JPH0985619A - Surface grinding method and device therefor - Google Patents
Surface grinding method and device thereforInfo
- Publication number
- JPH0985619A JPH0985619A JP20883695A JP20883695A JPH0985619A JP H0985619 A JPH0985619 A JP H0985619A JP 20883695 A JP20883695 A JP 20883695A JP 20883695 A JP20883695 A JP 20883695A JP H0985619 A JPH0985619 A JP H0985619A
- Authority
- JP
- Japan
- Prior art keywords
- thickness
- semiconductor wafer
- workpiece
- grinding
- grindstone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は表面研削方法及びそ
の装置に係り、特に半導体ウェーハやハードディスク等
の表面研削方法及びその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface grinding method and an apparatus thereof, and more particularly to a surface grinding method and an apparatus thereof for semiconductor wafers, hard disks and the like.
【0002】[0002]
【従来の技術】例えば、スライシングマシンによって薄
片状に切断されたウェーハは、後工程として表面研削装
置によって表面が研削される。前記表面研削装置は、前
記ウェーハをチャックテーブル上に支持して、このウェ
ーハの表面と砥石との平行度を調整したのち、砥石を回
転させると共に砥石をウェーハの表面に押し付けてウェ
ーハの表面を研削する。2. Description of the Related Art For example, the surface of a wafer cut into thin pieces by a slicing machine is ground by a surface grinding device as a post-process. The surface grinding device supports the wafer on a chuck table, adjusts the parallelism between the surface of the wafer and the grindstone, and then rotates the grindstone and presses the grindstone onto the surface of the wafer to grind the surface of the wafer. To do.
【0003】[0003]
【発明が解決しようとする課題】最近では、回路パター
ンの高集積化にともないウェーハ表面の平坦度や平行度
が高精度に要求されている。しかしながら、従来の表面
研削装置では、研削中の雰囲気温度や加工液の温度変
化、或いは砥石の撓み等によってウェーハ表面と砥石と
の平行度が悪化してしまい、これにより、研削後のウェ
ーハ表面の平坦度や平行度が悪化するという欠点があ
る。Recently, as the circuit pattern is highly integrated, the flatness and parallelism of the wafer surface are required with high accuracy. However, in the conventional surface grinding apparatus, the parallelism between the wafer surface and the grindstone deteriorates due to the change in the atmospheric temperature and the temperature of the working liquid during grinding, or the bending of the grindstone. There is a drawback that flatness and parallelism deteriorate.
【0004】本発明は、このような事情に鑑みてなされ
たもので、被加工物表面の平坦度、平行度を向上させる
ことができる表面研削方法及びその装置を提供すること
を目的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a surface grinding method and apparatus capable of improving the flatness and parallelism of the surface of a workpiece.
【0005】[0005]
【課題を解決するための手段】本発明は、前記目的を達
成する為に、被加工物支持テーブルに支持された被加工
物の表面に、回転する砥石を押し付けて該被加工物の表
面を研削する表面研削方法に於いて、研削加工中の前記
被加工物の厚さを3点以上の複数箇所測定し、該測定さ
れた複数箇所の厚さがそれぞれ所定の値となるように、
前記被加工物支持テーブル及び/又は前記砥石を姿勢制
御して被加工物の表面を研削することを特徴とする。SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention presses a rotating grindstone against the surface of a work piece supported by a work piece support table to move the surface of the work piece. In the surface grinding method of grinding, the thickness of the workpiece during grinding is measured at three or more points, and the measured thicknesses of the plurality of points are respectively predetermined values.
It is characterized in that the surface of the workpiece is ground by controlling the attitude of the workpiece support table and / or the grindstone.
【0006】また、本発明は、前記目的を達成する為
に、被加工物支持テーブルに支持された被加工物の表面
に、回転する砥石を押し付けて該被加工物の表面を研削
する表面研削装置に於いて、研削加工中の前記被加工物
の厚さを測定する3個以上の複数の測定手段を設け、該
複数の測定手段で測定された複数箇所の厚さがそれぞれ
所定の値となるように、前記被加工物支持テーブル及び
/又は前記砥石を姿勢制御する制御手段を設けたことを
特徴とする。Further, in order to achieve the above object, the present invention is a surface grinding for pressing a rotating grindstone against the surface of a work piece supported by a work piece support table to grind the surface of the work piece. The apparatus is provided with three or more measuring means for measuring the thickness of the workpiece during grinding, and the thicknesses of the plurality of points measured by the plurality of measuring means have predetermined values, respectively. Therefore, a control means for controlling the attitude of the workpiece support table and / or the grindstone is provided.
【0007】本発明によれば、先ず、被加工物を被加工
物支持テーブルに保持して、被加工物の表面に、回転す
る砥石を押し付けて被加工物表面の研削を開始する。そ
して、研削加工中の被加工物の厚さを複数の測定手段に
よって複数箇所測定し、そして、複数の測定手段で測定
された複数箇所の厚さがそれぞれ所定の値となるよう
に、被加工物支持テーブル及び/又は砥石の姿勢を制御
手段によって姿勢制御する。According to the present invention, first, the workpiece is held on the workpiece support table, and a rotating grindstone is pressed against the surface of the workpiece to start grinding the surface of the workpiece. Then, the thickness of the workpiece being ground is measured at a plurality of points by a plurality of measuring means, and the thickness of the plurality of points measured by the plurality of measuring means is adjusted to a predetermined value. The attitude of the object support table and / or the grindstone is controlled by the control means.
【0008】[0008]
【発明の実施の形態】以下添付図面に従って本発明に係
る表面研削方法及びその装置の好ましい実施の形態を詳
説する。図1は本発明に係る表面研削装置がウェーハ表
面研削装置に適用された実施例を示す要部構造図であ
る。同図に示す表面研削装置は、半導体ウェーハ10を
保持するテーブル12と、半導体ウェーハ10の表面を
研削する砥石14とを備えている。前記テーブル12
は、その上面に真空吸着部が形成されており、この真空
吸着部によって半導体ウェーハ10が研削面を上方に向
けて支持される。また、テーブル12の下部にはスピン
ドル16が設けられ、スピンドル16には図示しないモ
ータが連結される。前記テーブル12は、前記モータか
らの回転力がスピンドル16を介して伝達されることに
より回転することができる。BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of a surface grinding method and apparatus therefor according to the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a structural diagram of a main part showing an embodiment in which a surface grinding apparatus according to the present invention is applied to a wafer surface grinding apparatus. The surface grinding apparatus shown in the figure includes a table 12 for holding the semiconductor wafer 10 and a grindstone 14 for grinding the surface of the semiconductor wafer 10. Table 12
Has a vacuum suction portion formed on the upper surface thereof, and the semiconductor wafer 10 is supported by this vacuum suction portion with the grinding surface facing upward. A spindle 16 is provided below the table 12, and a motor (not shown) is connected to the spindle 16. The table 12 can be rotated by transmitting the rotational force from the motor via the spindle 16.
【0009】前記砥石14は、カップ型に形成されて砥
石軸20の下部に固着される。砥石軸20は、図示しな
いモータと図示しない昇降装置とに連結されている。従
って、砥石14を前記モータで回転させると共に昇降移
動機構で下降させて半導体ウェーハ10の表面に押し付
け、そして、テーブル12を回転させると半導体ウェー
ハ10の表面が研削される。The grindstone 14 is formed in a cup shape and fixed to the lower part of the grindstone shaft 20. The grindstone shaft 20 is connected to a motor (not shown) and a lifting device (not shown). Therefore, the surface of the semiconductor wafer 10 is ground by rotating the grindstone 14 with the motor and lowering it with the lifting mechanism to press it against the surface of the semiconductor wafer 10, and then rotating the table 12.
【0010】ところで、半導体ウェーハ10の上方には
3つの非接触センサ22、24、26が配置される。こ
れらの非接触センサ22、24、26は研削中に半導体
ウェーハ10の厚さHを検出するもので、図2に示すよ
うに半径方向に所定の間隔で配置される。前記非接触セ
ンサ22、24、26で検出された各々の厚さ情報はC
PU28に出力される。CPU28は、前記厚さ情報に
基づいて圧電素子制御装置30を制御し、砥石軸20の
姿勢制御を行う。このCPU28による砥石軸20の姿
勢制御方法については後述する。By the way, three non-contact sensors 22, 24 and 26 are arranged above the semiconductor wafer 10. These non-contact sensors 22, 24, 26 detect the thickness H of the semiconductor wafer 10 during grinding, and are arranged at predetermined intervals in the radial direction as shown in FIG. The thickness information of each of the non-contact sensors 22, 24 and 26 is C
It is output to the PU 28. The CPU 28 controls the piezoelectric element control device 30 based on the thickness information to control the attitude of the grindstone shaft 20. A method of controlling the attitude of the grindstone shaft 20 by the CPU 28 will be described later.
【0011】一方、4つの圧電素子32、34、36、
38が、砥石軸20に固着された円板状のフランジ41
と架台40との間に挟まれて配置される(圧電素子38
は圧電素子36と直径方向の対向位置にある)。圧電素
子32〜38は90°毎に等間隔に配置され、前記圧電
素子制御装置30から電圧が印加されると図中上下方向
に駆動することができる。従って、圧電素子32〜38
が駆動されると、砥石軸20は架台40に対して揺動し
て姿勢制御される。これにより、圧電素子32〜38に
印加する電圧を各々制御すれば、半導体ウェーハ10の
研削面に対する砥石軸20の直角度をだすことができ
る。On the other hand, four piezoelectric elements 32, 34, 36,
38 is a disc-shaped flange 41 fixed to the grindstone shaft 20.
And the pedestal 40 are sandwiched and arranged (the piezoelectric element 38
Is in a diametrically opposed position to the piezoelectric element 36). The piezoelectric elements 32 to 38 are arranged at regular intervals of 90 °, and can be driven in the vertical direction in the figure when a voltage is applied from the piezoelectric element control device 30. Therefore, the piezoelectric elements 32 to 38
When is driven, the grindstone shaft 20 swings with respect to the gantry 40 and its posture is controlled. Accordingly, by controlling the voltage applied to each of the piezoelectric elements 32 to 38, the perpendicularity of the grindstone shaft 20 with respect to the ground surface of the semiconductor wafer 10 can be obtained.
【0012】次に、CPU28によるテーブル12の姿
勢制御方法について説明する。CPU28は、図9に示
す非接触センサ22、24、26からテーブル12の吸
着部までの高さLA 、LB 、LC に基づいて、非接触セ
ンサ22、24、26で得られた半導体ウェーハ10の
研削面までの各々の距離lA 、lB 、lC を減算し、こ
の減算した寸法を半導体ウェーハ10の厚さHA 、
HB 、HC として判断する。そして、CPU28は前記
厚さHA 、HB 、HC に基づいて圧電素子制御装置30
を制御する。半導体ウェーハ10の厚さが均一で、表面
が完全に平坦であれば3箇所の厚さHA 、HB 、HC は
等しくなる。次に、前記制御方法を図2に示した半導体
ウェーハ10と砥石14の模式図を用いて説明する。Next, a method of controlling the attitude of the table 12 by the CPU 28 will be described. The CPU 28 obtains the semiconductors obtained by the non-contact sensors 22, 24, 26 based on the heights L A , L B , L C from the non-contact sensors 22, 24, 26 shown in FIG. The respective distances l A , l B , and l C to the grinding surface of the wafer 10 are subtracted, and the subtracted dimensions are the thickness H A of the semiconductor wafer 10,
Judge as H B and H C. Then, the CPU 28 controls the piezoelectric element control device 30 based on the thicknesses H A , H B and H C.
Control. If the thickness of the semiconductor wafer 10 is uniform and the surface is completely flat, the thicknesses H A , H B and H C at the three locations are equal. Next, the control method will be described with reference to the schematic diagrams of the semiconductor wafer 10 and the grindstone 14 shown in FIG.
【0013】図2は半導体ウェーハ10と砥石14との
位置関係を示す図であり、図中大径の円は半導体ウェー
ハ10を示し、図中小径の円は砥石14を示す。また、
同図に示すO1 点は半導体ウェーハ10(テーブル1
2)の回転中心であり、O2 点は砥石軸20の軸心であ
る。3つの非接触センサ22、24、26は図2の
C1 、B1 、A1 点に配置されていて、この点での半導
体ウェーハ10の厚さは前記の様にHC 、HB 、HA で
ある。FIG. 2 is a diagram showing the positional relationship between the semiconductor wafer 10 and the grindstone 14. In the figure, the large-diameter circle represents the semiconductor wafer 10 and the small-diameter circle in the drawing represents the grindstone 14. Also,
The point O 1 shown in FIG.
It is the rotation center of 2) and the O 2 point is the axis of the grindstone shaft 20. The three non-contact sensors 22, 24 and 26 are arranged at points C 1 , B 1 and A 1 in FIG. 2, and the thickness of the semiconductor wafer 10 at these points is H C , H B , and H A.
【0014】また、図2のA、B、C点はA1 、B1 、
C1 点とテーブル12(中心O1 )上の同心円上の点で
あり、A、B、C点の半導体ウェーハ10の厚さも
HA 、H B 、HC である。また、砥石14のx、y軸上
のX、Y点の仮想厚さをHX 、HY とし、砥石14が傾
いている時に最も低い点をK点とし、K点の仮想厚さを
HK とする。Further, points A, B and C in FIG.1, B1,
C1Point and table 12 (center O1) At the point on the concentric circle above
Yes, the thickness of the semiconductor wafer 10 at points A, B and C
HA, H B, HCIt is. Also, on the x and y axes of the grindstone 14.
The virtual thickness of the X and Y points of HX, HYAnd the whetstone 14 is tilted
The lowest point is set as K point, and the virtual thickness at K point is
HKAnd
【0015】ここで、図3に示すように線分O2 K上の
任意の点Rmのウェーハ厚さHmは、Hm=(HK /
R)Rmと表され、従って、図2に示す円上の各点A、
B、Cの厚さHA 、HB 、HC は、各点A、B、Cから
線分O2 Kに垂線を引いて、線分O2 Kの交点位置の厚
さと等しくなる。従って、Hm=(HK /R)Rmの比
例式のRmの値を選択すれば各交点位置の厚さを求める
ことができる。Here, as shown in FIG. 3, the wafer thickness Hm at an arbitrary point Rm on the line segment O 2 K is Hm = (H K /
R) Rm, and thus each point A on the circle shown in FIG.
The thicknesses H A , H B , and H C of B and C are equal to the thickness at the intersection point position of the line segment O 2 K by drawing a perpendicular line from the points A, B, and C to the line segment O 2 K. Therefore, by selecting the value of Rm in the proportional expression of Hm = (H K / R) Rm, the thickness at each intersection position can be obtained.
【0016】K点が図2のY点と一致する時(即ち、Y
点が最も低い点になる時)、研削中の半導体ウェーハ1
0の断面形状は図4となり、HA >HB >HC となる。
また、K点の角度θが(α+β)/2と(β+γ)/2
との間にある時(即ち、(α+β)/2と(β+γ)/
2との間に最も低い点がある時)、半導体ウェーハ10
の断面形状は図5となり、HA >HC >HB となる。When the K point coincides with the Y point in FIG. 2 (that is, Y
When the point becomes the lowest point), the semiconductor wafer 1 being ground
The cross-sectional shape of 0 is shown in FIG. 4, and H A > H B > H C.
Further, the angle θ of the K point is (α + β) / 2 and (β + γ) / 2
And (ie (α + β) / 2 and (β + γ) /
Semiconductor wafer 10)
5 has a cross-sectional shape of H A > H C > H B.
【0017】また、K点の角度θが(α+β)/2より
大きい時、半導体ウェーハ10の形状は図6となり、H
C >HB >HA となる。更に、K点がY点の反対側と一
致する時(Y点が最も高い点になる時)、半導体ウェー
ハ10の断面形状は図7となり、HC >HB >HA とな
る。即ち、研削中に常時HA 、HB 、HC の大小を判別
すると、現在研削中の半導体ウェーハ10の形状が分か
るので、その値をCPU28によって算出することによ
り、砥石軸20とテーブル12との直角度変化の位相と
大きさとを計算することができる。When the angle θ at the point K is larger than (α + β) / 2, the shape of the semiconductor wafer 10 is as shown in FIG.
C > H B > HA . Further, when the point K coincides with the opposite side of the point Y (when the point Y is the highest point), the sectional shape of the semiconductor wafer 10 becomes as shown in FIG. 7, and H C > H B > H A. That is, if the magnitudes of H A , H B , and H C are constantly discriminated during grinding, the shape of the semiconductor wafer 10 being ground at present can be known. By calculating the value by the CPU 28, the grindstone shaft 20 and the table 12 are The phase and magnitude of the squareness change of can be calculated.
【0018】図2に於いて、 HK =√(HX 2 +HY 2 ) HA =HK cos(θ−α) HB =HK cos(θ−β) HC =HK cos(θ−γ) HX =HK sinθ HY =HK cosθ tanθ=HX /HY と置くことができ、 tanθ=−〔(HB −HC )cosα+(HC −
HA )cosβ+(HA −HB )cosγ〕/〔(HB
−HC )sinα+(HC −HA )sinβ+(H A −
HB )sinγ〕 HK =(HA −HB )/〔cos(θ−α)−cos
(θ−β)〕 HX =HK sinθ HY =HK cosθ となり、従って、研削中のA、B、C点の厚さの差から
最下点の位相角θと厚さHK 、更にHX 、HY を求める
ことができる。砥石軸20をX方向に−HX 、Y方向に
−HY だけ揺動させることにより傾いていた直角度が修
正できるので、砥石軸20がX方向に−HX 、Y方向に
−HY だけ傾くように、CPU28によって圧電素子3
2〜38に印加する電圧を制御する。これにより、砥石
軸20が研削中の半導体ウェーハ10の研削面に対して
直角に姿勢制御されるので、半導体ウェーハ10の表面
が平坦に研削され、その平坦度が向上する。In FIG. 2, HK= √ (HX 2+ HY 2) HA= HKcos (θ−α) HB= HKcos (θ−β) HC= HKcos (θ−γ) HX= HKsin θ HY= HKcos θ tan θ = HX/ HY , Tan θ = − [(HB-HC) Cosα + (HC−
HA) Cosβ + (HA-HB) Cosγ] / [(HB
-HC) Sinα + (HC-HA) Sinβ + (H A−
HB) Sinγ] HK= (HA-HB) / [Cos (θ−α) -cos
(Θ-β)] HX= HKsin θ HY= HKcos θ, so from the difference in thickness at points A, B and C during grinding
Phase angle θ at bottom point and thickness HK, Further HX, HYAsk for
be able to. -H in the X directionX, In the Y direction
-HYThe tilted squareness is corrected by swinging only
Since it can be corrected, the grindstone shaft 20 moves in the X direction by -H.X, In the Y direction
-HYThe CPU 28 causes the piezoelectric element 3 to tilt only
The voltage applied to 2 to 38 is controlled. This makes the whetstone
The shaft 20 with respect to the ground surface of the semiconductor wafer 10 being ground
Since the attitude is controlled at a right angle, the surface of the semiconductor wafer 10
Is ground flat and its flatness is improved.
【0019】本実施例では、砥石軸20側に圧電素子3
2〜38を設けて砥石14を姿勢制御するようにした
が、図1に示すようにテーブル12側に圧電素子32
´、34´、36´、38´を設けてテーブル12側を
姿勢制御しても良く、またテーブル12及び砥石14の
両方に圧電素子を設けて両方を姿勢制御しても良い。本
実施例では、測定手段として非接触センサ22、24、
26を用いたが、接触型のセンサでも良く、また、その
台数は3台以上であれば良い。In this embodiment, the piezoelectric element 3 is provided on the grindstone shaft 20 side.
2 to 38 are provided to control the attitude of the grindstone 14, the piezoelectric element 32 is provided on the table 12 side as shown in FIG.
′, 34 ′, 36 ′, 38 ′ may be provided to control the attitude of the table 12 side, or both the table 12 and the grindstone 14 may be provided with piezoelectric elements to control the attitude of both. In this embodiment, non-contact sensors 22, 24, and
Although 26 is used, a contact type sensor may be used, and the number of sensors may be 3 or more.
【0020】また、本実施例では、半導体ウェーハの表
面研削装置について説明したが、その他の板状材料の表
面研削装置にも適用することができる。更に、本実施例
では、被加工物表面を平坦研削するための砥石軸制御に
ついて説明したが、被加工物の厚さを所定の値とするこ
とにより、例えば、図8に示すようにウェーハ表面10
Aを球面状に研削することもできる。この場合、砥石軸
20の傾斜角度θ±Δθ°がウェーハ表面10Aの曲率
に対応するように設定される。Further, although the surface grinding apparatus for the semiconductor wafer has been described in this embodiment, the present invention can be applied to the surface grinding apparatus for other plate-shaped materials. Further, in this embodiment, the grindstone axis control for flatly grinding the surface of the work piece has been described. However, by setting the thickness of the work piece to a predetermined value, for example, as shown in FIG. 10
It is also possible to grind A into a spherical shape. In this case, the inclination angle θ ± Δθ ° of the grindstone shaft 20 is set so as to correspond to the curvature of the wafer surface 10A.
【0021】本実施例の非接触センサ22、24、26
は本発明の測定手段を構成し、CPU28、圧電素子制
御装置30、及び圧電素子32〜38が本発明の制御手
段を構成する。The non-contact sensors 22, 24, 26 of this embodiment.
Constitutes the measuring means of the present invention, and the CPU 28, the piezoelectric element control device 30, and the piezoelectric elements 32 to 38 constitute the controlling means of the present invention.
【0022】[0022]
【発明の効果】以上説明したように本発明に係る表面研
削方法及びその装置によれば、研削加工中の被加工物の
厚さを複数箇所測定して、複数箇所の厚さがそれぞれ所
定の値となるように被加工物支持テーブル及び/又は砥
石の姿勢を制御するようにしたので、被加工物表面の平
坦度、平行度を向上させることができる。As described above, according to the surface grinding method and the apparatus therefor according to the present invention, the thickness of the workpiece being ground is measured at a plurality of points, and the thickness of each of the plurality of points is predetermined. Since the postures of the workpiece support table and / or the grindstone are controlled so as to obtain the values, the flatness and parallelism of the workpiece surface can be improved.
【図1】本発明に係る表面研削装置がウェーハ表面研削
装置に適用された要部構造図FIG. 1 is a structural diagram of a main part in which a surface grinding apparatus according to the present invention is applied to a wafer surface grinding apparatus.
【図2】半導体ウェーハと砥石の位置関係を示す模式図FIG. 2 is a schematic diagram showing a positional relationship between a semiconductor wafer and a grindstone.
【図3】図2中L−L線から見た矢視図FIG. 3 is a view seen from the line LL in FIG.
【図4】センサから得られる半導体ウェーハの厚さの説
明図FIG. 4 is an explanatory diagram of the thickness of a semiconductor wafer obtained from a sensor.
【図5】センサから得られる半導体ウェーハの厚さの説
明図FIG. 5 is an explanatory diagram of the thickness of the semiconductor wafer obtained from the sensor.
【図6】センサから得られる半導体ウェーハの厚さの説
明図FIG. 6 is an explanatory view of the thickness of the semiconductor wafer obtained from the sensor.
【図7】センサから得られる半導体ウェーハの厚さの説
明図FIG. 7 is an explanatory view of the thickness of the semiconductor wafer obtained from the sensor.
【図8】半導体ウェーハを球面状に研削する説明図FIG. 8 is an explanatory view of grinding a semiconductor wafer into a spherical shape.
【図9】半導体ウェーハの厚さを検出するための説明図FIG. 9 is an explanatory diagram for detecting the thickness of a semiconductor wafer.
10…半導体ウェーハ 12…テーブル 14…砥石 20…砥石軸 22、24、26…非接触センサ 28…CPU 30…圧電素子制御装置 32、34、3
6、38…圧電素子10 ... Semiconductor wafer 12 ... Table 14 ... Grinding stone 20 ... Grinding stone axis 22, 24, 26 ... Non-contact sensor 28 ... CPU 30 ... Piezoelectric element control device 32, 34, 3
6, 38 ... Piezoelectric element
Claims (2)
物の表面に、回転する砥石を押し付けて該被加工物の表
面を研削する表面研削方法に於いて、 研削加工中の前記被加工物の厚さを3点以上の複数箇所
測定し、該測定された複数箇所の厚さがそれぞれ所定の
値となるように、前記被加工物支持テーブル及び/又は
前記砥石を姿勢制御して被加工物の表面を研削すること
を特徴とする表面研削方法。1. A surface grinding method for grinding a surface of a workpiece by pressing a rotating grindstone against the surface of the workpiece supported by the workpiece support table, wherein the workpiece during the grinding process. The thickness of the object is measured at three or more points, and the workpiece support table and / or the grindstone is attitude-controlled so that the thickness of each of the measured points becomes a predetermined value. A surface grinding method characterized by grinding the surface of a workpiece.
物の表面に、回転する砥石を押し付けて該被加工物の表
面を研削する表面研削装置に於いて、 研削加工中の前記被加工物の厚さを測定する3個以上の
複数の測定手段を設け、該複数の測定手段で測定された
複数箇所の厚さがそれぞれ所定の値となるように、前記
被加工物支持テーブル及び/又は前記砥石を姿勢制御す
る制御手段を設けたことを特徴とする表面研削装置。2. A surface grinding apparatus which grinds the surface of a workpiece by pressing a rotating grindstone against the surface of the workpiece supported by the workpiece support table. A plurality of three or more measuring means for measuring the thickness of the object are provided, and the workpiece support table and / or the workpiece support table are provided so that the thicknesses of the plurality of points measured by the plurality of measuring means each have a predetermined value. Alternatively, the surface grinding apparatus is provided with control means for controlling the attitude of the grindstone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20883695A JP3166146B2 (en) | 1995-05-26 | 1995-08-16 | Surface grinding method and apparatus |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12844195 | 1995-05-26 | ||
JP7-128441 | 1995-07-18 | ||
JP7-181226 | 1995-07-18 | ||
JP18122695 | 1995-07-18 | ||
JP20883695A JP3166146B2 (en) | 1995-05-26 | 1995-08-16 | Surface grinding method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0985619A true JPH0985619A (en) | 1997-03-31 |
JP3166146B2 JP3166146B2 (en) | 2001-05-14 |
Family
ID=27315751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20883695A Expired - Fee Related JP3166146B2 (en) | 1995-05-26 | 1995-08-16 | Surface grinding method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3166146B2 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0955126A2 (en) * | 1998-05-06 | 1999-11-10 | Shin-Etsu Handotai Co., Ltd. | Surface grinding method and apparatus for thin plate work |
JP2003025197A (en) * | 2001-07-13 | 2003-01-29 | Waida Seisakusho:Kk | Device for adjusting relative position relationship between work and grinding wheel on grinder |
JP2007059524A (en) * | 2005-08-23 | 2007-03-08 | Disco Abrasive Syst Ltd | Substrate cutting method and substrate cutting apparatus |
CN100343018C (en) * | 2004-01-08 | 2007-10-17 | 财团法人工业技术研究院 | Chip grinding machine structure |
JP2008238341A (en) * | 2007-03-27 | 2008-10-09 | Disco Abrasive Syst Ltd | Machining device |
JP2008246614A (en) * | 2007-03-29 | 2008-10-16 | Disco Abrasive Syst Ltd | Working device |
JP2010118494A (en) * | 2008-11-13 | 2010-05-27 | Disco Abrasive Syst Ltd | Electrode working apparatus |
JP2010118458A (en) * | 2008-11-12 | 2010-05-27 | Disco Abrasive Syst Ltd | Electrode working apparatus |
CN102229087A (en) * | 2011-06-02 | 2011-11-02 | 大连理工大学 | Device and method for regulating dip angle of wafer grinder |
JP2012508454A (en) * | 2008-11-07 | 2012-04-05 | アプライド マテリアルズ インコーポレイテッド | Inline wafer thickness sensing |
KR101407708B1 (en) * | 2012-03-06 | 2014-06-13 | 도쿄 세이미츄 코퍼레이션 리미티드 | A grinding machine |
JP2014172131A (en) * | 2013-03-11 | 2014-09-22 | Disco Abrasive Syst Ltd | Grinding device |
JP2015023113A (en) * | 2013-07-18 | 2015-02-02 | 株式会社岡本工作機械製作所 | Flattening and grinding method of semiconductor substrate |
JP2016016462A (en) * | 2014-07-04 | 2016-02-01 | 株式会社ディスコ | Grinding method |
JP2016047588A (en) * | 2014-08-28 | 2016-04-07 | 三菱重工業株式会社 | Push-in adjustment device, and polishing device provided with push-in adjustment device |
JP2016184604A (en) * | 2015-03-25 | 2016-10-20 | 株式会社東京精密 | Grinding device |
KR20170030852A (en) * | 2015-09-10 | 2017-03-20 | 가부시기가이샤 디스코 | Grinding method |
WO2018180170A1 (en) * | 2017-03-30 | 2018-10-04 | 株式会社 荏原製作所 | Polishing method and polishing apparatus |
JP2018171698A (en) * | 2017-03-30 | 2018-11-08 | 株式会社荏原製作所 | Polishing method and polishing device |
KR20190078104A (en) * | 2017-12-26 | 2019-07-04 | 주식회사 케이씨텍 | Substrate procesing apparatus |
CN114871887A (en) * | 2021-12-21 | 2022-08-09 | 华海清科股份有限公司 | Grinding surface shape prediction method and system using mixed kernel function and terminal equipment |
-
1995
- 1995-08-16 JP JP20883695A patent/JP3166146B2/en not_active Expired - Fee Related
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0955126A2 (en) * | 1998-05-06 | 1999-11-10 | Shin-Etsu Handotai Co., Ltd. | Surface grinding method and apparatus for thin plate work |
EP0955126A3 (en) * | 1998-05-06 | 2000-04-05 | Shin-Etsu Handotai Co., Ltd. | Surface grinding method and apparatus for thin plate work |
US6220928B1 (en) | 1998-05-06 | 2001-04-24 | Shin-Etsu Handotai Co., Ltd. | Surface grinding method and apparatus for thin plate work |
JP2003025197A (en) * | 2001-07-13 | 2003-01-29 | Waida Seisakusho:Kk | Device for adjusting relative position relationship between work and grinding wheel on grinder |
CN100343018C (en) * | 2004-01-08 | 2007-10-17 | 财团法人工业技术研究院 | Chip grinding machine structure |
JP2007059524A (en) * | 2005-08-23 | 2007-03-08 | Disco Abrasive Syst Ltd | Substrate cutting method and substrate cutting apparatus |
JP2008238341A (en) * | 2007-03-27 | 2008-10-09 | Disco Abrasive Syst Ltd | Machining device |
JP2008246614A (en) * | 2007-03-29 | 2008-10-16 | Disco Abrasive Syst Ltd | Working device |
US8628376B2 (en) | 2008-11-07 | 2014-01-14 | Applied Materials, Inc. | In-line wafer thickness sensing |
JP2012508454A (en) * | 2008-11-07 | 2012-04-05 | アプライド マテリアルズ インコーポレイテッド | Inline wafer thickness sensing |
JP2010118458A (en) * | 2008-11-12 | 2010-05-27 | Disco Abrasive Syst Ltd | Electrode working apparatus |
JP2010118494A (en) * | 2008-11-13 | 2010-05-27 | Disco Abrasive Syst Ltd | Electrode working apparatus |
CN102229087A (en) * | 2011-06-02 | 2011-11-02 | 大连理工大学 | Device and method for regulating dip angle of wafer grinder |
KR101407708B1 (en) * | 2012-03-06 | 2014-06-13 | 도쿄 세이미츄 코퍼레이션 리미티드 | A grinding machine |
JP2014172131A (en) * | 2013-03-11 | 2014-09-22 | Disco Abrasive Syst Ltd | Grinding device |
JP2015023113A (en) * | 2013-07-18 | 2015-02-02 | 株式会社岡本工作機械製作所 | Flattening and grinding method of semiconductor substrate |
JP2016016462A (en) * | 2014-07-04 | 2016-02-01 | 株式会社ディスコ | Grinding method |
JP2016047588A (en) * | 2014-08-28 | 2016-04-07 | 三菱重工業株式会社 | Push-in adjustment device, and polishing device provided with push-in adjustment device |
JP2016184604A (en) * | 2015-03-25 | 2016-10-20 | 株式会社東京精密 | Grinding device |
KR20170030852A (en) * | 2015-09-10 | 2017-03-20 | 가부시기가이샤 디스코 | Grinding method |
WO2018180170A1 (en) * | 2017-03-30 | 2018-10-04 | 株式会社 荏原製作所 | Polishing method and polishing apparatus |
JP2018171698A (en) * | 2017-03-30 | 2018-11-08 | 株式会社荏原製作所 | Polishing method and polishing device |
TWI768011B (en) * | 2017-03-30 | 2022-06-21 | 日商荏原製作所股份有限公司 | Grinding method and grinding device |
KR20190078104A (en) * | 2017-12-26 | 2019-07-04 | 주식회사 케이씨텍 | Substrate procesing apparatus |
CN114871887A (en) * | 2021-12-21 | 2022-08-09 | 华海清科股份有限公司 | Grinding surface shape prediction method and system using mixed kernel function and terminal equipment |
CN114871887B (en) * | 2021-12-21 | 2024-01-30 | 华海清科股份有限公司 | Grinding surface shape prediction method and system using mixed kernel function and terminal equipment |
Also Published As
Publication number | Publication date |
---|---|
JP3166146B2 (en) | 2001-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5816895A (en) | Surface grinding method and apparatus | |
JPH0985619A (en) | Surface grinding method and device therefor | |
JP5788304B2 (en) | Grinding equipment | |
US20090247050A1 (en) | Grinding method for grinding back-surface of semiconductor wafer and grinding apparatus for grinding back-surface of semiconductor wafer used in same | |
JP6129551B2 (en) | Processing method of plate | |
JP2000005988A (en) | Polishing device | |
US5791976A (en) | Surface machining method and apparatus | |
JP3829239B2 (en) | Double-side grinding method and apparatus for thin disk-shaped workpiece | |
JP6676284B2 (en) | Work processing equipment | |
JP5025297B2 (en) | Processing equipment | |
JP2019093517A (en) | Method for processing work-piece and grinding/polishing device | |
JPH09216152A (en) | End face grinding device and end face grinding method | |
JP2005022059A (en) | Grinder and grinding method | |
JP2024123060A (en) | Processing system and method | |
KR100439564B1 (en) | Surface grinding method and apparatus | |
JP2002307303A (en) | Both face grinding method for thin plate disclike workpiece and device thereof | |
JP7362787B2 (en) | Bonding device and bonding method | |
JP4591830B2 (en) | Wafer chamfering equipment | |
KR20220097497A (en) | Substrate processing method and substrate processing apparatus | |
JPH09150355A (en) | Grinding machine | |
JP7394638B2 (en) | Grinding device and grinding method | |
JPH08336741A (en) | Method of grinding surface | |
JPH10554A (en) | Local polishing device | |
JPH03104545A (en) | Surface grinding device | |
JPH02274459A (en) | Automatic surface grinding method and apparatus for semiconductor wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |