[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0990122A - Production of grid type polarizer - Google Patents

Production of grid type polarizer

Info

Publication number
JPH0990122A
JPH0990122A JP25072795A JP25072795A JPH0990122A JP H0990122 A JPH0990122 A JP H0990122A JP 25072795 A JP25072795 A JP 25072795A JP 25072795 A JP25072795 A JP 25072795A JP H0990122 A JPH0990122 A JP H0990122A
Authority
JP
Japan
Prior art keywords
gratings
metal
grid
type polarizer
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25072795A
Other languages
Japanese (ja)
Inventor
Yasushi Sato
恭史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP25072795A priority Critical patent/JPH0990122A/en
Publication of JPH0990122A publication Critical patent/JPH0990122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grid type polarizer constituting material gratings of a fine pitch and line width by interposing a metal between two dielectric substances to a grating form and integrating these substances, then subjecting the entire part stretching or rolling under heating in the rectilinear direction of the metallic gratings. SOLUTION: The Au gratings 2 of 1μm pitch (p) and 0.1μm line width are formed on an SiO2 substrate 1 by using the technique of photolighography. Next, an SiO2 film 5 is formed by the technique, such as sputtering, of SiO2 from above the Au gratings 2 to completely embed the Au gratings 2. The entire part is stretched under heating in a direction A parallel with the rectilinear direction of the Au gratings 2. There is substantially no dependence on wavelengths and the light is absorbed if the length of the lines of the Au gratings 2 is several tens times the use wavelength and, therefore, even if the Au gratings 2 are broken in mid-way, the stretching of the entire part in a manner as to maintain the grating form as a whole suffices. Rolling in place of the stretching under heating is equally well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光通信、光記録、
センサー等に使用される偏光子に関し、特に、誘電体中
または誘電体表面上に金属が格子状に分布して光学異方
性を発生させるグリッド型偏光子に関する。
The present invention relates to optical communication, optical recording,
The present invention relates to a polarizer used for sensors and the like, and more particularly to a grid-type polarizer in which a metal is distributed in a lattice in a dielectric or on the surface of the dielectric to generate optical anisotropy.

【0002】[0002]

【従来の技術】従来より、材料を延伸することによって
得られる光学異方性を利用する部品は古くから存在し、
高分子フィルムを用いた偏光フィルム等が良く知られて
いる。また、金属化合物をガラス中に分散させた後に加
熱延伸し、赤外域で偏光特性を発揮する偏光子がある。
この偏光子は高分子のものより損失が小さく、耐久性も
高いために、光通信の分野で盛んに使用されるようにな
った。
2. Description of the Related Art Conventionally, there have been many parts utilizing the optical anisotropy obtained by stretching a material,
A polarizing film using a polymer film and the like are well known. In addition, there is a polarizer that exhibits a polarization property in the infrared region by dispersing a metal compound in glass and then heating and stretching.
Since this polarizer has less loss and higher durability than polymer ones, it has been widely used in the field of optical communication.

【0003】例えば、ハロゲン化銀などの金属化合物を
含むガラス中に熱処理によりハロゲン化銀を凝集させ、
その後加熱延伸により微細なハロゲン化銀粒子を回転楕
円体状に変形させ、該回転楕円体状の長軸方向を配向さ
せた後にハロゲン化銀を金属銀に還元して偏光特性を得
るものがある(特開昭56−169140号公報参
照)。すなわち、図4の斜視図に示すように、入射光1
1に対して回転楕円体状金属12の長軸方向(11a)
の偏光成分を吸収し、短軸方向(11b)の偏光成分を
ほとんど吸収せずに透過させるようになる。
For example, silver halide is aggregated by heat treatment in glass containing a metal compound such as silver halide,
After that, the fine silver halide grains are deformed into a spheroidal shape by heating and stretching, the major axis direction of the spheroidal shape is oriented, and then the silver halide is reduced to metallic silver to obtain polarization characteristics. (See JP-A-56-169140). That is, as shown in the perspective view of FIG.
Longitudinal direction of spheroidal metal 12 with respect to 1 (11a)
The polarized light component of (1) is absorbed, and the polarized light component of the minor axis direction (11b) is transmitted with almost no absorption.

【0004】また、他の偏光子としては、図5の斜視図
に示すように、厚さ約0.01μmの金属層13と厚さ
約0.1μmの誘電体層14とを交互に数千層積層した
ものがある(特開昭60−97304号公報参照)。こ
の偏光子は、積層方向と垂直な方向から入射光11を入
射させると、層に平行な成分(11a方向)は吸収し、
層と直交する偏光成分(11b方向)は透過させるよう
になる。
As another polarizer, as shown in the perspective view of FIG. 5, several thousands of metal layers 13 having a thickness of about 0.01 μm and dielectric layers 14 having a thickness of about 0.1 μm are alternately arranged. There is a laminate of layers (see JP-A-60-97304). This polarizer absorbs the component parallel to the layers (11a direction) when incident light 11 is incident from a direction perpendicular to the stacking direction,
The polarization component (11b direction) orthogonal to the layer is transmitted.

【0005】しかし、図4に示す従来の偏光子は、以下
の問題がある。 (1)熱処理でハロゲン化銀粒子を均一で大きさをそろ
えて凝集させるのが難しい。 (2)ハロゲン化銀は工程中に蒸発しやすいために大量
に必要となる。 (3)赤外領域で吸収特性を持たせるためにハロゲン化
銀を金属銀に還元するが、還元ガス等を導入するので工
程が複雑になる。 (4)還元は表面から進行するために、内部の大部分の
銀はハロゲン化銀のままであり、作業効率が悪く、しか
も完成品の光学特性上からは未反応のハロゲン化銀は損
失の要因となる。 (5)金属粒子中の自由電子の共鳴による光吸収を利用
しているために波長依存性がある。
However, the conventional polarizer shown in FIG. 4 has the following problems. (1) It is difficult to agglomerate silver halide grains in a uniform size by heat treatment. (2) A large amount of silver halide is required because it easily evaporates during the process. (3) Silver halide is reduced to metallic silver in order to have absorption characteristics in the infrared region, but the process is complicated because a reducing gas or the like is introduced. (4) Since the reduction proceeds from the surface, most of the silver inside remains silver halide, and the work efficiency is poor, and unreacted silver halide is not lost due to the optical characteristics of the finished product. It becomes a factor. (5) It has wavelength dependence because it utilizes light absorption by resonance of free electrons in metal particles.

【0006】また、図5に示す従来の偏光子は、薄膜の
剥離等の問題で積層数に限界があるために、積層方向の
長さに制限があり、ビーム径の大きな光は入射できない
という問題がある。
Further, the conventional polarizer shown in FIG. 5 has a limit in the number of layers due to a problem such as peeling of thin films, so that the length in the layering direction is limited, and light having a large beam diameter cannot enter. There's a problem.

【0007】そのために、他の偏光子として、図6の斜
視図に示すように、誘電体基板15上に金属細線16を
格子状に形成したグリッド型偏光子がある。この偏光子
は、金属細線16と平行方向の偏光成分(11a方向)
を吸収し、金属細線16と直交する偏光成分(11b方
向)を透過し、赤外域で偏光特性を得るようになる。図
6に示すグリッド型偏光子は、図4に示す偏光子に比較
して、金属の形状・分布の制御が容易であり、還元等の
複雑なプロセスが不要であり、未反応のハロゲン化銀に
相当する部分が無いために透過光の損失が少ない。ま
た、図5に示す偏光子に比較して、金属格子製作時に寸
法の大きな誘電体基板を用いればビーム径の大きな光で
も入射可能となり、しかも量産効果も高い。
Therefore, as another polarizer, as shown in the perspective view of FIG. 6, there is a grid-type polarizer in which thin metal wires 16 are formed in a grid pattern on a dielectric substrate 15. This polarizer has a polarization component parallel to the metal wire 16 (direction 11a).
Is absorbed, the polarized light component (11b direction) orthogonal to the metal thin wire 16 is transmitted, and the polarization characteristic is obtained in the infrared region. The grid type polarizer shown in FIG. 6 is easier to control the shape and distribution of the metal than the polarizer shown in FIG. 4, does not require a complicated process such as reduction, and is unreacted silver halide. Since there is no portion corresponding to, there is little loss of transmitted light. Further, as compared with the polarizer shown in FIG. 5, if a dielectric substrate having a large size is used when the metal grating is manufactured, light having a large beam diameter can be incident, and the mass production effect is high.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、図6に
示す従来のグリッド型偏光子は、光の回折を避けるため
に格子のピッチは波長の1/2以下で無ければならず、
金属細線16のピッチpが使用波長の1/2以下となる
必要がある。また、金属細線16の線幅wは、細いほど
透過方向の偏光成分(11b)の吸収が小さくなり、特
性上優れたものとなる。
However, in the conventional grid-type polarizer shown in FIG. 6, the pitch of the grating must be ½ or less of the wavelength in order to avoid diffraction of light.
It is necessary that the pitch p of the thin metal wires 16 be 1/2 or less of the wavelength used. Further, as the line width w of the thin metal wire 16 is smaller, the absorption of the polarization component (11b) in the transmission direction is smaller, which is excellent in characteristics.

【0009】しかし、実際の製品は、ピッチpが約10
μm、線幅wが約1μm程度であり、透過方向の偏光成
分の吸収が大きく、しかも使用する波長は数μmである
ために、光通信用として用いることができないという問
題があった。また、最新のフォトリソグラフィー技術で
金属細線16を製作してもピッチpを1μm以下にする
ことは困難であった。
However, in the actual product, the pitch p is about 10
Since the line width w is about 1 μm, the absorption of the polarization component in the transmission direction is large, and the wavelength used is several μm, it cannot be used for optical communication. Further, even if the fine metal wires 16 are manufactured by the latest photolithography technique, it is difficult to set the pitch p to 1 μm or less.

【0010】[0010]

【課題を解決するための手段】本発明は、上記問題に鑑
みてなされたものであり、誘電体中または誘電体表面上
に金属が格子状に分布する構造のグリッド型偏光子にお
いて、2つの誘電体の間に金属を格子状に介在させて一
体化させた後、金属格子の直線方向に全体を加熱延伸ま
たは圧延して製造した、あるいは、誘電体基板上に金属
を格子状に形成し、誘電体基板の金属を格子状に形成し
た表面に誘電体材料を成膜させた後、金属格子の直線方
向に全体を加熱延伸または圧延して製造したグリッド型
偏光子としたものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and a grid-type polarizer having a structure in which a metal is distributed in a lattice in a dielectric or on the surface of the dielectric is provided with two elements. It is manufactured by interposing a metal in a lattice form between dielectrics and then integrating it by heating or stretching the whole in the linear direction of the metal lattice, or forming the metal in a lattice form on the dielectric substrate. A grid-type polarizer manufactured by forming a film of a dielectric material on the surface of a dielectric substrate on which a metal is formed in a grid pattern, and then heating or stretching the whole in the linear direction of the metal grid.

【0011】[0011]

【発明の実施の形態】以下本発明の実施例を図面を用い
て説明する。図1は、本発明の第1の発明であるグリッ
ド型偏光子を示す斜視図であり、1はSiO2 基板、2
はAu格子、4はSiO2 基板である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a grid type polarizer which is the first invention of the present invention, wherein 1 is a SiO 2 substrate, 2
Is an Au lattice, and 4 is a SiO 2 substrate.

【0012】なお、誘電体基板の材料としては、使用波
長を透過させる材料であればよく、硼ケイ酸ガラス等の
光学ガラスやSiO2 を用いればよいが、本実施例では
SiO2 を用いた。また、金属格子の材料としては、A
u・Pt・Ag等の金属であればよいが、本実施例では
Auを用いた。
The material for the dielectric substrate may be any material that transmits the wavelength used, and optical glass such as borosilicate glass or SiO 2 may be used. In this embodiment, SiO 2 was used. . The material of the metal grid is A
Any metal such as u / Pt / Ag may be used, but Au is used in this embodiment.

【0013】図1に示すように、Au格子2をSiO2
基板1とSiO2 基板4の間に介在した後、全体をAu
格子2の直線方向と平行な方向Aに加熱延伸する。これ
により、延伸方向に垂直な断面はほぼ相似形を保ったま
までAu格子2のピッチと線幅を細くしていくことがで
きる。
As shown in FIG. 1, the Au lattice 2 is replaced with SiO 2
After interposing between the substrate 1 and the SiO 2 substrate 4, the whole is Au.
Heat drawing is performed in a direction A parallel to the linear direction of the lattice 2. As a result, the pitch and the line width of the Au lattice 2 can be made thinner while keeping the cross section perpendicular to the stretching direction substantially similar.

【0014】図2は、本発明の第2の発明であるグリッ
ド型偏光子を示す図であり、1はSiO2 基板、2はA
u格子、5はSiO2 膜である。
FIG. 2 is a view showing a grid type polarizer which is the second invention of the present invention, wherein 1 is a SiO 2 substrate and 2 is A.
The u lattice 5 is a SiO 2 film.

【0015】なお、誘電体の材料としては、使用波長を
透過させる材料であればよく、硼ケイ酸ガラス等の光学
ガラスやSiO2 を用いればよいが、本実施例ではSi
2を用いた。また、金属格子の材料としては、Au・
Pt・Ag等の金属であればよいが、本実施例ではAu
を用いた。
The dielectric material may be any material that transmits the wavelength used, such as optical glass such as borosilicate glass or SiO 2 , but in this embodiment, Si is used.
O 2 was used. The material of the metal grid is Au.
Any metal such as Pt / Ag may be used, but Au is used in this embodiment.
Was used.

【0016】まず、図2(a)の斜視図に示すように、
SiO2 基板1上にフォトリソグラフィーの技術を用い
て、ピッチpを1μm、線幅wを0.1μmでAu格子
2を形成する。フォトリソグラフィー用のマスクは、現
在ピッチ1μm、線幅0.5μm程度であるが、エッチ
ング時間を調整すれば、線幅を細くすることが可能であ
り、0.1μmも可能となる。
First, as shown in the perspective view of FIG.
The Au lattice 2 is formed on the SiO 2 substrate 1 by a photolithography technique with a pitch p of 1 μm and a line width w of 0.1 μm. The mask for photolithography currently has a pitch of about 1 μm and a line width of about 0.5 μm, but the line width can be reduced to 0.1 μm by adjusting the etching time.

【0017】次に、図2(b)の斜視図、(c)の断面
図に示すように、Au格子2の上方からSiO2 をスパ
ッタ等の技術により成膜してSiO2 膜5を形成し、A
u格子2を完全に埋め込む。なお、本実施例では、スパ
ッタ等の技術により成膜したが、Au格子2を上方から
押さえ込むように形成すればよく、薄膜・厚膜のいずれ
であってもよい。
Next, as shown in the perspective view of FIG. 2B and the sectional view of FIG. 2C, SiO 2 is deposited from above the Au lattice 2 by a technique such as sputtering to form a SiO 2 film 5. Then A
The u lattice 2 is completely embedded. In this embodiment, the film is formed by a technique such as sputtering, but it may be formed so as to press the Au lattice 2 from above, and may be a thin film or a thick film.

【0018】次に、全体をAu格子2の直線方向と平行
な方向Aに加熱延伸する。これにより、延伸方向に垂直
な断面はほぼ相似形を保ったまま細くなっていくが、目
標であるピッチpが0.1μm、線幅が0.01μmと
なるまで行う。なお、Au格子2の線の長さが使用波長
の数十倍であればほとんど波長依存性無く光を吸収する
ことができるために、Au格子2の途中が破断しても全
体として格子状を保つように延伸すれば良い。また、加
熱延伸の代わりに、圧延してもよい。
Next, the whole is heated and stretched in a direction A parallel to the linear direction of the Au lattice 2. As a result, the cross section perpendicular to the stretching direction becomes thinner while maintaining a substantially similar shape, but the process is performed until the target pitch p is 0.1 μm and the line width is 0.01 μm. It should be noted that if the line length of the Au grating 2 is several tens of times the wavelength used, light can be absorbed with almost no wavelength dependence. It may be stretched so as to keep it. Moreover, you may roll, instead of heat drawing.

【0019】このようにして製作されたグリッド型偏光
子は、入射光3に対して、Au格子2に平行な偏光成分
3aは吸収し、Au格子2と直交する偏光成分3bは透
過する。これによって、技術的に不可能であったピッ
チ、線幅が要求されるAu格子2を製作することが可能
となり、また、SiO2 基板1を大きくすれば大面積の
グリッド型偏光子を製作することも容易にできる。
The grid-type polarizer manufactured in this manner absorbs the incident light 3 with a polarized light component 3a parallel to the Au grating 2 and transmits a polarized light component 3b orthogonal to the Au grating 2. As a result, it becomes possible to manufacture an Au grating 2 which requires a pitch and a line width which are technically impossible, and a large area grid type polarizer can be manufactured by increasing the size of the SiO 2 substrate 1. It can be done easily.

【0020】なお、ピッチpは、使用波長の1/2以下
にしなければ回折現象が生じてしまう点を考慮する必要
があり、線幅wは、細くなるほど透過方向の偏光成分の
損失が少なくなり特性が良好となる点を考慮する必要が
ある。また、単位面積あたりのAu格子2の本数が少な
いと、遮断方向の偏光成分3aの吸収量が減少して消光
比が悪くなるために、ピッチpと線幅wの比率も考慮す
る必要がある。
Note that it is necessary to consider that the pitch p will cause a diffraction phenomenon unless it is set to 1/2 or less of the wavelength used, and the thinner the line width w, the less the loss of the polarization component in the transmission direction. It is necessary to consider that the characteristics are good. If the number of Au gratings 2 per unit area is small, the absorption amount of the polarization component 3a in the blocking direction decreases and the extinction ratio deteriorates. Therefore, it is necessary to consider the ratio between the pitch p and the line width w. .

【0021】本実施例では、使用波長を1μm程度の光
を対象にし、ピッチp:線幅w=10:1とするため
に、Au格子2のピッチpを1μm、線幅wを0.1μ
mとした。他の例としては、Au格子2のピッチpを5
μm、線幅wを0.5μmとして、延伸量を増やすこと
によって所望の寸法(本実施例ではピッチpが0.1μ
m、線幅が0.01μm)まで加熱延伸または圧延して
微細化しても良い。
In the present embodiment, in order to set the wavelength p to 1 μm and the pitch p: line width w = 10: 1, the pitch p of the Au grating 2 is 1 μm and the line width w is 0.1 μm.
m. As another example, the pitch p of the Au grating 2 is set to 5
μm, the line width w is 0.5 μm, and the stretching amount is increased to obtain a desired dimension (pitch p is 0.1 μm in this embodiment).
m and a line width of 0.01 μm) may be heat-stretched or rolled to be refined.

【0022】[0022]

【実施例】図3は、上述した製造方法で製作したグリッ
ド型偏光子を用いた光アイソレータを示す断面であり、
中央にファラデー回転子7、ファラデー回転子7の両端
にクリッド型偏光子6、ファラデー回転子7の周辺にフ
ァラデー回転子7に磁界を与える磁石8、クリッド型偏
光子6・ファラデー回転子7・磁石8を固定するホルダ
9よりなる。
EXAMPLE FIG. 3 is a sectional view showing an optical isolator using a grid type polarizer manufactured by the above-mentioned manufacturing method.
A Faraday rotator 7 in the center, a Clyde type polarizer 6 at both ends of the Faraday rotator 7, a magnet 8 that gives a magnetic field to the Faraday rotator 7 around the Faraday rotator 7, a Clyde type polarizer 6, a Faraday rotator 7, a magnet It comprises a holder 9 for fixing 8.

【0023】このような光アイソレータは、アイソレー
ションが高く、低コストなものとなる。
Such an optical isolator has high isolation and is low in cost.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
2つの誘電体の間に金属を格子状に介在させて一体化さ
せた後、金属格子の直線方向に全体を加熱延伸または圧
延して製造することによって、あるいは誘電体基板上に
金属を格子状に形成し、誘電体基板の金属を格子状に形
成した表面に誘電体材料を成膜させた後、金属格子の直
線方向に全体を加熱延伸または圧延して製造することに
よって、微細なピッチ、線幅の金属格子となるグリッド
型偏光子を提供することができる。
As described above, according to the present invention,
A metal is interspersed between two dielectrics in a grid shape to be integrated, and then the whole is heated and stretched or rolled in a linear direction of the metal grid, or the metal is grid-shaped on the dielectric substrate. Formed by forming a dielectric material on the surface of the metal of the dielectric substrate formed in a grid pattern, and then by heating or stretching the whole in the linear direction of the metal grid to produce a fine pitch, It is possible to provide a grid-type polarizer that becomes a metal grid having a line width.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の発明のグリッド型偏光子を示す
斜視図である。
FIG. 1 is a perspective view showing a grid type polarizer of a first invention of the present invention.

【図2】本発明の第2の発明のグリッド型偏光子の製造
工程を示す図であり、(a)は成膜する前の状態、
(b)は成膜した後の状態を示す斜視図であり、(c)
は(b)のB−B線断面図である。
FIG. 2 is a diagram showing a manufacturing process of the grid-type polarizer of the second invention of the present invention, in which (a) is a state before film formation,
(B) is a perspective view showing a state after film formation, (c)
FIG. 6B is a sectional view taken along line BB of FIG.

【図3】本発明のグリッド型偏光子を用いた光アイソレ
ータを示す断面図である。
FIG. 3 is a cross-sectional view showing an optical isolator using the grid type polarizer of the present invention.

【図4】従来の偏光子を示す斜視図である。FIG. 4 is a perspective view showing a conventional polarizer.

【図5】従来の偏光子を示す斜視図である。FIG. 5 is a perspective view showing a conventional polarizer.

【図6】従来のグリッド型偏光子を示す斜視図である。FIG. 6 is a perspective view showing a conventional grid type polarizer.

【符号の説明】[Explanation of symbols]

1:SiO2 基板 12:回転楕
円体状金属 2:Au格子 13:金属層 3、11:入射光 14:誘電体
層 3a、11a:吸収方向 15:誘電体
基板 3b、11b:透過方向 16:金属細
線 4:SiO2 基板 p:ピッチ 5:SiO2 膜 w:線幅 6:クリッド型偏光子 7:ファラデー回転子 8:磁石 9:ホルダ
1: SiO 2 substrate 12: Spheroidal metal 2: Au lattice 13: Metal layer 3, 11: Incident light 14: Dielectric layer 3a, 11a: Absorption direction 15: Dielectric substrate 3b, 11b: Transmission direction 16: Thin metal wire 4: SiO 2 substrate p: Pitch 5: SiO 2 film w: Line width 6: Cried type polarizer 7: Faraday rotator 8: Magnet 9: Holder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】誘電体中または誘電体表面上に金属が格子
状に分布する構造のグリッド型偏光子において、2つの
誘電体の間に金属を格子状に介在させて一体化させた
後、上記金属格子の直線方向に全体を加熱延伸または圧
延して製造されることを特徴とするグリッド型偏光子の
製造方法。
1. In a grid-type polarizer having a structure in which a metal is distributed in a dielectric or on the surface of a dielectric in a lattice form, the metal is interposed between the two dielectrics in a lattice form, and integrated. A method for producing a grid-type polarizer, which is produced by heating and stretching the whole of the metal grid in a linear direction.
【請求項2】誘電体中または誘電体表面上に金属が格子
状に分布する構造のグリッド型偏光子において、誘電体
基板上に金属を格子状に形成し、上記誘電体基板の金属
を格子状に形成した表面に誘電体材料を成膜させた後、
上記金属格子の直線方向に全体を加熱延伸または圧延し
て製造されることを特徴とするグリッド型偏光子の製造
方法。
2. A grid-type polarizer having a structure in which metal is distributed in a dielectric or on the surface of a dielectric in a grid pattern, wherein the metal is formed in a grid pattern on a dielectric substrate, and the metal of the dielectric substrate is grid-shaped. After forming a dielectric material film on the surface formed in a shape of
A method for producing a grid-type polarizer, which is produced by heating and stretching the whole of the metal grid in a linear direction.
JP25072795A 1995-09-28 1995-09-28 Production of grid type polarizer Pending JPH0990122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25072795A JPH0990122A (en) 1995-09-28 1995-09-28 Production of grid type polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25072795A JPH0990122A (en) 1995-09-28 1995-09-28 Production of grid type polarizer

Publications (1)

Publication Number Publication Date
JPH0990122A true JPH0990122A (en) 1997-04-04

Family

ID=17212155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25072795A Pending JPH0990122A (en) 1995-09-28 1995-09-28 Production of grid type polarizer

Country Status (1)

Country Link
JP (1) JPH0990122A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091044A1 (en) * 2001-04-26 2002-11-14 Nippon Sheet Glass Co., Ltd. Polarizing device, and method for manufacturing the same
JP2003508813A (en) * 1999-09-07 2003-03-04 モックステック Improved wire grid polarization beam splitter
WO2005123277A3 (en) * 2004-06-11 2006-04-27 Nanoopto Corp Optical films and methods of making the same
WO2005101112A3 (en) * 2004-04-15 2007-02-08 Nanoopto Corp Optical films and methods of making the same
US7202097B2 (en) 2003-11-14 2007-04-10 Siezo Miyata Light polarizing film, a method of continuously fabricating same, and reflective optical film using same
EP1775607A1 (en) 2005-10-17 2007-04-18 Asahi Kasei Kabushiki Kaisha Wire grid polarizer and manufacturing method of the same
US7233563B2 (en) 2003-06-25 2007-06-19 Sharp Kabushiki Kaisha Polarizing optical element and display device including the same
JP2008060534A (en) * 2006-08-30 2008-03-13 Samsung Electro Mech Co Ltd Polarized-light emitting diode
US7528905B2 (en) 2003-11-14 2009-05-05 Siezo Miyata Light polarizing film, a method of continuously fabricating same, and reflective optical devices using same
US7605883B2 (en) 2005-10-17 2009-10-20 Asahi Kasei Kabushiki Kaisha Wire grid polarizer and liquid crystal display device using the polarizer
US7619816B2 (en) 2004-12-15 2009-11-17 Api Nanofabrication And Research Corp. Structures for polarization and beam control
US7671520B2 (en) 2004-09-03 2010-03-02 Sumitomo Chemical Co., Ltd. Display device with birefringent substrate
US7746425B2 (en) 2006-01-06 2010-06-29 Cheil Industries, Inc. Polarizing optical device, liquid crystal display using the same and method of making the same
US7894019B2 (en) 2005-10-17 2011-02-22 Asahi Kasei Kabushiki Kaisha Wire grid polarizer and liquid crystal display device using the same
JP4838804B2 (en) * 2004-09-23 2011-12-14 ローム アンド ハース デンマーク ファイナンス エーエス Wire grid polarizer with low fill factor
US8765360B2 (en) 2004-04-15 2014-07-01 Polarization Solutions, Llc Optical films and methods of making the same
US8927056B2 (en) * 2005-10-17 2015-01-06 Asahi Kasei Kabushiki Kaisha Method of manufacturing a wire grid polarizer
US8947772B2 (en) 2006-08-31 2015-02-03 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508813A (en) * 1999-09-07 2003-03-04 モックステック Improved wire grid polarization beam splitter
JP4672944B2 (en) * 1999-09-07 2011-04-20 モックステック・インコーポレーテッド Improved wire grid polarization beam splitter
WO2002091044A1 (en) * 2001-04-26 2002-11-14 Nippon Sheet Glass Co., Ltd. Polarizing device, and method for manufacturing the same
US7233563B2 (en) 2003-06-25 2007-06-19 Sharp Kabushiki Kaisha Polarizing optical element and display device including the same
US7528905B2 (en) 2003-11-14 2009-05-05 Siezo Miyata Light polarizing film, a method of continuously fabricating same, and reflective optical devices using same
US7202097B2 (en) 2003-11-14 2007-04-10 Siezo Miyata Light polarizing film, a method of continuously fabricating same, and reflective optical film using same
WO2005101112A3 (en) * 2004-04-15 2007-02-08 Nanoopto Corp Optical films and methods of making the same
US8765360B2 (en) 2004-04-15 2014-07-01 Polarization Solutions, Llc Optical films and methods of making the same
US7670758B2 (en) 2004-04-15 2010-03-02 Api Nanofabrication And Research Corporation Optical films and methods of making the same
WO2005123277A3 (en) * 2004-06-11 2006-04-27 Nanoopto Corp Optical films and methods of making the same
EP1980899B1 (en) * 2004-09-03 2010-06-30 Sumitomo Chemical Company, Limited Display device with birefringent substrate
US7671520B2 (en) 2004-09-03 2010-03-02 Sumitomo Chemical Co., Ltd. Display device with birefringent substrate
JP4838804B2 (en) * 2004-09-23 2011-12-14 ローム アンド ハース デンマーク ファイナンス エーエス Wire grid polarizer with low fill factor
US7619816B2 (en) 2004-12-15 2009-11-17 Api Nanofabrication And Research Corp. Structures for polarization and beam control
EP1775607A1 (en) 2005-10-17 2007-04-18 Asahi Kasei Kabushiki Kaisha Wire grid polarizer and manufacturing method of the same
US7894019B2 (en) 2005-10-17 2011-02-22 Asahi Kasei Kabushiki Kaisha Wire grid polarizer and liquid crystal display device using the same
US7605883B2 (en) 2005-10-17 2009-10-20 Asahi Kasei Kabushiki Kaisha Wire grid polarizer and liquid crystal display device using the polarizer
KR100894939B1 (en) * 2005-10-17 2009-04-27 아사히 가세이 가부시키가이샤 Wire grid polarizer and manufacturing method of the same
US8927056B2 (en) * 2005-10-17 2015-01-06 Asahi Kasei Kabushiki Kaisha Method of manufacturing a wire grid polarizer
US7746425B2 (en) 2006-01-06 2010-06-29 Cheil Industries, Inc. Polarizing optical device, liquid crystal display using the same and method of making the same
JP2008060534A (en) * 2006-08-30 2008-03-13 Samsung Electro Mech Co Ltd Polarized-light emitting diode
US8947772B2 (en) 2006-08-31 2015-02-03 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer

Similar Documents

Publication Publication Date Title
JPH0990122A (en) Production of grid type polarizer
JP4935209B2 (en) Polarizing element and manufacturing method thereof
JP3372466B2 (en) Manufacturing method of polarizing plate
US20220276498A1 (en) Fabrication of diffraction gratings
US20160054497A1 (en) Inorganic polarizing plate and production method thereof
JP2003502708A (en) Broadband wire grid polarizer for the visible spectrum
JP2004280050A (en) Embedded type wire grid polarizer
US20060056024A1 (en) Wire grid polarizer and manufacturing method thereof
JP3654553B2 (en) Optical element
US6014251A (en) Optical filters based on uniform arrays of metallic waveguides
WO2008018247A1 (en) Transmission type polarizing element, and complex polarizing plate using the element
KR20000035162A (en) Uv-visible light polarizer and methods
JP6577641B2 (en) Polarizing plate, method for producing the same, and optical instrument
JP2004077831A (en) Polarizer and method for manufacturing polarizer
JP7142057B2 (en) Polarizing plate, optical device, and method for producing polarizing plate
JPH07294730A (en) Production of polarizing element
JP2001318247A (en) Three-dimensional photonic crystal material and method for manufacturing the same
US11644605B2 (en) Polarizing element having alternately laminated dielectric layers and conductive layers and method for manufacturing polarizing element
JPH0513310A (en) Mask for x-ray exposure and manufacture thereof
KR101866437B1 (en) Reflecting polarizer and method of the same
JP3723101B2 (en) Method for forming optical waveguide
KR20080056582A (en) Method for fabricating wire grid polarizer
JP2000329953A (en) Photonic crystal and its manufacture
JP2008158460A (en) Method of manufacturing polarizing element
US20240076231A1 (en) Fabrication Technique For Wire Grid Polarizer

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040608

Free format text: JAPANESE INTERMEDIATE CODE: A02