JPH01100818A - High temperature superconducting material - Google Patents
High temperature superconducting materialInfo
- Publication number
- JPH01100818A JPH01100818A JP62258777A JP25877787A JPH01100818A JP H01100818 A JPH01100818 A JP H01100818A JP 62258777 A JP62258777 A JP 62258777A JP 25877787 A JP25877787 A JP 25877787A JP H01100818 A JPH01100818 A JP H01100818A
- Authority
- JP
- Japan
- Prior art keywords
- group
- elements
- superconducting
- superconducting material
- superconducting layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 54
- 230000000737 periodic effect Effects 0.000 claims abstract description 18
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 5
- 229910052788 barium Inorganic materials 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 229910052709 silver Inorganic materials 0.000 claims abstract description 4
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 4
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 3
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 3
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 19
- 238000001704 evaporation Methods 0.000 claims description 18
- 229910052689 Holmium Inorganic materials 0.000 claims description 3
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052691 Erbium Inorganic materials 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- 229910052706 scandium Inorganic materials 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 23
- 239000000758 substrate Substances 0.000 abstract description 22
- 238000000151 deposition Methods 0.000 abstract 2
- 229910021476 group 6 element Inorganic materials 0.000 abstract 1
- 229910052758 niobium Inorganic materials 0.000 abstract 1
- 239000002887 superconductor Substances 0.000 description 17
- 239000013078 crystal Substances 0.000 description 12
- 230000008020 evaporation Effects 0.000 description 12
- 239000010408 film Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 7
- 238000007740 vapor deposition Methods 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- -1 and specifically Substances 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 241000605059 Bacteroidetes Species 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、ジョセフソン素子や超電導記憶素子等の超
電導デバイス、あるいは超電導マグネット用コイルなど
として使用可能な高温超電導材に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-temperature superconducting material that can be used as a superconducting device such as a Josephson element or a superconducting memory element, or a coil for a superconducting magnet.
[従来の技術]
最近に至り、常電導状態から超電導状態に遷移する臨界
温度(T c)が液体窒素温度以上の高い値を示す酸化
物系の超電導体が種々発見されつつある。そして、この
ような酸化物系の超電導体は、液体ヘリウムで冷却する
必要のあった従来の合金系あるいは金属間化合物系の超
電導体に比較して格段に有利な冷却条件で使用できるこ
とから、実用上極めて有望な超電導材料として種々の研
究と開発がなされている。[Prior Art] Recently, various oxide-based superconductors have been discovered that exhibit a critical temperature (T c ) for transitioning from a normal conducting state to a superconducting state that is higher than the temperature of liquid nitrogen. These oxide-based superconductors can be used under much more advantageous cooling conditions than conventional alloy-based or intermetallic compound-based superconductors, which require cooling with liquid helium. Various research and developments are being conducted on superconducting materials as extremely promising superconducting materials.
ところで、このような酸化物系の超電導体における臨界
温度や臨界電流密度(Jc)は、製造方法、製造条件な
どの種々のファクターにより極めて大きく変動すること
が知られている。そして現在のところでは、分子線エピ
タキシー(以下、MBEと略称する。)法、レーザ蒸着
法等の薄膜形成手段により形成された超電導体が比較的
良好な超電導特性を発揮することが知られている。Incidentally, it is known that the critical temperature and critical current density (Jc) of such an oxide-based superconductor vary considerably depending on various factors such as the manufacturing method and manufacturing conditions. At present, it is known that superconductors formed by thin film forming methods such as molecular beam epitaxy (hereinafter referred to as MBE) and laser vapor deposition exhibit relatively good superconducting properties. .
[発明が解決しようとする問題点]
ところが、MBE法を用いれば、基体上に酸化物超電導
体をエピタキシャル成長させることができ、高い臨界電
流密度を示す酸化物超電導体を得ることができるが、成
膜速度が遅いため、膜厚の厚い酸化物超電導体を得るの
に長時間かかり、製造効率が悪い問題がある。一方、レ
ーザ蒸着法は成膜速度を速くすることが可能であり、厚
い超電導層でも比較的短時間で生成できる利点を有して
いる。[Problems to be Solved by the Invention] However, by using the MBE method, it is possible to epitaxially grow an oxide superconductor on a substrate, and it is possible to obtain an oxide superconductor that exhibits a high critical current density. Since the film speed is slow, it takes a long time to obtain a thick oxide superconductor, resulting in poor manufacturing efficiency. On the other hand, laser vapor deposition has the advantage that it is possible to increase the film formation rate and that even a thick superconducting layer can be formed in a relatively short time.
この発明は、前記問題に鑑みてなされたもので、成膜速
度の速いレーザ蒸着法と先のMBE法の各々の長所を生
かし、十分な膜厚を有し、電流容量が大きいとともに、
製造効率も高い高温超電導材を提供することを目的とし
ている。This invention was made in view of the above problems, and takes advantage of the respective advantages of the laser evaporation method, which has a high film formation rate, and the previously mentioned MBE method, and has a sufficient film thickness, large current capacity, and
The aim is to provide high-temperature superconducting materials with high manufacturing efficiency.
[問題点を解決するための手段]
この発明は、A−B−C−D系(ただし、AはY、Sc
、La、Yb、Er、Ho、Dy等の周期律表I[la
族元素のうち1種以上を示し、BはSr、Ba、Ca等
の周期律表Ila族元素のうち1種以上を示し、CはC
u、 A g、 A uなどの周期律表1b族元素とN
bのうちCuあるいはCuを含む2種以上を示し、Dは
0、S、Se等の周期律表vrb族元素お上びF、CI
。[Means for solving the problem] This invention is based on the A-B-C-D system (where A is Y, Sc
, La, Yb, Er, Ho, Dy etc. Periodic Table I [la
B represents one or more of the Group Ila elements of the periodic table such as Sr, Ba, Ca, etc., and C represents C.
Group 1b elements of the periodic table such as u, A g, A u and N
b represents Cu or two or more types containing Cu; D is 0, S, Se, etc., elements of the VRB group of the periodic table, as well as F, CI
.
Br等の周期律表VIIb族元素のうち0あるいはOを
含む2種以上を示す。)の高温超電導材であって、分子
線エピタキシー法により形成されたA−B−C−D系の
第1の超電導層と、この第1の超電導層上にレーザ蒸着
法により形成されたA−B−C−D系の第2の超電導層
とからなることを解決手段とした。Indicates two or more elements containing 0 or O among Group VIIb elements of the periodic table, such as Br. ) is a high-temperature superconducting material comprising an A-B-C-D system first superconducting layer formed by molecular beam epitaxy and an A-B-C-D system formed on this first superconducting layer by laser evaporation. The solution was to consist of a B-CD-based second superconducting layer.
[作用コ
MBE法により、結晶配向性が良好な構造を有し臨界電
流密度の大きな第1の超電導層を形成し、この上に、短
時間で大きな膜厚のものが形成可能なレーザ蒸着法によ
って第2の超電導層を形成する。このようにMBE法と
レーザ蒸着法とを実施することにより、全体で十分な厚
さを確保することができ、臨界電流密度も高くすること
ができる。[A first superconducting layer with a structure with good crystal orientation and a large critical current density is formed by the action MBE method, and a laser evaporation method that allows the formation of a large film thickness in a short time on this layer] A second superconducting layer is formed. By performing the MBE method and the laser evaporation method in this way, a sufficient thickness can be ensured as a whole, and the critical current density can also be increased.
また上記レーザ蒸着法による第2の超電導層は、MBE
法による第1の超電導層の上に形成されるので、前記第
2の超電導層は、第1の超電導層の良好な配向性になら
って結晶配向が揃い、結晶配向性の良い超電導層となる
ため、さらに優れた超電導特性を示すようになる。Further, the second superconducting layer formed by the above laser vapor deposition method is MBE
Since the second superconducting layer is formed on the first superconducting layer by the method, the crystal orientation of the second superconducting layer follows the good orientation of the first superconducting layer, and becomes a superconducting layer with good crystal orientation. Therefore, it exhibits even better superconducting properties.
以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.
第1図は、この発明の酸化物系の高温超電導材の一例を
示すもので、図中符号lは基体である。FIG. 1 shows an example of the oxide-based high-temperature superconducting material of the present invention, and the reference numeral l in the figure represents a substrate.
この基体lの表面には、2層構造の酸化物系の高温超電
導材2が形成されている。この高温超電導材2は、MB
E法により形成された第1の超電導層2aと、レーザ蒸
着法により形成された第2の超電導層2bとから構成さ
れている。A two-layered oxide-based high-temperature superconducting material 2 is formed on the surface of this base 1. This high temperature superconducting material 2 is MB
It is composed of a first superconducting layer 2a formed by the E method and a second superconducting layer 2b formed by the laser evaporation method.
次に、このような高温超電導材2の形成方法の一例につ
いて説明する。Next, an example of a method for forming such a high temperature superconducting material 2 will be described.
高温超電導材2を形成するための基体1は、板材、線材
、テープ材、筒状体、柱状体など、種々の形状のものが
用いられる。そして、このような基体lの構成材料とし
ては、酸化物系の高温超電導材の生成時に加える熱処理
時の高温に耐えうる材料が選択され、具体的には、銀、
金、白金、アルミニウム、銅等の金属材料、あるいはこ
れらの合金材料、またはこれら金属または金属の窒化物
、炭化物、あるいはステンレス鋼などであり、更にはチ
タン酸ストロンチウム(S rT +03)、アルミナ
(AIzOs)、シリコ7(Si)、シリカ(Sift
)、ニオブ酸リチウム(L 1Nbo t)、サファイ
ア、ルビー等の結晶材料などが好適に用いられる。The substrate 1 for forming the high-temperature superconducting material 2 may be of various shapes, such as a plate, a wire, a tape, a cylinder, a column, or the like. As the constituent material of such a substrate l, a material is selected that can withstand the high temperature during the heat treatment applied during the production of the oxide-based high-temperature superconducting material, and specifically, silver,
Metal materials such as gold, platinum, aluminum, copper, alloy materials thereof, nitrides, carbides of these metals, or stainless steel, and furthermore, strontium titanate (S rT +03), alumina (AIzOs), etc. ), Silico 7 (Si), Silica (Sift
), lithium niobate (L 1Nbot), sapphire, ruby, and other crystalline materials are preferably used.
次に、このような基板lの表面に2層構造の酸化物系の
高温超電導材2を形成する。この例の高温超電導材2の
形成工程は、2つの工程からなっている。Next, a two-layered oxide-based high-temperature superconducting material 2 is formed on the surface of such a substrate 1. The process of forming the high temperature superconducting material 2 in this example consists of two steps.
第1の工程では、分子線エピタキシー(M B E )
法を用いて第1の超電導層2aを形成し、第2の工程で
は、レーザ蒸着法を用いて第2の超電導層2bを形成す
る。In the first step, molecular beam epitaxy (MBE)
In a second step, a second superconducting layer 2b is formed using a laser evaporation method.
第1の工程におけるMBE法で使用されるMBE装置は
、真空状態で蒸発源(分子線源)から飛散させた分子や
原子を反応させて、ホルダーに装着した基体l上に超電
導層をエピタキシャル成長させるもので、このMBE法
により成膜すると、レーザ蒸着により成膜する場合に比
較して臨界電流密度を向上させることができる。なお、
反応時の前記基体lの温度は、600〜1000℃程度
が好ましい。また、この工程では予め酸化物超電導体の
種類、組成などに応じて複数の蒸発源を用意する必要が
ある。この蒸発源は、酸化物超電導体を構成する元素を
含む材料、あるいはこの材料と前記酸化物超電導体との
混合物などを仮焼、焼結するなどして得ることができる
。The MBE apparatus used in the MBE method in the first step reacts molecules and atoms scattered from an evaporation source (molecular beam source) in a vacuum state to epitaxially grow a superconducting layer on a substrate mounted on a holder. Therefore, when a film is formed by this MBE method, the critical current density can be improved compared to when a film is formed by laser evaporation. In addition,
The temperature of the substrate 1 during the reaction is preferably about 600 to 1000°C. Further, in this step, it is necessary to prepare a plurality of evaporation sources in advance depending on the type, composition, etc. of the oxide superconductor. This evaporation source can be obtained by calcining or sintering a material containing the elements constituting the oxide superconductor, or a mixture of this material and the oxide superconductor.
この第1の超電導層2aにあっては、MBE法によって
形成されたものであるので、比較的膜厚の小さなもので
あるが、結晶配向の揃った構造を有し、このために特に
高い臨界電流密度を示すものとなる。Since this first superconducting layer 2a is formed by the MBE method, it has a relatively small thickness, but it has a structure with uniform crystal orientation, and therefore has a particularly high criticality. It indicates the current density.
次に、この第1の超電導層2aの上に、レーザ蒸着法を
用いて第1の超電導層2aより厚い第2の超電導M2b
を形成する。Next, on this first superconducting layer 2a, a second superconducting layer 2b which is thicker than the first superconducting layer 2a is formed using a laser vapor deposition method.
form.
第2の工程で用いるレーザ蒸着装置として、例えば第2
図に示す装置を用いる。第2図に示す装置は、内部を真
空雰囲気や酸素ガス雰囲気に保持可能な容器lOと、こ
の容器10の側方に付設されたレーザビーム発射装置9
を具備して構成されている。As a laser evaporation device used in the second step, for example, a second
Use the apparatus shown in the figure. The apparatus shown in FIG. 2 includes a container 10 that can maintain a vacuum atmosphere or an oxygen gas atmosphere inside, and a laser beam emitting device 9 attached to the side of this container 10.
It is configured with the following.
前記容器10の内部には、基板ホルダ11と円筒状の回
転基材12が対向して設けられ、回転基材12の側方側
の容器lOの外壁には導入孔が形成され、この導入孔に
はZn5eなどからなる透明窓14が装着されている。Inside the container 10, a substrate holder 11 and a cylindrical rotating base 12 are provided facing each other, and an introduction hole is formed in the outer wall of the container IO on the side of the rotating base 12. A transparent window 14 made of Zn5e or the like is attached.
また、容器IOの内部であって基板ホルダ11の側方に
は、凹面鏡15がその鏡面部分を前記回転基材12と透
明窓14に向けるように設置されていて、レーザビーム
発射装置9から容器lO内に透明窓14を介して入射さ
れたレーザビームを前記回転基材12に照射できるよう
になっている。一方、基板ホルダ11には回転基材12
に対向して基板1が装着されるとともに、基板ホルダ1
1には基板lを加熱可能なヒータ16が付設されている
。なお、回転基材12は容器lOの内部に設けられた図
示路の回転装置によってその周回りに回転自在に支持さ
れている。Further, inside the container IO and on the side of the substrate holder 11, a concave mirror 15 is installed so that its mirror surface faces the rotating base material 12 and the transparent window 14. The rotating base material 12 can be irradiated with a laser beam that enters the interior of the room through the transparent window 14 . On the other hand, the rotating base material 12 is attached to the substrate holder 11.
The board 1 is mounted facing the board holder 1.
1 is attached with a heater 16 that can heat the substrate l. Note that the rotating base material 12 is rotatably supported around the circumference by a rotating device shown in the illustrated path provided inside the container IO.
前記回転基材12は、酸化物超電導体から構成され、具
体的にはA−B−C−D系(ただしAは、Y 、Sc、
La、Ce、Pr、Nd、Pa、5III、Eu、Gd
、Tb。The rotating base material 12 is made of an oxide superconductor, specifically an A-B-C-D system (where A is Y, Sc,
La, Ce, Pr, Nd, Pa, 5III, Eu, Gd
,Tb.
Dy、Ho、Er、T’s、Yb、Luなどの周期率表
nla族元素のうち1種あるいは2種以上を示し、Bは
Sr。B represents one or more elements of the NLA group of the periodic table, such as Dy, Ho, Er, T's, Yb, and Lu, and B is Sr.
Ba、Ca、Be、Mg、Raなどの周期率表IIa族
元素のうち1種あるいは2種以上を示し、CはCu、
A gsAuなどの周期律表1b族元素とNbのうちC
uあるいはCuを含む2種以上を示し、DはO,Se、
Te。Represents one or more elements of Group IIa of the periodic table such as Ba, Ca, Be, Mg, and Ra; C is Cu;
A Group 1b elements of the periodic table such as gsAu and C of Nb
Indicates two or more types containing u or Cu, and D is O, Se,
Te.
Poなどの周期率表VIb族元素のうちOあるいはOを
含む2種以上を示す)のものが用いられる。なお、Y−
Ba−Cu−0系の酸化物高温超電導体の場合、Y :
Ba:Cu:0 = 1 :(1〜3 )二(2〜4
):(7−X)とされ、XはO≦X≦5の範囲とされる
。Of the group VIb elements of the periodic table, such as Po, O or two or more elements containing O) are used. In addition, Y-
In the case of Ba-Cu-0 based oxide high temperature superconductor, Y:
Ba:Cu:0=1:(1~3)2(2~4
): (7-X), where X is in the range O≦X≦5.
第2図に示す構造のレーザ蒸着装置を使用して第2の超
電導層2bを形成するには、基板ホルダ11にMBE法
により第1の超電導層2aが形成された基板lを装着し
、容器10の内部を酸素雰囲気とし、所定の温度にする
とともに、回転基材12を回転させる。次いで、レーザ
ビーム発射装置9から発射したレーザビームを凹面鏡1
5を介して回転基材12に照射して回転基材12の外周
部を蒸発させ、蒸発原子を基板l上に形成された第1の
超電導層2a上に蒸着させる。このような処理によって
基板lの上面の第1の超電導層2aの表面上に第2の超
電導層2bを形成することができる。In order to form the second superconducting layer 2b using the laser evaporation apparatus having the structure shown in FIG. The interior of the rotating base member 12 is made to have an oxygen atmosphere, and is heated to a predetermined temperature, and the rotating base member 12 is rotated. Next, the laser beam emitted from the laser beam emitting device 9 is transmitted to the concave mirror 1.
5 to the rotating base material 12 to evaporate the outer circumference of the rotating base material 12, and the evaporated atoms are deposited on the first superconducting layer 2a formed on the substrate l. By such treatment, the second superconducting layer 2b can be formed on the surface of the first superconducting layer 2a on the upper surface of the substrate l.
そして、このようなレーザ蒸着法では短時間で厚い超電
導層を形成することができるので、十分な厚さを有する
第2の超電導層2bを得ることができる。また、下地と
なる第1の超電導層2aはMBE法によって形成された
配向性の良い結晶構造のものであり、第2の超電導層2
bはこの第1の超電導層2aの結晶を核としてエピタキ
シャル成長するために、同様に配向性の良好な結晶構造
となる。Since a thick superconducting layer can be formed in a short time by such a laser vapor deposition method, a second superconducting layer 2b having a sufficient thickness can be obtained. Further, the first superconducting layer 2a serving as the base is formed by the MBE method and has a crystal structure with good orientation, and the second superconducting layer 2a
Since b grows epitaxially using the crystals of the first superconducting layer 2a as nuclei, it similarly has a crystal structure with good orientation.
以上のように形成された高温超電導材2は、必要に応じ
て酸素ガスを含む雰囲気中で熱処理することが好ましい
。この熱処理は、400〜1000℃程度の温度におい
てt−too時間程度加熱することで行う。このような
熱処理により、高温超電導体2内の各構成元素が更に十
分に反応しあうことから、高温超電導材2の超電導特性
の向上を図ることができる。さらに第1の超電導層2a
が配向性の良好な結晶構造を有し、この層に第2の超電
導層2bが密着しているために、両者を熱処理すること
によって第2の超電導層2bの結晶構造が第1の超電導
層2aに揃い、超電導特性が更に向上することになる。The high-temperature superconducting material 2 formed as described above is preferably heat-treated in an atmosphere containing oxygen gas, if necessary. This heat treatment is performed by heating at a temperature of about 400 to 1000° C. for about t-too hours. By such heat treatment, the constituent elements within the high temperature superconductor 2 react more sufficiently with each other, so that the superconducting properties of the high temperature superconductor material 2 can be improved. Furthermore, the first superconducting layer 2a
has a crystal structure with good orientation, and the second superconducting layer 2b is in close contact with this layer, so by heat-treating both, the crystal structure of the second superconducting layer 2b changes to that of the first superconducting layer. 2a, and the superconducting properties are further improved.
このため高温超電導材2は高い臨界温度と臨界電流密度
とを示す。また、前述のレーザ蒸着法によれば十分な厚
さの第2の超電導層2bでも短時間で生成できるために
十分な厚さを有する高温超電導材2でも効率良く製造す
ることができる。Therefore, the high temperature superconducting material 2 exhibits a high critical temperature and critical current density. Further, according to the laser vapor deposition method described above, even a second superconducting layer 2b having a sufficient thickness can be produced in a short time, so that even a high temperature superconducting material 2 having a sufficient thickness can be efficiently manufactured.
なお、前記熱処理時の雰囲気には、酸素ガス以外に、S
、Seなどの周期律表VIb族元素のガスまたはF、C
118rなどの周期律表VIIb族元索のガスを含める
こともできる。これらの元素ガスは、得られた高温超電
導体の構成元素の一部として結晶内部に侵入し、超電導
特性の向上に寄与するものとなる。また、高温超電導材
2が形成された基体lとして、銀あるいは銀合金からな
るものを用いれば、熱処理雰囲気中の酸素が基体lの内
部を透過することから、第1の超電導層2aに十分な酸
素を供給することができ、このようにしても超電導特性
を向上させることが可能となる。Note that the atmosphere during the heat treatment includes S in addition to oxygen gas.
, gas of Group VIb elements of the periodic table such as Se, or F, C
Gases from group VIIb of the periodic table, such as 118r, can also be included. These elemental gases penetrate into the crystal as part of the constituent elements of the obtained high-temperature superconductor and contribute to improving the superconducting properties. Furthermore, if the substrate l on which the high-temperature superconducting material 2 is formed is made of silver or a silver alloy, oxygen in the heat treatment atmosphere will permeate through the inside of the substrate l, so that the first superconducting layer 2a will have enough oxygen. Oxygen can be supplied, and the superconducting properties can also be improved in this way.
[実施例]
第2図に示す装置と同等の構成のレーザ蒸着装置と図示
路のMBE装置を用いて、高温超電導材を製造した。[Example] A high-temperature superconducting material was manufactured using a laser evaporation device having the same configuration as the device shown in FIG. 2 and an MBE device along the path shown in the figure.
まず、S rT io 3製の基板をMBE装置にセッ
トし、基板の表面にy、o、とB aCO3とCuOの
蒸発源を用い、Y IB atc uso 7−Xの組
成であって、厚さ0.1μmの第1の超電導層を形成し
た。First, a substrate made of S rT io 3 was set in an MBE apparatus, and evaporation sources of y, o, BaCO3, and CuO were used on the surface of the substrate, and the composition of Y IB atc uso 7-X and the thickness were A first superconducting layer of 0.1 μm was formed.
次いで、こうして第1の超電導層の形成された基板をレ
ーザ蒸着装置の基板ホルダに装着し、回転基材として、
円筒状のY +B at、ac ua、sO?−Xの組
成の酸化物超電導体よりなる基材を用い、容器内を内部
圧10−’Torrの雰囲気とした。次に炭酸ガスレー
ザビームを発射して回転基材に照射するとともに回転基
材を2回/秒で回転させた。以上の操作により回転基材
の原子をレーザによって溶融飛散させて基板表面に厚さ
0.6μmの第2の超電導層を形成した。Next, the substrate on which the first superconducting layer was formed was mounted on a substrate holder of a laser evaporation apparatus, and used as a rotating base material.
Cylindrical Y + B at, ac ua, sO? A base material made of an oxide superconductor having a composition of -X was used, and the inside of the container was made into an atmosphere with an internal pressure of 10-' Torr. Next, a carbon dioxide gas laser beam was emitted to irradiate the rotating base material, and the rotating base material was rotated 2 times/second. Through the above operations, the atoms of the rotating base material were melted and scattered by a laser to form a second superconducting layer with a thickness of 0.6 μm on the substrate surface.
以上の工程において、MBE装置による成膜に2時間、
レーザ蒸着装置による成膜に0.5時間を要した。この
後、酸化雰囲気中において900℃で3時間加熱する熱
処理を行って最終製品の高温超電導材を得た。In the above steps, it takes 2 hours to form a film using an MBE device.
It took 0.5 hours to form the film using a laser evaporation device. Thereafter, heat treatment was performed at 900° C. for 3 hours in an oxidizing atmosphere to obtain a final product of high-temperature superconducting material.
この超電導材は、
臨界温度(Tc) 92.8に
臨界電流密度(J c) I X l O’A/aI
11”(77K)において)
を示した。This superconducting material has a critical temperature (Tc) of 92.8 and a critical current density (J c) I
11” (77K)).
なお、比較例として、厚さ0.3μmの超電導層をMB
E法のみにより製造し、これに前記と同等の条件で熱処
理を施して、高温超電導材を得た。As a comparative example, a superconducting layer with a thickness of 0.3 μm was
A high-temperature superconducting material was obtained by manufacturing only by method E and heat-treating it under the same conditions as above.
この超電導材は、
臨界電流密度(J c) 5 X I O’A/cm
”(77K)において)
を示した。This superconducting material has a critical current density (J c) of 5 X I O'A/cm
” (77K)).
以上の結果から、この発明の構造を採用することによっ
て、高い臨界電流密度を有し、厚さら十分な超電導材を
製造できることが判明した。From the above results, it has been found that by employing the structure of the present invention, a superconducting material having a high critical current density and a sufficient thickness can be manufactured.
[発明の効果]
以上説明したように本発明の高温超電導材は、MBE法
により形成され、臨界電流密度が高く配向性の良好な結
晶構造を有する第1の超電導層と、短時間で緻密な構造
のものが得られるレーザ蒸着法により形成された厚い第
2の超電導層とからなるものであるので、全体として高
い臨界電流密度を有するとともに、十分な膜厚を有する
高温超電導材を得ることができる。また第2の超電導層
が生成される際に第1の超電導層を核として成長するた
めに、第2の超電導層も結晶配向性の良好な構造となり
、さらに−層材電導特性を高める効果がある。また、本
発明によれば、厚い超電導層でも短時間で効率良く形成
できる構造であるので、電流容量の大きな超電導材が短
時間で得られる効果がある。[Effects of the Invention] As explained above, the high temperature superconducting material of the present invention has a first superconducting layer formed by the MBE method and having a crystal structure with high critical current density and good orientation, and Since it consists of a thick second superconducting layer formed by a laser vapor deposition method that can obtain a structure, it is possible to obtain a high-temperature superconducting material that has a high critical current density as a whole and has a sufficient film thickness. can. In addition, since the second superconducting layer is grown using the first superconducting layer as a nucleus, the second superconducting layer also has a structure with good crystal orientation, which further improves the conductivity properties of the layer material. be. Further, according to the present invention, since the structure is such that even a thick superconducting layer can be formed efficiently in a short time, there is an effect that a superconducting material with a large current capacity can be obtained in a short time.
第1図は本発明の一実施例を示す断面図、第2図は本発
明の実施に用いるレーザ蒸着装置の一例を示す構成図で
ある。
!・・・基板、
2・・・高温超電導材、
2a・・・第1の超電導層、
2b・・・第2の超電導層。FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a configuration diagram showing an example of a laser evaporation apparatus used for carrying out the invention. ! ...Substrate, 2.. High temperature superconducting material, 2a.. First superconducting layer, 2b.. Second superconducting layer.
Claims (1)
y等の周期律表IIIa族元素のうち1種以上を示し、B
はSr、Ba、Ca等の周期律表IIa族元素のうち1種
以上を示し、CはCu、Ag、Auなどの周期律表 I
b族元素とNbのうちCuあるいはCuを含む2種以上
を示し、DはO、S、Se等の周期律表VIb族元素およ
びF、Cl、Br等の周期律表VIIb族元素のうちOあ
るいはOを含む2種以上を示す。)の高温超電導材であ
って、 分子線エピタキシー法により形成されたA−B−C−D
系の第1の超電導層と、この第1の超電導層上にレーザ
蒸着法により形成されたA−B−C−D系の第2の超電
導層とからなることを特徴とする高温超電導材。[Claims] A-B-C-D system (where A is Y, Sc, La, Yb, Er, Ho, D
Indicates one or more elements of group IIIa of the periodic table such as y, B
represents one or more elements of group IIa of the periodic table such as Sr, Ba, and Ca, and C represents elements of group I of the periodic table such as Cu, Ag, and Au.
Denotes Cu or two or more of group b elements and Nb, including Cu, and D is an element of group VIb of the periodic table such as O, S, and Se, and O of group VIIb of the periodic table elements such as F, Cl, and Br. Alternatively, it represents two or more types containing O. ) is a high-temperature superconducting material formed by molecular beam epitaxy.
A high-temperature superconducting material comprising a first superconducting layer of an A-B-C-D system and a second superconducting layer of an A-B-C-D system formed on the first superconducting layer by a laser evaporation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62258777A JPH01100818A (en) | 1987-10-14 | 1987-10-14 | High temperature superconducting material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62258777A JPH01100818A (en) | 1987-10-14 | 1987-10-14 | High temperature superconducting material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01100818A true JPH01100818A (en) | 1989-04-19 |
Family
ID=17324935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62258777A Pending JPH01100818A (en) | 1987-10-14 | 1987-10-14 | High temperature superconducting material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01100818A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996032201A1 (en) * | 1995-04-10 | 1996-10-17 | Lockheed Martin Energy Systems, Inc. | Structures having enhanced biaxial texture and method of fabricating same |
US5964966A (en) * | 1997-09-19 | 1999-10-12 | Lockheed Martin Energy Research Corporation | Method of forming biaxially textured alloy substrates and devices thereon |
US6027564A (en) * | 1997-09-23 | 2000-02-22 | American Superconductor Corporation | Low vacuum vapor process for producing epitaxial layers |
JP2019212715A (en) * | 2018-06-01 | 2019-12-12 | 富士通株式会社 | Superconducting device and manufacturing method thereof |
-
1987
- 1987-10-14 JP JP62258777A patent/JPH01100818A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996032201A1 (en) * | 1995-04-10 | 1996-10-17 | Lockheed Martin Energy Systems, Inc. | Structures having enhanced biaxial texture and method of fabricating same |
US5741377A (en) * | 1995-04-10 | 1998-04-21 | Martin Marietta Energy Systems, Inc. | Structures having enhanced biaxial texture and method of fabricating same |
US5898020A (en) * | 1995-04-10 | 1999-04-27 | Goyal; Amit | Structures having enhanced biaxial texture and method of fabricating same |
US5958599A (en) * | 1995-04-10 | 1999-09-28 | Lockheed Martin Energy Research Corporation | Structures having enhanced biaxial texture |
US5964966A (en) * | 1997-09-19 | 1999-10-12 | Lockheed Martin Energy Research Corporation | Method of forming biaxially textured alloy substrates and devices thereon |
US6106615A (en) * | 1997-09-19 | 2000-08-22 | Goyal; Amit | Method of forming biaxially textured alloy substrates and devices thereon |
US6027564A (en) * | 1997-09-23 | 2000-02-22 | American Superconductor Corporation | Low vacuum vapor process for producing epitaxial layers |
JP2019212715A (en) * | 2018-06-01 | 2019-12-12 | 富士通株式会社 | Superconducting device and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2757284B2 (en) | Method for producing metal oxide superconducting material layer by laser evaporation | |
US5128316A (en) | Articles containing a cubic perovskite crystal structure | |
US5071828A (en) | Process for the production of a crystal-oriented surface layer of a ceramic high temperature superconductor | |
JPH08506216A (en) | Superconducting YBa formed at a low temperature. Lower 2 Cu Cu Lower 3 O Lower 7-x | |
JPH06293596A (en) | Device for forming cushioning layer for arranged high tc tape superconduction and device for forming high-density condenser | |
US5330968A (en) | Laser ablation process for preparing oxide superconducting thin films | |
JPH01100818A (en) | High temperature superconducting material | |
JPH01100820A (en) | High temperature superconducting material | |
JPH01100816A (en) | High temperature superconducting material | |
JPH01100819A (en) | High temperature superconducting material | |
JPH01100817A (en) | High temperature superconducting material | |
JPH1112094A (en) | Production of rare earth-barium-cuprate-based superconductor | |
JPH01275434A (en) | Production of high temperature superconducting oxide film | |
US4981839A (en) | Method of forming superconducting oxide films using zone annealing | |
JP2662908B2 (en) | Manufacturing method of oxide superconducting device | |
JP2550253B2 (en) | Method for producing oxide high temperature superconductor | |
JPH01100813A (en) | High temperature superconducting material | |
JPH05302163A (en) | Formation of multiple-oxide superconducting thin film | |
JPH01100815A (en) | High temperature superconducting material | |
JPH01100814A (en) | High temperature superconducting material | |
JPH01100827A (en) | High temperature superconducting material | |
JP2005294240A (en) | Oriented polycrystalline intermediate thin film, its manufacturing method, oxide superconductive conductor and its manufacturing method | |
KR100338359B1 (en) | A Fabrication Technique for Epitaxial Thick Films of High Temperature Superconductor by the Partial Melting Method | |
JPS63310798A (en) | Production of oxide superconducting element wafer | |
JP2817299B2 (en) | Preparation method of composite oxide superconducting thin film |