A (en) | Method of controlling dc/dc converter device | |
GB1352949A (en) | Feedback controls for cycloconverters | |
KR101870749B1 (en) | Control apparatus for grid connected type single stage forward-flyback inverter | |
Verdelho et al. | A unity power factor PWM voltage rectifier based on the instantaneous active and reactive current i/sub d/-i/sub q/method | |
JPH0783599B2 (en) | Control method of circulating current type cycloconverter | |
JPH03178558A (en) | Controller for dc/dc converter | |
JP2624790B2 (en) | Variable DC power supply | |
EP0237012B1 (en) | A control apparatus for pwm power converters | |
JPH10304663A (en) | Three-phase power factor improved converter | |
EP0081302B1 (en) | Series resonant inverter with integrating feedback control loop | |
JP2664932B2 (en) | Control device for multiple PWM converters | |
JP2533646B2 (en) | Semiconductor aging equipment | |
JPH04265A (en) | Power converter | |
JPS58175933A (en) | Method of controlling power factor regulator | |
JP2000125575A (en) | Constant sampling type pwm device for sine wave input- output single-phase voltage doubler ac-dc converting circuit | |
SU964603A1 (en) | Controllable stabilized dc voltage source | |
JPH01311588A (en) | Converter device | |
RU2071633C1 (en) | Voltage stabilizer of transformer substation with increased frequency link |