[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0990345A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH0990345A
JPH0990345A JP7247219A JP24721995A JPH0990345A JP H0990345 A JPH0990345 A JP H0990345A JP 7247219 A JP7247219 A JP 7247219A JP 24721995 A JP24721995 A JP 24721995A JP H0990345 A JPH0990345 A JP H0990345A
Authority
JP
Japan
Prior art keywords
liquid crystal
pixel
display device
crystal display
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7247219A
Other languages
Japanese (ja)
Inventor
Osamu Ito
理 伊東
Katsumi Kondo
克己 近藤
Junichi Hirakata
純一 平方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7247219A priority Critical patent/JPH0990345A/en
Publication of JPH0990345A publication Critical patent/JPH0990345A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a reflection type color liquid crystal display device capable of making full-color display by setting the areas of respective sub-pixels so as to vary. SOLUTION: Flattening films for TFTs are formed. These flattening films are silicon nitride films and are formed by a plasma CVD apparatus and the film thickness thereof is 1μm. Pixel electrodes 57 are formed on the flattening films and the material thereof is aluminum. The three sub-pixels are formed at each pixel electrode 57 so as to constitute one pixel. The area ratios of the respective sub-pixel are set at x1 :x2 :x3 =1:2:3. Through-holes 55 are formed in the flattening films and source electrodes 46 and the pixel electrodes 57b are connected. A driving device is combined with the display panel of the liquid crystal display device constituted in such a manner and the change in the display colors according to a change in the driving voltage (source voltage) when the gates are open is widened in the measurement range to a range including about 10 pixels. Seven gradations are obtd. in the measurement of the chromaticity of the respective gradations between the green display and the white display. The respective gradations are distributed at nearly equal intervals on chromaticity coordinates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は低消費電力を特徴と
する反射型カラー液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflective color liquid crystal display device characterized by low power consumption.

【0002】[0002]

【従来の技術】反射型液晶表示装置は外光を光源として
表示を行うため、薄型かつ低消費電力である。また、反
射型液晶表示装置は今後急速に普及が進むと予想される
携帯型情報端末にも搭載可能である。
2. Description of the Related Art Reflective liquid crystal display devices are thin and have low power consumption because they use external light as a light source for display. Further, the reflective liquid crystal display device can be mounted on a portable information terminal which is expected to spread rapidly in the future.

【0003】カラー液晶表示装置では、一つの画素は独
立に制御可能な複数の部分から構成されている。例え
ば、透過型カラー液晶表示装置の1画素はR,G,B3
色のカラーフィルタに対応する三つの部分から構成され
ている。以後、1画素を構成する各部分を、サブピクセ
ルと呼ぶことにする。
In a color liquid crystal display device, one pixel is composed of a plurality of independently controllable parts. For example, one pixel of a transmissive color liquid crystal display device has R, G, B3
It is composed of three parts corresponding to the color filters of the colors. Hereinafter, each part that constitutes one pixel will be referred to as a subpixel.

【0004】透過型カラー液晶表示装置は、明暗の表示
とカラー表示を別々に行う。即ち、明暗を表示するのに
液晶層と位相板,偏光板を用い、カラー表示にカラーフ
ィルタを用いる。そして、明暗を表示するのに偏光板で
光を吸収し、またカラー表示を行うのにカラーフィルタ
で光を吸収する。この様に二つの部分で光を吸収するた
め、透過率が低かった。
The transmissive color liquid crystal display device performs bright and dark display and color display separately. That is, a liquid crystal layer, a phase plate and a polarizing plate are used to display light and dark, and a color filter is used for color display. Then, the polarizing plate absorbs light to display light and dark, and the color filter absorbs light to perform color display. Since the two parts absorb light in this way, the transmittance was low.

【0005】これに対して、反射型カラー表示装置は1
つの部分で明暗の表示とカラー表示を行う。即ち、印加
電圧値に応じて表示色が変化する様に、液晶層と位相
板,偏光板を設定している。カラーフィルタは用いず、
液晶層と位相板と偏光板の複屈折干渉色により明暗の表
示とカラー表示を行う。光を吸収する部分は1つである
ため透過率が高く、反射型カラー表示が可能である。
On the other hand, the reflective color display device has one
Bright and dark display and color display are performed in one part. That is, the liquid crystal layer, the phase plate, and the polarizing plate are set so that the display color changes according to the applied voltage value. Without using color filters,
Bright and dark display and color display are performed by the birefringence interference color of the liquid crystal layer, the phase plate and the polarizing plate. Since there is only one portion that absorbs light, the transmittance is high, and reflective color display is possible.

【0006】透過型カラー液晶表示装置では、1つのサ
ブピクセルは常に同じ色を表示する。液晶配向を制御し
て各サブピクセルの透過率を変えることにより、1画素
の表示色と階調を変える。また、各サブピクセルの面積
はほぼ等しい。
In the transmissive color liquid crystal display device, one sub pixel always displays the same color. By controlling the liquid crystal orientation and changing the transmittance of each sub-pixel, the display color and gradation of one pixel are changed. The area of each sub-pixel is almost the same.

【0007】これに対して、反射型カラー液晶表示装置
では、1つのサブピクセルは印加電圧値に応じて異なる
色を表示する。即ち、白表示と黒表示を含む少なくとも
3色の色表示を行う。この様に、反射型カラー液晶表示
装置ではサブピクセルの動作が透過型カラー液晶表示装
置と異なるので、新しい階調表示法が必要になる。
On the other hand, in the reflective color liquid crystal display device, one sub-pixel displays different colors depending on the applied voltage value. That is, color display of at least three colors including white display and black display is performed. As described above, in the reflective color liquid crystal display device, the operation of the sub-pixel is different from that of the transmissive color liquid crystal display device, and thus a new gradation display method is required.

【0008】従来の反射型カラー液晶表示装置では、例
えば特開平6−95151号では各サブピクセルの面積はほぼ
等しかった。
In the conventional reflection type color liquid crystal display device, for example, in JP-A-6-95151, the area of each sub-pixel is almost equal.

【0009】[0009]

【発明が解決しようとする課題】本発明は、反射型カラ
ー液晶表示装置の階調表示法を考案し、フルカラー表示
が可能な反射型カラー液晶表示装置を実現することを課
題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to devise a gradation display method for a reflective color liquid crystal display device and to realize a reflective color liquid crystal display device capable of full color display.

【0010】従来の反射型カラー液晶表示装置では各サ
ブピクセルの面積が等しいが、この場合の階調表示を緑
表示と白表示の間の階調を例に説明する。この場合各サ
ブピクセルは緑か白を表示するが、各サブピクセルの表
示色の組合せ数は次式で表される。
In the conventional reflective color liquid crystal display device, the areas of the sub-pixels are equal, but the gradation display in this case will be described by taking the gradation between the green display and the white display as an example. In this case, each subpixel displays green or white, and the number of combinations of display colors of each subpixel is expressed by the following equation.

【0011】[0011]

【数3】 (Equation 3)

【0012】数3中のnは1画素内のサブピクセルの数
である。透過型カラー液晶表示装置と同様にn=3とす
ると、各サブピクセルの表示色の組合せ数は8になる。
この場合の画素形状の1例を図2に示す。サブピクセル
に番号を付け(1,2,3,…)、i番目のサブピクセ
ルの面積をxi と表すことにする。すなわち、この場合
1:x2:x3=1:1:1 である。各サブピクセルの
表示色の全組合せを図3に記した。図3中で、白ぬきで
示したサブピクセルは白表示を、斜線で示したサブピク
セルは緑表示を意味する。
In Expression 3, n is the number of subpixels in one pixel. When n = 3 as in the transmissive color liquid crystal display device, the number of display color combinations of each sub-pixel becomes eight.
An example of the pixel shape in this case is shown in FIG. Subpixels are numbered (1, 2, 3, ...) And the area of the i-th subpixel is represented as x i . That is, in this case, x 1 : x 2 : x 3 = 1: 1: 1. All combinations of display colors of each subpixel are shown in FIG. In FIG. 3, white subpixels indicate white display, and hatched subpixels indicate green display.

【0013】人間が感じる色は1画素内の各色の面積比
によって決まる。図3中の(b),(c),(d)はいず
れも緑表示と白表示の面積比が2:1であり、人間はこ
れら三つを同じ色と感じる。また、(e),(f),(g)
もいずれも緑表示と白表示の面積比が1:2であり、人
間はこれら三つを同じ色と感じる。従って、図3に示し
た8通りの組合せは4階調しか表示できない。
The color perceived by humans is determined by the area ratio of each color within one pixel. In (b), (c), and (d) in FIG. 3, the area ratio of green display and white display is 2: 1, and humans perceive these three to be the same color. Also, (e), (f), (g)
In both cases, the area ratio of green display and white display is 1: 2, and humans perceive these three as the same color. Therefore, the eight combinations shown in FIG. 3 can display only four gradations.

【0014】[0014]

【課題を解決するための手段】上記の課題を解決するた
め、本発明では各サブピクセルの面積を異なる様に設定
した。
In order to solve the above problems, in the present invention, the area of each subpixel is set to be different.

【0015】前節と同様、n=3の場合について考え
る。まず初めに、x1:x2:x3 =1:2:3とした。
この場合の画素形状の一例を図4に示す。緑表示と白表
示の間の階調について、各サブピクセルの表示色の全組
合せを図5に記した。x1+x2=x3 であるので図5中
の(d)と(e)が同じ色になるが、これ以外の組合せ
は互いに同じ色には成らない。図5に示した8通りの組
合せは、7階調の表示ができる。
As in the previous section, consider the case where n = 3. First, x 1 : x 2 : x 3 = 1: 2: 3.
An example of the pixel shape in this case is shown in FIG. Regarding the gradation between the green display and the white display, all combinations of display colors of each subpixel are shown in FIG. Since x 1 + x 2 = x 3 , the colors (d) and (e) in FIG. 5 have the same color, but other combinations do not have the same color. The eight combinations shown in FIG. 5 can display seven gradations.

【0016】次に、x1:x2:x3=1:2:5 とした
場合について考える。この場合の画素形状の一例を図6
に示す。図7に記した様に、全ての組合せは互いに同じ
色には成らず、三つのサブピクセルによる最大の階調数
である8階調の表示ができる。n=3以外の場合でも、
i に数1の関係が成り立てば全ての組合せは互いに同
じ色には成らず、最大の階調数が得られる。
Next, consider the case where x 1 : x 2 : x 3 = 1: 2: 5. An example of the pixel shape in this case is shown in FIG.
Shown in As shown in FIG. 7, all combinations do not form the same color, and display of 8 gradations, which is the maximum number of gradations, can be performed by three sub-pixels. Even when n = 3,
If the relationship of Mathematical 1 is established for x i , not all combinations have the same color, and the maximum number of gradations can be obtained.

【0017】図7では、表示色の組合せを白表示の面積
が多い順に並べてある。緑表示の面積比は0/8,1/
8,2/8,3/8,5/8,6/8,7/8,8/8
と変化する。赤表示の面積比は、0/8〜3/8,5/
8〜8/8の間では1/8ずつ増加するが、3/8と5
/8の間では2/8増加し、階調の変化の仕方は一定で
ない。そこで、次にx1:x2:x3=1:2:4 とす
る。この場合の画素形状の一例を図8に、各サブピクセ
ルの表示色の全組合せを図9にそれぞれ示す。緑表示の
面積比は0/7,1/7,2/7,3/7,4/7,5
/7,6/7,7/7と変化し、何れの階調の間でも緑
表示の面積比は1/7ずつ増加する。n=3以外の場合
でも、xi に数2の関係が成り立てば最大の階調数が得
られて、かつ階調の変化の仕方が一定になる。
In FIG. 7, the combinations of display colors are arranged in descending order of white display area. Area ratio of green display is 0/8, 1 /
8, 2/8, 3/8, 5/8, 6/8, 7/8, 8/8
And change. The area ratio of red display is 0/8 to 3/8, 5 /
It increases by 1/8 between 8 and 8/8, but it is 3/8 and 5
It increases by 2/8 between / 8 and the way of changing the gradation is not constant. Therefore, next, x 1 : x 2 : x 3 = 1: 2: 4. FIG. 8 shows an example of the pixel shape in this case, and FIG. 9 shows all combinations of display colors of the sub-pixels. Area ratio of green display is 0/7, 1/7, 2/7, 3/7, 4/7, 5
/ 7, 6/7, 7/7, and the area ratio of green display increases by 1/7 in any gradation. Even if n = 3 is not satisfied, the maximum number of gray levels can be obtained and the way of changing the gray level becomes constant if the relationship of Equation 2 holds for x i .

【0018】各表示色の色純度が高ければ表示色の範囲
が広がり、人間の視覚に識別可能な階調数も増大する。
本発明の液晶表示装置は各色の色純度が最高になる電圧
を液晶層に印加するために、TFT等のアクティブ素子
を用いる。アクティブ素子による開口率の低下を防ぐた
め、液晶層に電圧を直接印加する表示用電極をアクティ
ブ素子よりも上側の層に置く。アルミ等の高反射率の導
電体で表示用電極を形成し、反射板を兼ねる様にする。
表示用電極はアクティブ素子のソース電極とスルーホー
ルで接続する。
If the color purity of each display color is high, the range of display colors is widened, and the number of gradations that can be visually recognized by human eyes is also increased.
The liquid crystal display device of the present invention uses an active element such as a TFT in order to apply a voltage that maximizes the color purity of each color to the liquid crystal layer. In order to prevent a decrease in aperture ratio due to the active element, a display electrode for directly applying a voltage to the liquid crystal layer is placed in a layer above the active element. The display electrode is made of a high-reflectance conductor such as aluminum, and also serves as a reflector.
The display electrode is connected to the source electrode of the active element through a through hole.

【0019】アクティブ素子を用いる場合、非選択時間
の間液晶層の電圧を一定に保たなければならない。非選
択時間の間に液晶層の電圧が変化すれば表示色も変化
し、人間の目が認識する色純度は低下する。これを防ぐ
ため、保持容量を用いる。保持容量はソース電極を次列
のコモン電極の上方まで延長し、次列のコモン電極とソ
ース電極の間に形成する。
When using the active element, the voltage of the liquid crystal layer must be kept constant during the non-selection time. If the voltage of the liquid crystal layer changes during the non-selection time, the display color also changes, and the color purity recognized by the human eye decreases. A storage capacitor is used to prevent this. The storage capacitor is formed between the common electrode and the source electrode of the next row by extending the source electrode to above the common electrode of the next row.

【0020】あるいはまた、基準電極を新たに設ける。
基準電極は接地し、電気的に中性にする。ソース電極を
基準電極の上方まで延長し、基準電極とソース電極の間
に保持容量を形成する。この時、i番目のサブピクセル
とこれに接続するソース電極と保持容量は、他のサブピ
クセルと立体的に交差しない様に構成する。これによ
り、i番目のサブピクセルと他のサブピクセルとの間の
寄生容量の発生を防ぐことができる。
Alternatively, a reference electrode is newly provided.
The reference electrode is grounded and electrically neutral. The source electrode is extended above the reference electrode, and a storage capacitor is formed between the reference electrode and the source electrode. At this time, the i-th subpixel, the source electrode connected to the i-th subpixel, and the storage capacitor are configured so as not to stereoscopically intersect with other subpixels. This can prevent the occurrence of parasitic capacitance between the i-th subpixel and other subpixels.

【0021】[0021]

【発明の実施の形態】本発明の内容と効果を具体例を用
いて以下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The contents and effects of the present invention will be described below with reference to specific examples.

【0022】(実施例1)図1は本発明の液晶表示装置
の1画素とその周辺の構成の一例を示す平面図であり、
図10,図11はそれぞれ図1の1−1′切断線,2−
2′切断線における断面図である。図10,図11の下
側から順に、本発明の液晶表示装置の構成と製造方法を
説明する。
(Embodiment 1) FIG. 1 is a plan view showing an example of the configuration of one pixel and its periphery of a liquid crystal display device of the present invention.
FIG. 10 and FIG. 11 are sectional views taken along line 1-1 ′ and 2- of FIG.
It is sectional drawing in a 2'cut line. The configuration and manufacturing method of the liquid crystal display device of the present invention will be described in order from the bottom of FIGS.

【0023】下側基板10は無アルカリのホウケイサン
ガラス製11であり、上下に酸化シリコン層12を備え
る。
The lower substrate 10 is made of non-alkali borosilicate glass 11 and has silicon oxide layers 12 on the upper and lower sides.

【0024】ゲート電極20は走査線27,27′から
垂直に突出し、TFTの能動領域を超える様に形成す
る。ゲート電極にはアルミニウム膜21を用い、スパッ
タ法で形成した。更にこの上に、陽極酸化アルミニウム
膜22を形成した。絶縁膜25には窒化シリコン膜を用
い、プラズマCVD法で形成し、膜厚は2000Åにし
た。
The gate electrode 20 is formed so as to vertically project from the scanning lines 27 and 27 'and extend beyond the active area of the TFT. An aluminum film 21 was used for the gate electrode and was formed by a sputtering method. Further, an anodized aluminum film 22 was formed on this. A silicon nitride film was used as the insulating film 25 and was formed by a plasma CVD method to a film thickness of 2000 Å.

【0025】TFTはゲート電極に正のバイアスを印加
するとソース−トレイン間のチャネル抵抗が小さくな
り、バイアスをゼロにするとチャネル抵抗が大きくなる
様に動作する。TFTはゲート電極20,絶縁膜25,
i型(真性,intrinsic ,導電型決定不純物がドープさ
れていない)非晶質シリコンからなるi型半導体層30
を有する。また、i型半導体層は走査線と信号線の交差
部にも形成した。ここで、i型半導体層は走査線と信号
線の間に分布し、両者の短絡を低減する。
The TFT operates so that the channel resistance between the source and the train decreases when a positive bias is applied to the gate electrode, and the channel resistance increases when the bias is zero. The TFT has a gate electrode 20, an insulating film 25,
i-type semiconductor layer 30 made of i-type (intrinsic, intrinsic, conductivity-type determining impurity-free) amorphous silicon
Having. The i-type semiconductor layer was also formed at the intersection of the scanning line and the signal line. Here, the i-type semiconductor layer is distributed between the scanning line and the signal line to reduce a short circuit between them.

【0026】i型半導体層には非晶層シリコン31を用
い、層厚は2000Åとした。i型半導体層のうち、ソ
ース電極,ドレイン電極と重なる部分の上方には、N
(+)型非晶質シリコン半導体層32を形成した。この
N(+)型非晶質シリコン半導体層は、非晶質シリコン
にオーミックコンタクト用のリンをドープしたものであ
る。
Amorphous layer silicon 31 was used for the i-type semiconductor layer, and the layer thickness was 2000 Å. Above the portion of the i-type semiconductor layer that overlaps with the source electrode and the drain electrode, N is formed.
A (+) type amorphous silicon semiconductor layer 32 was formed. The N (+) type amorphous silicon semiconductor layer is formed by doping amorphous silicon with phosphorus for ohmic contact.

【0027】ソース電極40とドレイン電極45は2層
から成る。このうち上方の層41,46はアルミニウム
であり、スパッタ法で形成し、層厚は4000Åであ
る。下方の層42,47はクロムであり、同じくスパッ
タ法で形成し、層厚は600Åである。ソース電極を隣
合った走査電極27′の上方まで延長し、両者の間に保
持容量38を形成した。
The source electrode 40 and the drain electrode 45 are composed of two layers. Of these layers, the upper layers 41 and 46 are made of aluminum and are formed by the sputtering method, and the layer thickness is 4000 Å. The lower layers 42 and 47 are made of chromium and are similarly formed by the sputtering method, and the layer thickness is 600Å. The source electrode was extended above the adjacent scanning electrode 27 ', and the storage capacitor 38 was formed between the two.

【0028】TFTの上には平坦化膜50を形成した。
平坦化膜は窒化シリコン膜であり、プラズマCVD装置
で形成し、膜厚は1μmとした。平坦化膜の上には画素
電極57を形成し、材質はアルミニウムとした。画素電
極は三つのサブピクセルが1画素を構成する様に形成し
た。各サブピクセルの面積比はx1:x2:x3 =1:
2:3とした。平坦化膜にスルーホール55を形成し、
ソース電極と画素電極を接続した。有機配向膜60には
日産化学製のポリイミド系有機高分子(RN718)を用い
た。液晶層70にはチッ素製HA−5073XXを用いた。HA−
5073XXはカイラル剤を含まず、常温でネマチック層を示
す。画素電極における液晶層の厚さの最大値は6.2μ
m、電圧無印加時における液晶層のリタデーションは
0.86μmとした。
A flattening film 50 was formed on the TFT.
The flattening film is a silicon nitride film, formed by a plasma CVD apparatus, and has a film thickness of 1 μm. A pixel electrode 57 was formed on the flattening film, and the material was aluminum. The pixel electrode was formed so that three sub-pixels form one pixel. The area ratio of each sub-pixel is x 1 : x 2 : x 3 = 1:
It was set to 2: 3. Forming a through hole 55 in the flattening film,
The source electrode and the pixel electrode were connected. A polyimide organic polymer (RN718) manufactured by Nissan Chemical Industries, Ltd. was used for the organic alignment film 60. HA-5073XX made of nitrogen was used for the liquid crystal layer 70. HA-
5073XX contains no chiral agent and exhibits a nematic layer at room temperature. The maximum thickness of the liquid crystal layer in the pixel electrode is 6.2μ
m, and the retardation of the liquid crystal layer when no voltage was applied was 0.86 μm.

【0029】上側基板80上の有機配向膜61は下側基
板のものと同じである。上下の基板の有機配向膜は配向
処理方向が互いに反平行であり、プレチルト角は5°で
ある。上側基板の共通透明画素電極75はスパッタリン
グで形成されたIndium−Tin−Oxide(ITO)膜からな
り、膜厚は1400Åである。上側基板80は下側基板
と同様無アルカリのホウケイサンガラス製81であり、
上下に酸化シリコン層82を備える。
The organic alignment film 61 on the upper substrate 80 is the same as that on the lower substrate. The organic alignment films on the upper and lower substrates have alignment treatment directions antiparallel to each other and a pretilt angle of 5 °. The common transparent pixel electrode 75 on the upper substrate is made of an Indium-Tin-Oxide (ITO) film formed by sputtering and has a film thickness of 1400Å. The upper substrate 80 is made of non-alkali borosilicate glass 81 like the lower substrate,
A silicon oxide layer 82 is provided on the top and bottom.

【0030】位相板90には日東電工製ポリカーボネー
ト位相板を用いた。位相板のリタデーションは0.22
μm とし、遅相軸の方位は液晶層の液晶配向方向の垂
直方向とした。偏光板95には日東電工製G1225DUAG25
を用い、吸収軸の方位は液晶配向方向に対して45°と
した。
A polycarbonate phase plate manufactured by Nitto Denko was used as the phase plate 90. Retardation of the phase plate is 0.22
μm 2 and the slow axis was oriented perpendicular to the liquid crystal alignment direction of the liquid crystal layer. The polarizing plate 95 is G1225DUAG25 manufactured by Nitto Denko.
The orientation of the absorption axis was set to 45 ° with respect to the liquid crystal orientation direction.

【0031】この構成の液晶表示装置の表示パネルに駆
動装置を組合せ、ゲートオープン時の反射率の駆動電圧
(ソース電圧)依存性を測定した。測定範囲は1サブピ
クセル内とした。その結果を図13に示す。各表示色が
得られる駆動電圧を図13中に矢印で示した。0Vから
3Vまでの駆動電圧範囲で白,黒の他に、赤,緑,シア
ン,紫,黄,青の各色が表示された。また、図12は駆
動電圧変化に伴う表示色の変化をUCS(Unifom Chrom
aticity System)表示系の色度座標(u,v)上にプロ
ットした図である。次に、測定範囲を約10画素を含む
範囲に広げ、緑表示と白表示の間の各階調の色度を測定
した。図17に示した様に7階調が得られ、各階調は色
度座標上にほぼ等間隔で分布した。
A drive device was combined with the display panel of the liquid crystal display device having this structure, and the dependency of the reflectance on the drive voltage (source voltage) when the gate was opened was measured. The measurement range was within 1 sub-pixel. The result is shown in FIG. The drive voltage with which each display color is obtained is indicated by an arrow in FIG. In addition to white and black, red, green, cyan, purple, yellow, and blue colors were displayed in the driving voltage range of 0V to 3V. In addition, FIG. 12 shows a change in display color due to a change in driving voltage by a UCS (Unifom Chrom
(aticity System) is a diagram plotted on chromaticity coordinates (u, v) of a display system. Next, the measurement range was expanded to a range including about 10 pixels, and the chromaticity of each gradation between green display and white display was measured. Seven gradations were obtained as shown in FIG. 17, and each gradation was distributed on the chromaticity coordinates at substantially equal intervals.

【0032】以上の様に、三つのサブピクセルで1画素
を構成し、各サブピクセルの面積比をx1:x2:x3
1:2:3とすることにより、7階調の表示が得られ
た。
As described above, one pixel is composed of three sub-pixels, and the area ratio of each sub-pixel is x 1 : x 2 : x 3 =
By setting the ratio to 1: 2: 3, display with 7 gradations was obtained.

【0033】(実施例2)実施例1の液晶表示装置にお
いて、各サブピクセルの面積比は数1に従ってx1
2:x3 =1:2:5とした。緑表示と白表示の間の
各階調の色度を測定したところ、図18に示した様に三
つのサブピクセルで1画素を構成した場合の最大階調数
である8階調が得られた。
(Embodiment 2) In the liquid crystal display device of Embodiment 1, the area ratio of each sub-pixel is x 1 according to the formula 1 :
x 2 : x 3 = 1: 2: 5. When the chromaticity of each gradation between the green display and the white display was measured, as shown in FIG. 18, eight gradations, which is the maximum number of gradations when one pixel was composed of three sub-pixels, were obtained. .

【0034】(実施例3)実施例1の液晶表示装置にお
いて、各サブピクセルの面積比は数2に従ってx1
2:x3 =1:2:4とした。緑表示と白表示の間の
各階調の色度を測定したところ、図19に示した様に三
つのサブピクセルで1画素を構成した場合の最大階調数
である8階調が得られた。また、各階調は色度座標上に
ほぼ等間隔で分布しており、緑表示から白表示にかけて
連続的に変化する階調表示が得られた。
(Embodiment 3) In the liquid crystal display device of Embodiment 1, the area ratio of each sub-pixel is x 1 in accordance with equation 2:
x 2 : x 3 = 1: 2: 4. When the chromaticity of each gradation between the green display and the white display was measured, as shown in FIG. 19, eight gradations, which is the maximum number of gradations when one pixel was composed of three subpixels, were obtained. . Further, each gradation is distributed on the chromaticity coordinates at substantially equal intervals, and a gradation display that continuously changes from green display to white display was obtained.

【0035】(実施例4)実施例1の液晶表示装置にお
いて、図1に示した様に四つのサブピクセルが1画素を
構成する様に画素電極を形成した。各サブピクセルの面
積比は数2に従ってx1:x2:x3:x4=1:2:4:
8とした。緑表示と白表示の間の各階調の色度を測定し
たところ、四つのサブピクセルで1画素を構成した場合
に最大階調数である16階調が得られた。また、各階調
は色度座標上にほぼ等間隔で分布しており、緑表示から
白表示にかけて連続的に変化する階調表示が得られた。
(Example 4) In the liquid crystal display device of Example 1, the pixel electrode was formed so that four sub-pixels form one pixel as shown in FIG. The area ratio of each sub-pixel is x 1 : x 2 : x 3 : x 4 = 1: 2: 4:
It was set to 8. When the chromaticity of each gradation between green display and white display was measured, 16 gradations, which is the maximum number of gradations, was obtained when one pixel was composed of four sub-pixels. Further, each gradation is distributed on the chromaticity coordinates at substantially equal intervals, and a gradation display that continuously changes from green display to white display was obtained.

【0036】(実施例5)実施例4の液晶表示装置にお
いて、図14に示した様に基準電極35を新たに設置し
た。基準電極は走査線と平行であり、図15,図16の
断面図に示した様にゲート電極と同層に形成した。ま
た、基準電極にはゲート電極と同様にアルミニウム膜3
6を用い、スパッタ法で形成した。更にこの上に、陽極
酸化アルミニウム膜37を形成した。基準電極の上方ま
でソース電極を延長し、両者の間に保持容量38を形成
した。図14に示した様に、i番目のサブピクセルに接
続した保持容量38は他のサブピクセルと立体的に交差
しない様に基準電極を形成した。基準電極は液晶表示装
置の表示領域の外側まで延長して接地し、電気的に中性
とした。
(Embodiment 5) In the liquid crystal display device of Embodiment 4, a reference electrode 35 is newly installed as shown in FIG. The reference electrode is parallel to the scanning line and is formed in the same layer as the gate electrode as shown in the sectional views of FIGS. In addition, the aluminum film 3 is used as the reference electrode, similarly to the gate electrode.
6 was used, and the film was formed by the sputtering method. Further, an anodized aluminum film 37 was formed on this. The source electrode was extended above the reference electrode, and a storage capacitor 38 was formed between the two. As shown in FIG. 14, the storage capacitor 38 connected to the i-th subpixel was formed with a reference electrode so as not to three-dimensionally intersect with other subpixels. The reference electrode was electrically neutralized by extending to the outside of the display area of the liquid crystal display device and grounding.

【0037】緑表示と白表示の間の各階調の色度を測定
したところ、四つのサブピクセルで1画素を構成した場
合の最大階調数である16階調が得られた。また、各階
調は色度座標上にほぼ等間隔で分布しており、緑表示か
ら白表示にかけて連続的に変化する階調表示が得られ
た。
When the chromaticity of each gradation between green display and white display was measured, 16 gradations, which was the maximum number of gradations when one pixel was composed of four sub-pixels, were obtained. Further, each gradation is distributed on the chromaticity coordinates at substantially equal intervals, and a gradation display that continuously changes from green display to white display was obtained.

【0038】(比較例1)実施例1の液晶表示装置にお
いて、各サブピクセルの面積比をx1:x2:x3=1:
1:1とした。
(Comparative Example 1) In the liquid crystal display device of Example 1, the area ratio of each sub-pixel is x 1 : x 2 : x 3 = 1:
It was set to 1: 1.

【0039】緑表示と白表示の間の各階調の色度を測定
したところ、図20に示した様に4階調が得られた。三
つサブピクセルで1画素を構成した場合には最大8階調
が得られるが、各サブピクセルの面積比を等しくしたた
めその半分の4階調しか得られなかった。
When the chromaticity of each gradation between green display and white display was measured, four gradations were obtained as shown in FIG. When one pixel is composed of three sub-pixels, a maximum of 8 gradations can be obtained, but since the area ratio of each sub-pixel is made equal, only half of that, 4 gradations can be obtained.

【0040】[0040]

【発明の効果】本発明によれば、多階調表示が可能な反
射型液晶表示装置が得られる。
According to the present invention, a reflective liquid crystal display device capable of multi-gradation display can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液晶表示装置の構成の一例を示す正面
図。
FIG. 1 is a front view showing an example of the configuration of a liquid crystal display device of the present invention.

【図2】従来の液晶表示装置の画素構成を示す説明図。FIG. 2 is an explanatory diagram showing a pixel configuration of a conventional liquid crystal display device.

【図3】従来の液晶表示装置の画素構成における階調表
示を示す説明図。
FIG. 3 is an explanatory diagram showing gradation display in a pixel configuration of a conventional liquid crystal display device.

【図4】本発明の液晶表示装置の画素構成の一例を示す
説明図。
FIG. 4 is an explanatory diagram showing an example of a pixel configuration of a liquid crystal display device of the present invention.

【図5】本発明の液晶表示装置の画素構成における階調
表示を示す説明図。
FIG. 5 is an explanatory diagram showing gradation display in the pixel configuration of the liquid crystal display device of the present invention.

【図6】本発明の液晶表示装置の画素構成の一例を示す
説明図。
FIG. 6 is an explanatory diagram showing an example of a pixel configuration of a liquid crystal display device of the present invention.

【図7】本発明の液晶表示装置の画素構成における階調
表示を示す説明図。
FIG. 7 is an explanatory diagram showing gradation display in the pixel configuration of the liquid crystal display device of the present invention.

【図8】本発明の液晶表示装置の画素構成の一例を示す
説明図。
FIG. 8 is an explanatory diagram showing an example of a pixel configuration of a liquid crystal display device of the present invention.

【図9】本発明の液晶表示装置の画素構成における階調
表示を示す説明図。
FIG. 9 is an explanatory diagram showing gradation display in the pixel configuration of the liquid crystal display device of the present invention.

【図10】本発明の液晶表示装置のTFT部の構成の一
例を示す断面図。
FIG. 10 is a cross-sectional view showing an example of a configuration of a TFT portion of the liquid crystal display device of the present invention.

【図11】本発明の液晶表示装置のスルーホール部の構
成の一例を示す断面図。
FIG. 11 is a cross-sectional view showing an example of the configuration of a through hole portion of the liquid crystal display device of the present invention.

【図12】表示色の色度の電圧変化を示す特性図。FIG. 12 is a characteristic diagram showing a voltage change in chromaticity of a display color.

【図13】表示色と反射率の電圧変化を示す斜視図。FIG. 13 is a perspective view showing voltage changes in display color and reflectance.

【図14】本発明の液晶表示装置の構成の一例を示す正
面図。
FIG. 14 is a front view showing an example of the configuration of a liquid crystal display device of the present invention.

【図15】本発明の液晶表示装置のTFT部の構成の一
例を示す断面図。
FIG. 15 is a cross-sectional view showing an example of the configuration of a TFT section of a liquid crystal display device of the present invention.

【図16】本発明の液晶表示装置のスルーホール部の構
成の一例を示す断面図。
FIG. 16 is a cross-sectional view showing an example of the configuration of a through hole portion of the liquid crystal display device of the present invention.

【図17】本発明の液晶表示装置の緑表示と白表示の間
の各階調の色度を表す特性図。
FIG. 17 is a characteristic diagram showing chromaticity of each gradation between green display and white display of the liquid crystal display device of the present invention.

【図18】本発明の液晶表示装置の緑表示と白表示の間
の各階調の色度を表す特性図。
FIG. 18 is a characteristic diagram showing chromaticity of each gradation between green display and white display of the liquid crystal display device of the present invention.

【図19】本発明の液晶表示装置の緑表示と白表示の間
の各階調の色度を表す特性図。
FIG. 19 is a characteristic diagram showing chromaticity of each gradation between green display and white display of the liquid crystal display device of the present invention.

【図20】従来の液晶表示装置の緑表示と白表示の間の
各階調の色度を表す特性図。
FIG. 20 is a characteristic diagram showing the chromaticity of each gradation between the green display and the white display of the conventional liquid crystal display device.

【符号の説明】[Explanation of symbols]

20…ゲート電極、27,27′…走査線、30…i型
半導体層、38…保持容量、40…ソース電極、45…
ドレイン電極、50…平坦化膜、57…画素電極、55
…スルーホール。
20 ... Gate electrode, 27, 27 '... Scan line, 30 ... i-type semiconductor layer, 38 ... Storage capacitor, 40 ... Source electrode, 45 ...
Drain electrode, 50 ... Flattening film, 57 ... Pixel electrode, 55
… Through holes.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】液晶層と駆動装置と偏光板と位相板と2枚
の基板から構成され、前記2枚の基板は表示電極と配向
膜とを備えており、下側基板の表示電極は反射板を兼ね
ており、前記下側基板の表示電極はアクティブ素子と接
続されており、2枚の透明基板は前記液晶層を挾持して
対向配置され、前記偏光板は上側基板の上側に配置さ
れ、前記位相板は偏光板と前記上側基板の間に配置され
ており、前記偏光板の吸収軸と液晶層の近接する配向方
向は平行でない反射型液晶表示装置において、 一つの画素は独立に制御可能な複数の単位を有し、各単
位をサブピクセルとすると、前記各サブピクセルは白表
示と黒表示と少なくとも1色の色表示が可能であり、前
記各サブピクセルの面積は互いに異なることを特徴とす
る液晶表示装置。
1. A liquid crystal layer, a driving device, a polarizing plate, a phase plate, and two substrates. The two substrates are provided with display electrodes and alignment films, and the display electrodes on the lower substrate are reflective. It also serves as a plate, the display electrode of the lower substrate is connected to the active element, the two transparent substrates are arranged to face each other with the liquid crystal layer sandwiched therebetween, and the polarizing plate is arranged above the upper substrate. In the reflective liquid crystal display device, the phase plate is disposed between the polarizing plate and the upper substrate, and the absorption axis of the polarizing plate and the alignment direction in which the liquid crystal layer is close to each other are not parallel to each other. If each unit has a plurality of possible units and each unit is a sub-pixel, each sub-pixel can display white and black and at least one color, and the areas of the sub-pixels are different from each other. Characteristic liquid crystal display device.
【請求項2】請求項1において、1画素内の前記サブピ
クセルに面積の小さい順に番号を付けると、i番目のサ
ブピクセルの面積xi は次式で表される液晶表示装置。 【数1】
2. A liquid crystal display device according to claim 1, wherein when the sub-pixels within one pixel are numbered in ascending order of area, the area x i of the i-th sub-pixel is expressed by the following equation. [Equation 1]
【請求項3】請求項2において、1画素内のサブピクセ
ルに面積が小さい順に番号を付けると、i番目のサブピ
クセルの面積xi は次式で表される液晶表示装置。 【数2】
3. A liquid crystal display device according to claim 2, wherein when the sub-pixels within one pixel are numbered in ascending order of area, the area x i of the i-th sub-pixel is expressed by the following equation. [Equation 2]
【請求項4】請求項1において、前記各サブピクセルの
下側基板上の表示電極はアクティブ素子のソース電極と
スルーホールで接続されており、かつソース電極は隣合
ったコモン電極との間に保持容量を形成する液晶表示装
置。
4. The display electrode on the lower substrate of each subpixel is connected to a source electrode of an active element through a through hole, and the source electrode is provided between an adjacent common electrode. A liquid crystal display device that forms a storage capacitor.
【請求項5】請求項1において、前記各サブピクセルの
下側基板上表示電極はアクティブ素子のソース電極とス
ルーホールで接続されており、かつソース電極は電気的
に中性な基準電極の間に保持容量を形成する液晶表示装
置。
5. The display electrode on the lower substrate of each subpixel is connected to a source electrode of an active element through a through hole, and the source electrode is between an electrically neutral reference electrode. A liquid crystal display device that forms a storage capacitor in a liquid crystal display device.
【請求項6】請求項5において、i番目のサブピクセル
に接続するソース電極と保持容量は他のサブピクセルと
立体的に交差しない液晶表示装置。
6. The liquid crystal display device according to claim 5, wherein the source electrode connected to the i-th subpixel and the storage capacitor do not stereoscopically intersect with other subpixels.
JP7247219A 1995-09-26 1995-09-26 Liquid crystal display device Pending JPH0990345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7247219A JPH0990345A (en) 1995-09-26 1995-09-26 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7247219A JPH0990345A (en) 1995-09-26 1995-09-26 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH0990345A true JPH0990345A (en) 1997-04-04

Family

ID=17160227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7247219A Pending JPH0990345A (en) 1995-09-26 1995-09-26 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH0990345A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005148424A (en) * 2003-11-17 2005-06-09 Sony Corp Display device
US6912021B2 (en) 2001-01-22 2005-06-28 Seiko Epson Corporation Electro-optical device, method for driving electro-optical device, electronic apparatus, and method for driving electronic apparatus
KR100807510B1 (en) * 2001-10-22 2008-02-26 엘지.필립스 엘시디 주식회사 LCD display device
JP2010122695A (en) * 2009-12-24 2010-06-03 Sony Corp Display device
US7782292B2 (en) 2005-03-29 2010-08-24 Seiko Epson Corporation Electrophoretic display device and method for driving the same
CN111679477A (en) * 2013-03-25 2020-09-18 株式会社日本显示器 display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912021B2 (en) 2001-01-22 2005-06-28 Seiko Epson Corporation Electro-optical device, method for driving electro-optical device, electronic apparatus, and method for driving electronic apparatus
KR100807510B1 (en) * 2001-10-22 2008-02-26 엘지.필립스 엘시디 주식회사 LCD display device
JP2005148424A (en) * 2003-11-17 2005-06-09 Sony Corp Display device
JP4506152B2 (en) * 2003-11-17 2010-07-21 ソニー株式会社 Display device
US7782292B2 (en) 2005-03-29 2010-08-24 Seiko Epson Corporation Electrophoretic display device and method for driving the same
JP2010122695A (en) * 2009-12-24 2010-06-03 Sony Corp Display device
CN111679477A (en) * 2013-03-25 2020-09-18 株式会社日本显示器 display device
CN111679477B (en) * 2013-03-25 2023-08-08 株式会社日本显示器 Display device

Similar Documents

Publication Publication Date Title
CN100510860C (en) In-plane switching mode liquid crystal display device with adjustable viewing angle and method for fabricating the same
US7760295B2 (en) Liquid crystal display device and electronic apparatus
US8314913B2 (en) Liquid crystal display with subpixels having alternately disposed branches
US7538839B2 (en) Liquid crystal display and electronic appliance
JP3744342B2 (en) Liquid crystal device and electronic device
KR101046929B1 (en) Liquid crystal display
JP5939790B2 (en) Liquid crystal display
US20040165129A1 (en) Liquid crystal display device and electronic equipment
US8259278B2 (en) Liquid crystal display
US20090310074A1 (en) Thin film transistor array panel
KR101888516B1 (en) Dual mode liquid crystal display device
JPH08201777A (en) Liquid crystal display device
JP2012150450A (en) Liquid crystal display device
KR20130139548A (en) Liquid crystal display
US8941806B2 (en) Liquid crystal display
KR20110080627A (en) Liquid crystal display
KR20040098499A (en) Liquid crystal display
US7012662B2 (en) Transflective LCD with twist angle less than 90 degrees and 4 compensation films
US7106407B2 (en) Liquid crystal display device and electronic apparatus
JP2007058007A (en) Liquid crystal device and electronic apparatus
JPH0990345A (en) Liquid crystal display device
WO2023184606A1 (en) Display panel
JPH08179278A (en) Active matrix type liquid crystal display element
KR101112561B1 (en) Liquid crsytal display
JP2000147462A (en) Active matrix type liquid crystal display element