[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0980383A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH0980383A
JPH0980383A JP23231795A JP23231795A JPH0980383A JP H0980383 A JPH0980383 A JP H0980383A JP 23231795 A JP23231795 A JP 23231795A JP 23231795 A JP23231795 A JP 23231795A JP H0980383 A JPH0980383 A JP H0980383A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
electrode
composition layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23231795A
Other languages
Japanese (ja)
Inventor
Katsumi Kondo
克己 近藤
Masuyuki Ota
益幸 太田
Masato Oe
昌人 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23231795A priority Critical patent/JPH0980383A/en
Priority to CN 96111986 priority patent/CN1168478A/en
Priority to SG9610599A priority patent/SG80556A1/en
Publication of JPH0980383A publication Critical patent/JPH0980383A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a liquid crystal display device which has a wide field angle and a high contrast and is high in the light transmissivity of its liquid crystal panel, bright, and lower in power consumption. SOLUTION: The liquid crystal display device has a couple of substrates 3, plural signal wiring electrodes 12 and scanning wiring electrodes formed on the substrates, and a liquid crystal composition layer sandwiched between the couple of substrates, and in this device, signal wiring electrodes 12 and scanning wiring electrodes cross each other in matrix to form plural pixels and an active element which turns on and off a pixel electrode 1 in a pixel is formed in the pixel. When the active element is turned on, an electric field is applied between the scanning wiring electrode 1 and a reference electrode 2 almost in parallel to the substrate surface, and a scanning wiring electrode driving circuit which supplies a scanning signal having a nonselective voltage in more than binary notation is connected to the scanning wiring electrode and a signal wiring electrode driving circuit which supplies an image signal is connected to the signal wiring electrode 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜トランジスタ型液
晶表示装置(以下TFT−LCDと略す)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor type liquid crystal display device (hereinafter abbreviated as TFT-LCD).

【0002】[0002]

【従来の技術】液晶に印加する電界の方向を基板界面に
ほぼ平行な方向とする方式(横電界方式)として、櫛歯
電極対を用いた方式が、例えばPCT WO91/10936 により
提案されている。この横電界方式と薄膜トランジスタと
を組み合わせた液晶表示装置は、特公昭63−21907 号,
特開平6−160878 号等で提案されている。
2. Description of the Related Art A method using a comb-teeth electrode pair has been proposed by PCT WO91 / 10936 as a method (horizontal electric field method) in which the direction of an electric field applied to a liquid crystal is substantially parallel to a substrate interface. . A liquid crystal display device combining this lateral electric field method and a thin film transistor is disclosed in Japanese Examined Patent Publication No. 63-21907.
It is proposed in JP-A-6-160878.

【0003】[0003]

【発明が解決しようとする課題】横電界方式では液晶分
子が基板面から起き上がらないため視野角が広く、階調
レベルの反転はもとよりコントラスト比の低下や色調の
変化もない。しかし、以下の理由により実用化はされて
いない。
In the horizontal electric field method, liquid crystal molecules do not rise from the surface of the substrate, so that the viewing angle is wide and the gradation level is not reversed, and the contrast ratio and the color tone are not changed. However, it has not been put to practical use for the following reasons.

【0004】横電界方式では液晶に有効な電界を印加す
るために線状の電極を介して、画素を例えば2ないし4
つの副画素に分割する必要がある。この際、基板面に垂
直な方向の電界を印加する方式(縦電界方式)にはない
複数の線状の電極を新たに介したことにより、光が透過
する有効面積の割合がどうしても縦電界方式に比べて著
しく低下してしまう。そのため同じバックライトを使用
すれば暗くなり、同じ明るさを保つにはバックライトの
強度を上げる必要があり消費電力が著しく上昇してしま
う。また、横電界方式では液晶構造(液晶材料物性,液
晶層厚,配向状態,偏光板配置等)と電極構造(画素
部,配線部の導電材料,半導体材料,絶縁材料等の形
状)とを同時に大幅に変えなくてはならない。更に、液
晶構造と電極構造の一方を変えると他方の最適構造が変
わるなど互いに密接な関係があり、縦電界の時のように
一方をブラックボックス化して取り扱うことはできな
い。加えて、液晶構造と電極構造とが大幅に変わったこ
とに伴い、画素部,周辺部を構成する各部位には電気的
な回路定数が著しく変わっているものがある。そのた
め、横電界方式特有の回路特性を考慮した駆動方式を考
えなくてはならない。即ち、液晶構造,電極構造,駆動
回路の3者は相互に関連しており、どれをもブラックボ
ックス化することができず、このことが設計を複雑かつ
困難にしている。
In the horizontal electric field method, pixels are arranged, for example, by 2 to 4 via linear electrodes in order to apply an effective electric field to the liquid crystal.
It must be divided into one sub-pixel. At this time, since a plurality of linear electrodes, which are not in the method of applying an electric field in the direction perpendicular to the substrate surface (vertical electric field method), are newly interposed, the ratio of the effective area through which light is transmitted is inevitable. Will be significantly reduced compared to. Therefore, if the same backlight is used, it becomes dark, and in order to maintain the same brightness, it is necessary to increase the intensity of the backlight, and the power consumption increases significantly. In the horizontal electric field method, the liquid crystal structure (physical properties of liquid crystal material, thickness of liquid crystal layer, alignment state, arrangement of polarizing plate, etc.) and electrode structure (shape of conductive material, semiconductor material, insulating material, etc. of pixel portion, wiring portion) are simultaneously used. It has to change drastically. Further, when one of the liquid crystal structure and the electrode structure is changed, there is a close relationship such that the other optimum structure is changed, and thus it is impossible to treat one of them as a black box as in the case of a vertical electric field. In addition, due to the drastic change in the liquid crystal structure and the electrode structure, there are some parts in which the electric circuit constants are remarkably changed in each part constituting the pixel part and the peripheral part. Therefore, it is necessary to consider a driving method that takes into consideration the circuit characteristics peculiar to the lateral electric field method. That is, the liquid crystal structure, the electrode structure, and the driving circuit are related to each other, and none of them can be made into a black box, which makes the design complicated and difficult.

【0005】本発明の目的は、横電界方式において視野
角が広くコントラスト比が高く、かつ液晶パネルの光透
過率が高く、明るく消費電力の低いTFT−LCDを得
るための液晶構造,電極構造,駆動方式の3者の最適な
組み合わせを明らかにすることにある。
An object of the present invention is to obtain a bright and low power consumption TFT-LCD having a wide viewing angle, a high contrast ratio, a liquid crystal panel having a high light transmittance, and a low power consumption in an in-plane switching mode. The purpose is to clarify the optimum combination of the three driving methods.

【0006】[0006]

【課題を解決するための手段】本発明は一対の基板と、
基板上に形成された複数の信号配線電極及び走査配線電
極と、一対の基板間に挾持された液晶組成物層とを有す
る液晶表示装置であって、複数の信号配線電極及び走査
配線電極がマトリクス状に交差して複数の画素を形成
し、画素内には、画素内の画素電極をオンオフするアク
ティブ素子が形成され、アクティブ素子をオンにした
際、画素電極と基準電極との間に基板面にほぼ平行に電
界が印加され、走査配線電極には2値以上の非選択電圧
を有する走査信号を供給する走査配線電極駆動回路が接
続され、信号配線電極には画像信号を供給する信号配線
電極駆動回路が接続されていることを特徴とする液晶表
示装置である。
The present invention comprises a pair of substrates,
A liquid crystal display device having a plurality of signal wiring electrodes and scanning wiring electrodes formed on a substrate, and a liquid crystal composition layer sandwiched between a pair of substrates, wherein the plurality of signal wiring electrodes and scanning wiring electrodes are arranged in a matrix. A plurality of pixels are formed by intersecting in a circular pattern, and an active element for turning on / off the pixel electrode in the pixel is formed in the pixel, and when the active element is turned on, the substrate surface is provided between the pixel electrode and the reference electrode. An electric field is applied substantially parallel to the scanning line electrode, a scanning line electrode driving circuit for supplying a scanning signal having a non-selective voltage of two or more values is connected to the scanning line electrode, and a signal wiring electrode for supplying an image signal to the signal line electrode. A liquid crystal display device is characterized in that a drive circuit is connected.

【0007】また、液晶組成物層及び偏光手段は、基板
に垂直な方向のコントラスト比が10以上,輝度透過率
が15%以上となるように設定され、画素電極,基準電
極が1画素内で信号配線電極にほぼ平行な第1の方向に
伸びていることが望ましい。
Further, the liquid crystal composition layer and the polarizing means are set so that the contrast ratio in the direction perpendicular to the substrate is 10 or more and the luminance transmittance is 15% or more, and the pixel electrode and the reference electrode are within one pixel. It is desirable to extend in the first direction substantially parallel to the signal wiring electrode.

【0008】液晶組成物に基板面にほぼ平行に電界を印
加する電極構成としている為、広い視野角が得られ、液
晶構造として液晶組成物層,偏光手段を組み合わせるこ
とでコントラスト比と輝度透過率が高められ、画素電
極,基準電極を1画素内で各々が信号配線電極にほぼ平
行な第1の方向に伸ばすことで高開口率を、走査配線電
極に2値以上の非選択電圧を有する走査信号を印加する
走査配線電極駆動回路を接続することでこのような高開
口率電極構造でもスメア等の画質不良が抑制できる。
Since the liquid crystal composition has an electrode structure for applying an electric field substantially parallel to the substrate surface, a wide viewing angle can be obtained. By combining a liquid crystal composition layer and a polarizing means as a liquid crystal structure, the contrast ratio and the luminance transmittance can be improved. By increasing the pixel electrode and the reference electrode in a first direction substantially parallel to the signal wiring electrode within one pixel, a high aperture ratio can be obtained, and the scanning wiring electrode can be scanned with a binary non-selective voltage. By connecting the scanning wiring electrode drive circuit for applying a signal, it is possible to suppress image quality defects such as smear even with such a high aperture ratio electrode structure.

【0009】さらに、走査配線電極に印加される走査信
号の非選択電圧が全ての行において、同周期,同位相で
変化し、かつこれに同期して共通電極の全期間,画素電
極の非選択期間にも同周期,同位相で変化する電圧波形
が印加されていることが望ましい。走査配線電極に印加
される走査信号の非選択電圧,共通電極の全期間,画素
電極の非選択期間に印加される電圧の振幅がほぼ同一で
あることが望ましい。画素のうちの1画素内で、前記画
素電極とそれに隣合う前記基準電極との間隔Dが前記画
素電極,前記基準電極の幅WP,WCのいずれの3分の1
よりも大きいことが望ましい。液晶組成物層の誘電率異
方性が正であり、かつ少なくとも一方の基板界面上での
液晶分子配向方向と電界方向とのなす角度|φLC|が4
5度以上90度未満であることが望ましい。ただし、−
90度≦φLC≦90度である。液晶組成物層内の配向に
関して、一方の基板界面上での液晶分子配向方向角度φ
LC1と他方基板界面上での液晶分子配向方向角度φLC2
が互いに略平行(φLC1≒φLC2)であり、かつ前記液晶組
成物層の厚みd及び屈折率異方性Δnの積d・Δnが
0.21μmから0.36μmの間であることが望まし
い。
Further, the non-selection voltage of the scanning signal applied to the scanning wiring electrode changes in the same period and the same phase in all rows, and in synchronization with this, the non-selection of the pixel electrode for the entire period of the common electrode. It is desirable that a voltage waveform that changes in the same cycle and the same phase is applied during the period. It is desirable that the non-selection voltage of the scanning signal applied to the scan wiring electrode, the entire period of the common electrode, and the voltage applied during the non-selection period of the pixel electrode are substantially the same. Within one pixel of the pixels, the distance D between the pixel electrode and the reference electrode adjacent thereto is one third of any of the widths W P and W C of the pixel electrode and the reference electrode.
It is desirable that it be larger than. The dielectric constant anisotropy of the liquid crystal composition layer is positive, and the angle | φ LC | formed by the orientation direction of liquid crystal molecules and the electric field direction on at least one substrate interface is 4
It is desirable that the angle is 5 degrees or more and less than 90 degrees. Where-
90 ° ≦ φ LC ≦ 90 °. Regarding the orientation in the liquid crystal composition layer, the orientation angle φ of the liquid crystal molecule orientation on one substrate interface
LC1 and the liquid crystal molecule orientation direction angle φ LC2 on the other substrate interface are substantially parallel to each other (φ LC1 ≈φ LC2 ), and the product d · thickness d of the liquid crystal composition layer and refractive index anisotropy Δn It is desirable that Δn is between 0.21 μm and 0.36 μm.

【0010】[0010]

【作用】先ず初めに、電界方向に対する、偏光板の偏光
透過軸のなす角φP ,界面近傍での液晶分子長軸(光学
軸)方向のなす角φLC,一対の偏光板間に挿入した位相
差板の進相軸のなす角φR の定義を示す(図6)。偏光
板及び液晶界面はそれぞれ上下に一対あるので必要に応
じてφP1,φP2,φLC1,φLC2 と表記する。
First, the angle φ P formed by the polarization transmission axis of the polarizing plate with respect to the direction of the electric field, the angle φ LC formed by the liquid crystal molecule major axis (optical axis) direction near the interface, and inserted between the pair of polarizing plates. The definition of the angle φ R formed by the fast axis of the retardation plate is shown (Fig. 6). Since there are a pair of the polarizing plate and the liquid crystal interface above and below, respectively, they are denoted as φ P1 , φ P2 , φ LC1 , and φ LC2 as necessary.

【0011】図1(a),(b)は本発明の液晶パネル内
での液晶の動作を示す側断面を、図1(c),(d)はそ
の正面図を表わす。本発明ではストライプ状の電極を構
成して複数の画素を形成するが、ここでは一画素の部分
を示した。電圧無印加時のセル側断面を図1(a)に、
その時の正面図を図1(c)に示す。透明な一対の基板
の内側に線状の電極1,2が形成され、その上に配向制
御膜4が塗布及び配向処理されている。間には液晶組成
物が挟持されている。棒状の液晶分子5は、電界無印加
時には電極1,2の長手方向に対して若干の角度、即ち
45度≦|φLC|<90度、を持つように配向されてい
る。上下界面上での液晶分子配向方向はここでは平行、
即ちφLC1=φLC2を例に説明する。また、液晶組成物の
誘電異方性は正を想定している。次に、電界7を印加す
ると図1(b),(d)に示したように電界方向に液晶分
子がその向きを変える。偏光板6を偏光板偏光軸方向9
に配置することで電界印加によって光透過率を変えるこ
とが可能となる。このように、本発明によれば透明電極
がなくともコントラストを与える表示が可能となる。本
発明では、45度以下のものを総称して横電界と表現す
る。また、図1では電極1,2を一方の基板にまとめて
形成したが、上下基板に分けて備えてもなんら効果は変
わるものではない。配線等のパターンが微細化する場合
や熱,外力等による種々の変形等を鑑みると、一方の基
板に備えたほうがより高精度なアライメントが可能とな
り、望ましい。また、液晶組成物の誘電率異方性は正を
想定したが、負であっても構わない。その場合には初期
配向状態を電極1,2の長手方向に垂直な方向(電界方
向7)から若干の角度|φLC|(即ち、0度<|φLC
≦45度)を持つように配向させる。本発明の表示モー
ドでは液晶分子の長軸は基板と常にほぼ平行であり、立
ち上がることがなく、従って視角方向を変えた時の明る
さの変化が小さい。
1 (a) and 1 (b) are side sectional views showing the operation of the liquid crystal in the liquid crystal panel of the present invention, and FIGS. 1 (c) and 1 (d) are front views thereof. In the present invention, a stripe-shaped electrode is formed to form a plurality of pixels, but only one pixel is shown here. The cross section of the cell when no voltage is applied is shown in Fig. 1 (a).
A front view at that time is shown in FIG. Linear electrodes 1 and 2 are formed inside a pair of transparent substrates, and an alignment control film 4 is applied and aligned on the linear electrodes 1 and 2. A liquid crystal composition is sandwiched between them. The rod-shaped liquid crystal molecules 5 are oriented so as to have a slight angle with respect to the longitudinal direction of the electrodes 1 and 2 when the electric field is not applied, that is, 45 ° ≦ | φ LC | <90 °. The orientation directions of liquid crystal molecules on the upper and lower interfaces are parallel here,
That is, φ LC1 = φ LC2 will be described as an example. The dielectric anisotropy of the liquid crystal composition is assumed to be positive. Next, when an electric field 7 is applied, the liquid crystal molecules change their directions in the direction of the electric field as shown in FIGS. 1 (b) and 1 (d). Polarizing plate 6 is polarized plate polarization direction 9
By arranging in the position, it becomes possible to change the light transmittance by applying an electric field. As described above, according to the present invention, it is possible to provide a display with contrast even without the transparent electrode. In the present invention, those of 45 degrees or less are collectively referred to as a lateral electric field. Further, in FIG. 1, the electrodes 1 and 2 are collectively formed on one substrate, but the effect does not change even if they are separately provided on the upper and lower substrates. In consideration of miniaturization of patterns such as wiring and various deformations due to heat, external force, etc., it is preferable to provide the substrate on one side because more accurate alignment is possible. Although the dielectric anisotropy of the liquid crystal composition is assumed to be positive, it may be negative. In that case, the initial alignment state is set at a slight angle │φ LC │ (that is, 0 degree <| φ LC │ from the direction perpendicular to the longitudinal direction of the electrodes 1 and 2 (electric field direction 7).
≦ 45 degrees). In the display mode of the present invention, the long axis of the liquid crystal molecule is always substantially parallel to the substrate and does not rise, and therefore the change in brightness when changing the viewing angle direction is small.

【0012】コントラストを付与する具体的構成として
は、上下基板上の液晶分子配向がほぼ平行な状態を利用
したモード(複屈折位相差による干渉色を利用するの
で、ここでは複屈折モードと呼ぶ)と、上下基板上の液
晶分子配向方向が交差しセル内での分子配列がねじれた
状態を利用したモード(液晶組成物層内で偏光面が回転
する旋光性を利用するので、ここでは旋光性モードと呼
ぶ)とがある。
As a concrete structure for imparting contrast, a mode utilizing a state in which the liquid crystal molecule alignments on the upper and lower substrates are substantially parallel (which is called a birefringence mode here because the interference color due to the birefringence phase difference is utilized) And a mode using a state in which the alignment of liquid crystal molecules on the upper and lower substrates intersects and the molecular arrangement in the cell is twisted (Since the optical rotation that the polarization plane rotates in the liquid crystal composition layer is used, There is a).

【0013】一般に一軸性複屈折性媒体を直交配置した
2枚の偏光板の間に挿入した時の光透過率T/Toは次
式で表わされる。ここで、χeffは液晶組成物層の実効
的な光軸方向(光軸と偏光透過軸とのなす角)、deff
複屈折性を有する実効的な液晶組成物層の厚み、Δnは
屈折率異方性、λは光の波長を表わす。ここで、液晶組
成物層の光軸方向を実効的な値とした目的は、実際のセ
ル内では界面上では液晶分子が固定されており、電界印
加時にはセル内で全ての液晶分子が互いに平行かつ一様
に配向しているのではなく、特に界面近傍では大きな変
形が起こっていることを鑑み、それらの平均値として一
様状態を想定した時の見かけの値で取り扱うことにあ
る。
Generally, the light transmittance T / T o when a uniaxial birefringent medium is inserted between two polarizing plates arranged orthogonally is expressed by the following equation. Here, χ eff is the effective optical axis direction of the liquid crystal composition layer (the angle formed by the optical axis and the polarization transmission axis), d eff is the thickness of the effective liquid crystal composition layer having birefringence, and Δn is Refractive index anisotropy, λ represents the wavelength of light. Here, the purpose of making the optical axis direction of the liquid crystal composition layer an effective value is that the liquid crystal molecules are fixed on the interface in the actual cell and all the liquid crystal molecules are parallel to each other in the cell when an electric field is applied. In view of the fact that a large amount of deformation occurs, especially in the vicinity of the interface, rather than being oriented uniformly, it is treated as an average value of the apparent values when assuming a uniform state.

【0014】 T/To=(sin(2χeff))2・(sin(πdeff・Δn/λ))2 …(1) 低電圧VL印加時に暗,高電圧VH印加時に明状態となる
ノーマリクローズ特性を得るには、例えば偏光板の配置
としては一方の偏光板の透過軸(あるいは吸収軸)を液
晶分子配向方向(ラビング軸)にほぼ平行、即ちφP1
φLC1=φLC2とし、他方の偏光板の透過軸をそれに垂
直、即ちφP2=φP1+90度とすればよい。2枚の偏光
板を直交とすると十分に透過率の低い暗レベルを実現す
ることが比較的容易であるが、特にこの配置に限定され
るものではない。電界無印加時には、(1)式における
χeff が0であるので光透過率T/To も0となる。一
方電界印加時にはその強度に応じてχeff の値が増大
し、45度の時に最大なる。この時、光の波長を0.5
55μmと想定すると無彩色でかつ透過率を最大とする
にはdeff・Δnを2分の1波長である0.28μmとす
れば良い。現実には裕度があるために、d・Δnを0.
21から0.36μmの間に入っていれば良いが、望ま
しくは0.24から0.33μmの間の値に設定すると良
い。
T / T o = (sin (2χ eff )) 2 · (sin (πd eff · Δn / λ)) 2 (1) Dark state when low voltage V L is applied and bright state when high voltage V H is applied In order to obtain the normally closed characteristic, the transmission axis (or absorption axis) of one polarizing plate is almost parallel to the liquid crystal molecule alignment direction (rubbing axis), that is, φ P1
φ LC1 = φ LC2, and the transmission axis of the other polarizing plate may be perpendicular to it, that is, φ P2 = φ P1 +90 degrees. When the two polarizing plates are orthogonal to each other, it is relatively easy to realize a dark level having a sufficiently low transmittance, but the arrangement is not particularly limited to this arrangement. When no electric field is applied, χ eff in equation (1) is 0, so the light transmittance T / T o is also 0. On the other hand, when an electric field is applied, the value of χ eff increases according to its strength, and reaches a maximum at 45 degrees. At this time, the wavelength of light is 0.5
Assuming 55 μm, it is sufficient to set d eff · Δn to 0.28 μm which is a half wavelength in order to obtain an achromatic color and maximum transmittance. Since there is a margin in reality, d · Δn is set to 0.
It should be between 21 and 0.36 μm, but it is preferable to set it to a value between 0.24 and 0.33 μm.

【0015】一方低電圧VL印加時に明,高電圧VH印加
時に暗状態となるノーマリオープン特性を得るには電界
無印加時あるいは低電界印加時に、(1)式におけるχ
effがほぼ45度となるように偏光板配置を設定すれば
良い。電界印加時にはノーマリクローズの場合とは逆に
その強度に応じてχeff の値が減少する。しかしなが
ら、χeff が最小(即ち0)になっても界面近傍で固定
されている液晶分子の残留位相差のために、このままで
はかなりの光が漏れてしまう。d・Δnを0.27から0.
37μm の間に設定し、3〜10Vの実効電圧を印加
した本発明者等の実験によれば界面残留位相差の値は
0.02から0.06μm程度であった。また、液晶組成
物層の実際の厚みdと実効的な液晶組成物層の厚みd
eff との関係は、 deff≒d−RS …(2) となる。
On the other hand, in order to obtain a normally open characteristic in which a bright state is applied when a low voltage V L is applied and a dark state is applied when a high voltage V H is applied, χ in the equation (1) is applied when no electric field is applied or when a low electric field is applied.
The polarizing plate arrangement may be set so that eff is approximately 45 degrees. Contrary to the case of normally closed when the electric field is applied, the value of χ eff decreases according to its strength. However, even if χ eff becomes minimum (that is, 0), a considerable amount of light leaks due to the residual phase difference of the liquid crystal molecules fixed near the interface. d · Δn from 0.27 to 0.
According to an experiment conducted by the inventors of the present invention in which the voltage is set to 37 μm and an effective voltage of 3 to 10 V is applied, the value of the interface residual phase difference is about 0.02 to 0.06 μm. Further, the actual thickness d of the liquid crystal composition layer and the effective thickness d of the liquid crystal composition layer
the relationship between the eff is a d eff ≒ d-R S ... (2).

【0016】よって、0.02から0.06μm程度の複
屈折位相差を有する位相差板(この位相差をRf と表わ
す)を界面残留位相差を補償するように挿入すること
で、暗状態が沈み込み、高コントラスト比が得られる。
位相差板の進相軸の角度φR は、電圧印加時の液晶組成
物層の実効的な光軸χeff に平行にする。より完全に暗
状態の明るさを沈み込ませるには、暗状態を表示するた
めの電圧を印加したときの残留位相差にきちっと合わせ
れば良い。以上より、暗状態の沈み込みと明状態の透過
率,白色度を両立するには、次式の関係を満たせば良
い。
Therefore, by inserting a retardation plate having a birefringence retardation of about 0.02 to 0.06 μm (this retardation is represented by R f ) so as to compensate for the interface residual retardation, a dark state is obtained. , And a high contrast ratio is obtained.
The angle φ R of the fast axis of the retardation plate is made parallel to the effective optical axis χ eff of the liquid crystal composition layer when a voltage is applied. In order to completely sink the brightness of the dark state, it is necessary to exactly match the residual phase difference when the voltage for displaying the dark state is applied. From the above, in order to achieve both the sinking in the dark state and the transmittance and the whiteness in the bright state, it is sufficient to satisfy the following equation.

【0017】 0.21μm<(d・Δn−Rf)<0.36μm …(3) 望ましくは、 0.23μm<(d・Δn−Rf)<0.33μm …(4) この手法は、特に副画素内で電界印加時の配向方向(液
晶の光学軸方向)が比較的均一になる誘電率異方性が負
の液晶において効果がある。
[0017] 0.21μm <(d · Δn-R f) <0.36μm ... (3) preferably, 0.23μm <(d · Δn- R f) <0.33μm ... (4) This approach, In particular, it is effective in a liquid crystal having a negative dielectric anisotropy in which the alignment direction (optical axis direction of the liquid crystal) when an electric field is applied is relatively uniform in the sub-pixel.

【0018】従来方式であるツイステッドネマチック(T
wisted Nematic:TN)方式では一般に知られているよ
うにd・Δnをファーストミニマム条件である0.50
μm近傍に設定した時に、高透過率,無彩色となる。そ
の裕度を考慮するとTN方式では0.40から0.60μ
mの間に設定すると良い。
Twisted nematic (T
In the wisted Nematic (TN) method, d.Δn is 0.50 which is a first minimum condition as is generally known.
When set to around μm, high transmittance and achromatic color are obtained. Considering the margin, the TN method is 0.40 to 0.60μ.
Set between m.

【0019】尚、完全に旋光性を消失させるには、上下
基板界面近傍での液晶配向方向をほぼ平行となるように
する必要があり、90度TNモードを想定すると、一方
の基板側の液晶分子を90度近く回転させなくてはなら
ない。複屈折モードで表示する場合には液晶分子回転角
は45度程度で良く、しきい値電圧に関しては複屈折モ
ードのほうが低くなる。
In order to completely eliminate the optical rotatory power, it is necessary to make the liquid crystal alignment directions in the vicinity of the upper and lower substrate interfaces substantially parallel, and assuming a 90 ° TN mode, the liquid crystal on one substrate side You have to rotate the molecule close to 90 degrees. When displaying in the birefringence mode, the liquid crystal molecule rotation angle may be about 45 degrees, and the threshold voltage is lower in the birefringence mode.

【0020】さらに、このように液晶分子が立ち上がら
ない為に、従来は大きな傾き角(液晶分子長軸と界面と
のなす角)を与える配向膜を用い、その大きさをプロセ
ス条件を厳しく管理し精密に制御する必要があったが、
必ずしもそのような配向膜やプロセス管理を必要としな
い。傾き角の役割を言い替えると以下のように表現でき
る。電界方向と液晶の初期配向方向とのなす角φLCが9
0度であると、電界増加と共に90度より増加する場合
と減少する場合の変形のエネルギーが等しく両方が混在
し、それらの境界部で光が漏れるドメインが生じ、コン
トラスト比を低下させる可能性がある。これを、90度
(実質的には89.5 度以下、望ましくは88度以下)
からずらすことで、90度より増加するか減少するかの
いずれか一方を強制的に選択させることが可能になる。
傾き角を付与する代わりに基板界面上での液晶分子長軸
方向(ラビング方向)を電界方向にに対して90度から
ずらした所定方向に設定すれば良い。尚、簡単化の為、
誘電率異方性が正の液晶を想定して説明してきたが、負
の場合は0度からずらすように設計すれば良い。特に液
晶組成物の誘電率異方性が負の場合、ラビング方向の設
定でドメインが防止できるというメリットは大きい。即
ち、電界方向と基板界面上での液晶分子長軸方向とがな
す角φLC(φLC>0度と定義する)を0度以上(実質的
には0.5 度以上)、望ましくは2度以上にすれば良
い。
Further, in order to prevent the liquid crystal molecules from rising in this way, conventionally, an alignment film which gives a large tilt angle (angle formed by the long axis of the liquid crystal molecule and the interface) is used, and its size is strictly controlled under process conditions. It needed to be controlled precisely,
It does not necessarily require such an alignment film or process control. In other words, the role of the tilt angle can be expressed as follows. The angle φ LC formed by the direction of the electric field and the initial alignment direction of the liquid crystal is 9
When the degree is 0 degree, the deformation energies when the electric field increases and when the electric field increases more than 90 degrees are equal and both are mixed, and a domain where light leaks occurs at the boundary between them, which may reduce the contrast ratio. is there. 90 degrees (substantially 89.5 degrees or less, preferably 88 degrees or less)
By shifting from 90 degrees, it is possible to forcibly select either one that increases or decreases from 90 degrees.
Instead of giving a tilt angle, the liquid crystal molecule major axis direction (rubbing direction) on the substrate interface may be set to a predetermined direction deviated from 90 degrees with respect to the electric field direction. For simplification,
The description has been made assuming liquid crystal having a positive dielectric anisotropy, but when the liquid crystal has a negative dielectric anisotropy, the liquid crystal may be designed to be shifted from 0 degree. In particular, when the liquid crystal composition has a negative dielectric anisotropy, the setting of the rubbing direction has a great advantage of preventing domains. That is, the angle φ LC (defined as φ LC > 0 degree) formed by the direction of the electric field and the long axis direction of the liquid crystal molecules on the substrate interface is 0 degree or more (substantially 0.5 degree or more), preferably 2 degrees. It should be more than once.

【0021】一般に傾き角の制御には配向膜の高度な分
子設計と量産プロセス(配向膜材料の塗布,加熱焼成
等)の精密管理が必要で、使用できる材料の自由度は高
くない。本方式のように縦電界方式の傾き角の機能をラ
ビング方向の設定で付与可能なことから、配向膜材料の
選択の自由度も高くなる。例えばカラーフィルタ上の平
坦化膜,薄膜トランジスタ上の保護膜(一部或いは全
部)に有機ポリマを用い、それを直接ラビング等の表面
配向処理を行っても、配向膜との兼用がより容易にな
る。有機ポリマを使用すれば表面の凹凸が平坦化でき、
段差近傍での配向の乱れに伴う光漏れが抑制でき、更に
コントラスト比を高める効果が得られる。
Generally, in order to control the tilt angle, a sophisticated molecular design of the alignment film and precise management of mass production processes (application of alignment film material, heating and baking, etc.) are required, and the degree of freedom of usable materials is not high. Since the function of the tilt angle of the vertical electric field method can be provided by setting the rubbing direction like this method, the degree of freedom in selecting the alignment film material is also increased. For example, even if the organic polymer is used for the flattening film on the color filter and the protective film (part or all) on the thin film transistor and it is directly subjected to surface alignment treatment such as rubbing, it can be used as an alignment film more easily. . If you use an organic polymer, you can flatten the surface irregularities,
Light leakage due to disordered orientation near the step can be suppressed, and the effect of increasing the contrast ratio can be obtained.

【0022】横電界方式では複数の細長い線状の電極を
配列し、それらの電極間に電位差を与えて液晶を駆動す
る。この際、これらの線状電極を1画素内でほぼ特定の
方向(第1の方向)にそろえて配置し、かつ隣合う線状
電極の間の間隔Lを線状電極の幅Wの3分の1以上とす
ることで、少なくとも20%以上の実用的な開口率が得
られる。
In the horizontal electric field system, a plurality of elongated linear electrodes are arranged and a potential difference is applied between the electrodes to drive the liquid crystal. At this time, these linear electrodes are arranged in one pixel in a substantially specific direction (first direction), and the distance L between adjacent linear electrodes is set to be 3 times the width W of the linear electrodes. By setting it to 1 or more, a practical aperture ratio of at least 20% or more can be obtained.

【0023】一般にTFT方式のようなアクティブ駆動
を行う際には、一定期間液晶に一定の電圧が印加され続
けるように液晶素子に電荷を貯める必要がある。そのた
め、高比抵抗の液晶材料を用いると共に例えば並列に補
助容量素子を形成して、貯め込む電荷の総量を増やして
電圧保持期間を引き延ばす設計をしている。また、液晶
素子及び補助容量素子の容量の総和の増大は、画質向上
にも重要である。即ち、電極配線設計上、好ましくない
不要な回路素子(寄生容量素子と称する)が形成されて
しまうことに対する対策としても有効である。液晶素子
及び補助容量素子の容量の総和の増大により、相対的に
寄生容量素子が無視できるようになるからである。
Generally, when performing active driving such as the TFT method, it is necessary to store charges in the liquid crystal element so that a constant voltage is continuously applied to the liquid crystal for a certain period. Therefore, a liquid crystal material having a high specific resistance is used, and an auxiliary capacitance element is formed in parallel, for example, to increase the total amount of stored charges and to extend the voltage holding period. In addition, the increase of the total capacitance of the liquid crystal element and the auxiliary capacitance element is important for improving the image quality. That is, it is also effective as a countermeasure against the formation of an unnecessary circuit element (referred to as a parasitic capacitance element) which is not preferable in designing the electrode wiring. This is because the parasitic capacitance element becomes relatively negligible as the total capacitance of the liquid crystal element and the auxiliary capacitance element increases.

【0024】縦電界方式では、画素電極と共通電極のい
ずれもが透明な平板状構造を成し、それらが相対向して
大きな平行平板容量(以下、本発明では画素電極と共通
電極の間で形成される容量をCLCと表記する)を形成し
ていた。そのため、液晶素子の容量CLCが比較的大き
く、補助容量素子の容量CS をある程度大きく設計すれ
ば寄生容量素子の影響を排除できるような総和容量が得
られた。一方、横電界方式では画素電極と共通電極のい
ずれもが線状構造をとるため、縦電界方式に比べてその
容量CLCが著しく小さい。また、電極構造が線状である
ことにより液晶の比抵抗が同一であっても縦電界方式に
比べて回路上の抵抗値は著しく高く、保持率維持の観点
では比抵抗の制約条件は緩い。即ち、補助容量素子の容
量Csをさほど大きくせずとも、高抵抗との組み合わせ
により、保持時間が長くできる。
In the vertical electric field system, both the pixel electrode and the common electrode form a transparent flat plate structure, and they face each other and have a large parallel plate capacitance (hereinafter, in the present invention, between the pixel electrode and the common electrode). The capacity formed is referred to as C LC ). Therefore, if the capacitance C LC of the liquid crystal element is relatively large and the capacitance C S of the auxiliary capacitance element is designed to be large to some extent, a total capacitance that can eliminate the influence of the parasitic capacitance element was obtained. On the other hand, in the horizontal electric field method, both the pixel electrode and the common electrode have a linear structure, so that the capacitance C LC is significantly smaller than that in the vertical electric field method. In addition, since the electrode structure is linear, even if the specific resistance of the liquid crystal is the same, the resistance value on the circuit is significantly higher than in the vertical electric field method, and the constraint condition of the specific resistance is loose from the viewpoint of maintaining the retention rate. That is, the holding time can be lengthened by combining with the high resistance without increasing the capacitance Cs of the auxiliary capacitance element so much.

【0025】縦電界方式では1013Ω・cm以上の液晶材
料が必要であるのに対し横電界方式では1011Ω・cmあ
れば十分である。横電界方式において総容量CLC+Cs
の小ささを使いこなすことができればパネル全体の負荷
が軽減でき、回路の低消費電力化に寄与できる。液晶に
おける比抵抗の制約条件緩和は液晶材料の選択の自由度
を広げることになる。
In the vertical electric field method, a liquid crystal material of 10 13 Ω · cm or more is required, whereas in the horizontal electric field method, 10 11 Ω · cm is sufficient. Total capacitance C LC + Cs in lateral electric field method
If the small size can be fully used, the load on the entire panel can be reduced, which contributes to lower power consumption of the circuit. Relaxing the constraint condition of the specific resistance of the liquid crystal expands the degree of freedom in selecting the liquid crystal material.

【0026】横電界方式で問題となる寄生容量素子のう
ち走査信号電極(ゲート電極)と画素電極(ソース電
極)の間に形成される容量(CGSと表記する)が特に問
題であることが分かった。そこで、駆動波形を工夫する
ことにより、液晶には十分な電圧がかかり、縦電界方式
の場合よりは小さな補助容量素子で十分に機能し、かつ
寄生容量素子が見えなくなる、という波形を探索した。
その結果、走査配線電極の各々に2値以上の非選択電圧
を有する例えば一定の幅のパルス列からなる交流矩形波
からなる走査信号を印加し、かつこれと同一位相,同一
極性の交流波形を基準電極(共通電極)の全期間,画素
電極の非選択期間に印加すれば、ほとんどの期間である
非選択期間に走査配線電極,基準電極,画素電極間の相
対的な電位差は低く(同振幅ならほぼゼロに)抑制され
る。その結果、寄生容量は見えなくなった。
Of the parasitic capacitance elements that are a problem in the horizontal electric field method, the capacitance (denoted as C GS ) formed between the scanning signal electrode (gate electrode) and the pixel electrode (source electrode) is a particular problem. Do you get it. Therefore, by devising the drive waveform, a waveform is searched for in which a sufficient voltage is applied to the liquid crystal, a smaller auxiliary capacitance element functions more than in the case of the vertical electric field method, and the parasitic capacitance element disappears.
As a result, a scanning signal having, for example, an AC rectangular wave having a pulse train having a constant width and having a non-selective voltage of two or more values is applied to each of the scanning wiring electrodes, and an AC waveform having the same phase and the same polarity as the reference is applied. If the voltage is applied during the entire period of the electrodes (common electrode) and the non-selection period of the pixel electrode, the relative potential difference between the scan line electrode, the reference electrode, and the pixel electrode is low during the non-selection period, which is almost the same period (if the same amplitude, Suppressed to almost zero). As a result, the parasitic capacitance disappeared.

【0027】[0027]

【実施例】【Example】

〔実施例1〕基板としては厚みが0.7mm でガラス基板
を2枚用いる。これらの基板間に誘電率異方性Δεが正
でその値が4.5 であり、屈折率異方性Δnが0.07
2(589nm,20℃)のネマチック液晶組成物を挟
む。TFT側の基板表面に塗布したポリイミド系配向制
御膜をラビング処理して、3.5 度のプレチルト角とす
る。上下界面上のラビング方向は互いにほぼ平行で、か
つ印加電界方向とのなす角度を78度(φLC1=φLC2
78°)とした。ギャップdは球形のポリマビーズを基
板間に分散して挾持し、液晶封入状態で4.0μm とし
た。よってd・Δnは0.288μm である。2枚の偏
光板でパネルを挾み、一方の偏光板の偏光透過軸をラビ
ング方向にほぼ平行、即ちφP1=78°とし、他方をそ
れに直交、即ちφP2=−12°とした。これにより、ノ
ーマリクローズ特性を得た。
[Embodiment 1] Two glass substrates having a thickness of 0.7 mm are used as substrates. Between these substrates, the dielectric anisotropy Δε is positive and its value is 4.5, and the refractive index anisotropy Δn is 0.07.
2 (589 nm, 20 ° C.) between the nematic liquid crystal compositions. The polyimide-based orientation control film applied to the surface of the substrate on the TFT side is rubbed to obtain a pretilt angle of 3.5 degrees. The rubbing directions on the upper and lower interfaces are substantially parallel to each other, and the angle formed by the applied electric field direction is 78 degrees (φ LC1 = φ LC2 =
78 °). The gap d was set to 4.0 μm in a liquid crystal sealed state by dispersing spherical polymer beads between the substrates and sandwiching them. Therefore, d · Δn is 0.288 μm. The panel was sandwiched between two polarizing plates, and the polarization transmission axis of one polarizing plate was substantially parallel to the rubbing direction, that is, φ P1 = 78 °, and the other was orthogonal thereto, that is, φ P2 = −12 °. As a result, normally closed characteristics were obtained.

【0028】薄膜トランジスタ及び各種電極の構造は図
2に示すように、薄膜トランジスタ素子34が画素電極
(ソース電極)1と信号配線電極12、及び走査配線電
極10に接続され、画素電極1及び共通電極である基準
電極2が1画素内で信号配線電極12にほぼ平行な方向
(第1の方向と称す)に伸びている。なお、本実施例では
画素電極1と基準電極2のいずれをも信号配線電極12
に平行としたが、液晶のしきい値特性を制御するために
若干(例えば5度程度)傾けても、本発明の範疇に入
り、その効果は十分に得られる。また、本実施例では基
準電極として基準電極2を用いたが、基準電極は画像情
報によらず一定の予め定められた波形を供給する電極
(例えば走査配線電極)であれば何でも良い。
As for the structure of the thin film transistor and various electrodes, as shown in FIG. 2, the thin film transistor element 34 is connected to the pixel electrode (source electrode) 1, the signal wiring electrode 12 and the scanning wiring electrode 10, and the pixel electrode 1 and the common electrode are connected. The direction in which a certain reference electrode 2 is substantially parallel to the signal wiring electrode 12 within one pixel
(Extended in the first direction). In this embodiment, both the pixel electrode 1 and the reference electrode 2 are the signal wiring electrodes 12
However, even if it is tilted slightly (for example, about 5 degrees) in order to control the threshold characteristics of the liquid crystal, it falls within the scope of the present invention and its effect is sufficiently obtained. Further, although the reference electrode 2 is used as the reference electrode in the present embodiment, the reference electrode may be any electrode (for example, a scanning wiring electrode) that supplies a predetermined waveform regardless of the image information.

【0029】信号配線電極12には画像情報を有する信
号波形が印加され、走査配線電極10には走査波形が信
号波形と同期をとって印加される。信号配線電極12か
ら薄膜トランジスタを介して画素電極1に情報信号が伝
達され、基準電極2との間で液晶部分に電圧が印加され
る。本実施例では画素電極1と基準電極2を同一基板側
に配置し、かつ走査配線電極10と同一層に形成した
が、これに限るものではなく、例えば対向基板上に形成
しても良く、また同一基板上でも信号配線電極12,画
素電極1と同一層に形成しても良い。もちろん、これら
の電極と別に基準電極用の導電層を形成してパターン化
しても良い。
A signal waveform having image information is applied to the signal wiring electrode 12, and a scanning waveform is applied to the scanning wiring electrode 10 in synchronization with the signal waveform. An information signal is transmitted from the signal wiring electrode 12 to the pixel electrode 1 through the thin film transistor, and a voltage is applied to the liquid crystal portion between the signal electrode and the reference electrode 2. In the present embodiment, the pixel electrode 1 and the reference electrode 2 are arranged on the same substrate side and formed on the same layer as the scanning wiring electrode 10, but the present invention is not limited to this, and they may be formed on the opposite substrate, for example. Alternatively, the signal wiring electrodes 12 and the pixel electrodes 1 may be formed in the same layer on the same substrate. Of course, a conductive layer for the reference electrode may be formed separately from these electrodes and patterned.

【0030】補助容量素子11は図2に示すように、改
めて補助容量素子の為の領域は形成せずに、画素電極1
と基準電極2の配線部の一部を利用してその間に絶縁膜
を挟む構造として形成した。この補助容量素子11の静
電容量は約21fFになった。走査配線電極10および
信号配線電極12にはそれぞれ走査配線駆動用LSIお
よび信号配線駆動用LSIを接続した。
As shown in FIG. 2, the auxiliary capacitance element 11 does not have a new area for the auxiliary capacitance element, and the auxiliary capacitance element 11 is not formed.
And a part of the wiring portion of the reference electrode 2 is used to sandwich the insulating film therebetween. The capacitance of the auxiliary capacitance element 11 was about 21 fF. A scanning wiring driving LSI and a signal wiring driving LSI were connected to the scanning wiring electrode 10 and the signal wiring electrode 12, respectively.

【0031】画素電極1に蓄積された電荷は、画素電極
1と基準電極2の間の静電容量と補助容量素子11を並
列接続した容量である約24fFに蓄積されることにな
り、液晶組成物の比抵抗が5×1010Ωcmであっても画
素電極1の電圧変動を抑制することができる。このた
め、画質劣化を防止することができた。
The charges accumulated in the pixel electrode 1 are accumulated in about 24 fF, which is a capacitance in which the electrostatic capacitance between the pixel electrode 1 and the reference electrode 2 and the auxiliary capacitance element 11 are connected in parallel. Even if the specific resistance of the object is 5 × 10 10 Ωcm, the voltage fluctuation of the pixel electrode 1 can be suppressed. Therefore, it is possible to prevent the deterioration of image quality.

【0032】画素数は640(×3)×480で、画素
ピッチは横方向(即ち共通電極間)は110μm、縦方
向(即ち走査配線電極間)は330μmである。隣接す
る画素電極と基準電極の間隙は12μmで、いずれも1
2μmである画素電極及び基準電極の幅の3分の1より
も十分に大きくし、33%という実用的な開口率を確保
した。本実施例では1画素を4つの長方形の副画素に分
割したが、分割数は2分割でも6分割でも、さらには分
割しなくてもよい。さらに、本実施例では画素電極と基
準電極のいずれもが複数形成されているが、複数の画素
電極どうし、或いは複数の基準電極どうしで幅を変えて
も良い。さらにまた、一本の画素電極或いは一本の基準
電極内で幅を変えても良い。
The number of pixels is 640 (× 3) × 480, and the pixel pitch is 110 μm in the horizontal direction (that is, between the common electrodes) and 330 μm in the vertical direction (that is, between the scanning wiring electrodes). The gap between the adjacent pixel electrode and reference electrode is 12 μm, and both are 1
The width was made sufficiently larger than 1/3 of the width of the pixel electrode and the reference electrode, which is 2 μm, and a practical aperture ratio of 33% was secured. In this embodiment, one pixel is divided into four rectangular sub-pixels, but the number of divisions may be two, six, or even less. Furthermore, in this embodiment, a plurality of pixel electrodes and a plurality of reference electrodes are formed, but the width may be changed between a plurality of pixel electrodes or between a plurality of reference electrodes. Furthermore, the width may be changed within one pixel electrode or one reference electrode.

【0033】薄膜トランジスタを有する基板に相対向す
る基板上にストライプ状のR,G,B3色のカラーフィ
ルタ17を備えた(図9)。カラーフィルタの上には表
面を平坦化する透明樹脂からなる平坦化膜14を積層し
た。透明樹脂の材料としてはエポキシ樹脂を用いた。更
に、この透明樹脂上にポリイミド系の配向制御膜を塗布
し、ラビング処理によりプレチルト角は10度とした。
ここで、カラーフィルタは3種としたが、2種でも或い
は4種以上でも良い。また、本実施ではカラーフィルタ
及びブラックマトリクスを薄膜トランジスタを有する基
板に相対向する基板上に形成したが、カラーフィルタ及
びブラックマトリクスのいずれか一方或いは両方を薄膜
トランジスタを有する基板側に形成しても構わない。
Stripe-shaped R, G, and B color filters 17 are provided on the substrate opposite to the substrate having the thin film transistors (FIG. 9). A flattening film 14 made of a transparent resin for flattening the surface is laminated on the color filter. An epoxy resin was used as the material of the transparent resin. Further, a polyimide-based orientation control film was applied on this transparent resin, and the pretilt angle was adjusted to 10 degrees by rubbing treatment.
Here, the color filters are three, but may be two or four or more. Further, in this embodiment, the color filter and the black matrix are formed on the substrate opposite to the substrate having the thin film transistor, but either one or both of the color filter and the black matrix may be formed on the substrate side having the thin film transistor. .

【0034】パネルには駆動回路が接続されている。本
実施例の駆動回路システムの構成を図8に示す。この時
の駆動波形を図3に示す。走査配線電極に印加される走
査信号の非選択電圧VGLが2値をとり全ての行におい
て、ある周期,ある位相で変化している。また、この波
形に同期して共通電極の全周期,画素電極の非選択期間
にも同周期,同位相で変化する電圧波形が印加されてい
る。このような波形設計により図4に示す寄生容量CGS
にかかる電圧が抑制でき、その影響が軽減できる。な
お、同周期,同位相で変化する電圧波形の振幅が同一で
ある場合が理想的であり、最も効果的に寄生容量CGS
かかる電圧を抑制できるが、振幅幅が同じでなくとも効
果は得られる。
A drive circuit is connected to the panel. The configuration of the drive circuit system of this embodiment is shown in FIG. The drive waveform at this time is shown in FIG. The non-selection voltage V GL of the scanning signal applied to the scanning wiring electrode is binary, and changes in a certain period and a certain phase in all the rows. Further, in synchronization with this waveform, a voltage waveform that changes in the same period and in the same phase is applied to the entire period of the common electrode and the non-selection period of the pixel electrode. With such a waveform design, the parasitic capacitance C GS shown in FIG.
Voltage can be suppressed, and its influence can be reduced. It is ideal that the voltage waveforms changing in the same period and the same phase have the same amplitude, and the voltage applied to the parasitic capacitance C GS can be suppressed most effectively, but the effect is not required even if the amplitude width is not the same. can get.

【0035】2Vと6.5V の間で駆動することにより
130のコントラスト比と22%の輝度透過率を得た。
なお、本発明で言う輝度透過率とは開口率が100%で
あり、かつカラーフィルタのない場合に換算した値とし
て定義する。カラーフィルタを含めたTFT−LCD駆
動時の明状態の輝度透過率は2.2% となった。白色螢
光管と導光板からなるバックライトを重ね、表面輝度8
0cd/m2 を得た。バックライトの消費電力は6.4
W となった。駆動回路の消費電力は1.2W で、TF
T−LCDトータルの消費電力は7.6W となり、CR
Tよりは十分に低い値を得た。視角を変化させても表示
特性はほとんど変化しなかった。
By driving between 2 V and 6.5 V, a contrast ratio of 130 and a luminance transmittance of 22% were obtained.
The brightness transmittance referred to in the present invention is defined as a value converted when the aperture ratio is 100% and there is no color filter. The brightness transmittance in the bright state when driving the TFT-LCD including the color filter was 2.2%. A backlight consisting of a white fluorescent tube and a light guide plate is overlaid to give a surface brightness of 8
0 cd / m 2 was obtained. Backlight power consumption is 6.4
It became W. The power consumption of the drive circuit is 1.2W, TF
T-LCD total power consumption is 7.6W, CR
A value sufficiently lower than T was obtained. The display characteristics hardly changed even when the viewing angle was changed.

【0036】〔実施例2〕本実施例では実施例1と駆動
波形を図5のように変えた点以外は同じである。実施例
1では走査配線電極に印加される走査信号の2値非選択
電圧VGLが1ラインを選択するごとに交換されるのに対
して、1フレームごとに交換させたものである。
[Embodiment 2] This embodiment is the same as Embodiment 1 except that the drive waveform is changed as shown in FIG. In the first embodiment, the binary non-selection voltage V GL of the scanning signal applied to the scanning wiring electrodes is exchanged every time one line is selected, whereas it is exchanged every frame.

【0037】2Vと6.5V の間で駆動することにより
110のコントラスト比と22%の輝度透過率を得た。
カラーフィルタを含めたTFT−LCD駆動時の明状態
の輝度透過率は2.2% となった。白色螢光管と導光板
からなるバックライトを重ね、表面輝度80cd/m2
を得た。バックライトの消費電力は6.4Wとなった。
駆動回路の消費電力は1.2Wで、TFT−LCDトー
タルの消費電力は7.6Wとなった。視角を変化させて
も表示特性はほとんど変化しなかった。
By driving between 2V and 6.5V, a contrast ratio of 110 and a luminance transmittance of 22% were obtained.
The brightness transmittance in the bright state when driving the TFT-LCD including the color filter was 2.2%. A backlight consisting of a white fluorescent tube and a light guide plate is overlaid, and the surface brightness is 80 cd / m 2.
I got The power consumption of the backlight was 6.4W.
The power consumption of the drive circuit was 1.2W, and the total power consumption of the TFT-LCD was 7.6W. The display characteristics hardly changed even when the viewing angle was changed.

【0038】〔実施例3〕本実施例の構成は下記の要件
を除けば、実施例1と同一である。
[Third Embodiment] The configuration of this embodiment is the same as that of the first embodiment except for the following requirements.

【0039】隣接する画素電極と基準電極の間隙Dを8
μmとし、いずれも13μmである画素電極及び基準電
極の幅WP,WCの3分の1よりも十分に大きくし、2
6%という実用的な開口率を確保した。
The gap D between the adjacent pixel electrode and reference electrode is set to 8
.mu.m, which is sufficiently larger than one-third of the widths WP and WC of the pixel electrode and the reference electrode, both of which are 13 .mu.m.
A practical aperture ratio of 6% was secured.

【0040】視角を変化させても表示特性はほとんど変
化しなかった。1.3Vと4.5Vの間で駆動することに
より110のコントラスト比と21%の輝度透過率を得
た。カラーフィルタを含めたTFT−LCD駆動時の明
状態の輝度透過率は1.8%となった。白色螢光管と導
光板からなるバックライトを重ね、表面輝度80cd/
2を得た。バックライトの消費電力は8.1Wとなっ
た。駆動回路の消費電力は1.2Wで、TFT−LCD
トータルの消費電力は9.3Wとなり、CRTよりは十
分に低い値を得た。
The display characteristics hardly changed even when the viewing angle was changed. By driving between 1.3V and 4.5V, a contrast ratio of 110 and a luminance transmittance of 21% were obtained. The brightness transmittance in the bright state when driving the TFT-LCD including the color filter was 1.8%. A backlight consisting of a white fluorescent tube and a light guide plate is overlaid, and the surface brightness is 80 cd /
It was obtained m 2. The power consumption of the backlight was 8.1W. The power consumption of the drive circuit is 1.2W, and TFT-LCD
The total power consumption was 9.3W, which was sufficiently lower than that of a CRT.

【0041】〔実施例4〕本実施例の構成は下記の要件
を除けば実施例1と同一である。
[Embodiment 4] The configuration of this embodiment is the same as that of the first embodiment except for the following requirements.

【0042】図15(a)は本実施例におけるアクティ
ブマトリクス型液晶表示装置の平面図の一部である。図
15(b)は図15(a)のA−A′における断面図、
図15(c)は図15(a)のB−B′における断面図
である。実施例1における補助容量素子11を、図15
(c)に示すように、画素電極1と対向基板上に配置さ
れた基準電極2で液晶組成物層50を挟む構造に変え
た。本実施例では、補助容量素子11の静電容量を画素
電極1と基準電極2の間の静電容量と完全に並列接続す
ることが可能になるため、信号配線電極12の電圧変動
の影響は画素電極1に及ばなくなる。このため、画素電
極1の電圧変動をさらに抑えることができ、表示むらは
発生しなかった。
FIG. 15A is a part of a plan view of the active matrix type liquid crystal display device in this embodiment. FIG. 15B is a sectional view taken along the line AA ′ in FIG.
FIG. 15C is a sectional view taken along line BB ′ of FIG. The auxiliary capacitance element 11 in Example 1 is shown in FIG.
As shown in (c), the structure is changed to sandwich the liquid crystal composition layer 50 between the pixel electrode 1 and the reference electrode 2 arranged on the counter substrate. In the present embodiment, the capacitance of the auxiliary capacitance element 11 can be connected in parallel with the capacitance between the pixel electrode 1 and the reference electrode 2 completely, so that the influence of the voltage fluctuation of the signal wiring electrode 12 is not affected. It does not reach the pixel electrode 1. Therefore, the voltage fluctuation of the pixel electrode 1 can be further suppressed, and the display unevenness does not occur.

【0043】本実施例における液晶表示装置でも画質劣
化は発生せず、実施例1と同様の広い視野角と10W以
下の低い消費電力とが得られた。
In the liquid crystal display device of this embodiment, the image quality was not deteriorated, and the wide viewing angle and the low power consumption of 10 W or less were obtained as in the first embodiment.

【0044】〔実施例5〕実施例5から実施例10では
下記に述べる以外の構成は実施例1と同じである。
[Embodiment 5] Embodiments 5 to 10 are the same as Embodiment 1 except for the points described below.

【0045】図16と図17は、画素電極1と基準電極
2とを絶縁層を介して異層化した本実施例の単位画素の
平面図及び断面図を表わす。ガラス基板上にCrよりな
る走査配線電極10および基準電極2を形成し、これら
の電極を覆うように窒化シリコン(SiN)膜からなる
ゲート絶縁膜13を形成した。走査配線電極10上の一
部にゲート絶縁膜13上を介して非晶質シリコン(a−
Si)膜16を形成しトランジスタの能動層とする。前
記a−Si膜16のパターンの一部に重畳するようにM
oよりなる信号配線電極12,画素電極1を形成し、こ
れらすべてを被覆するようにSiN膜よりなる保護絶縁
膜15を形成した。ここで、薄膜トランジスタの走査配
線電極13に電圧を印加して薄膜トランジスタをオンと
すると画素電極1に電圧が印加し、画素電極1と基準電
極2間に電界を誘起させると、前述の実施例と同様に電
界方向に液晶分子が向きを変え、光透過率が変る。
16 and 17 are a plan view and a sectional view of a unit pixel of this embodiment in which the pixel electrode 1 and the reference electrode 2 are made different layers with an insulating layer interposed therebetween. A scanning wiring electrode 10 and a reference electrode 2 made of Cr were formed on a glass substrate, and a gate insulating film 13 made of a silicon nitride (SiN) film was formed so as to cover these electrodes. A part of the scan wiring electrode 10 is covered with the amorphous silicon (a-
A Si) film 16 is formed to be an active layer of the transistor. M is formed so as to overlap a part of the pattern of the a-Si film 16.
The signal wiring electrode 12 and the pixel electrode 1 made of o were formed, and the protective insulating film 15 made of the SiN film was formed so as to cover all of them. Here, when a voltage is applied to the scanning wiring electrode 13 of the thin film transistor and the thin film transistor is turned on, a voltage is applied to the pixel electrode 1 and an electric field is induced between the pixel electrode 1 and the reference electrode 2, similar to the above-described embodiment. The liquid crystal molecules change their direction in the direction of the electric field, and the light transmittance changes.

【0046】画素電極1および信号配線電極12と基準
電極2を絶縁分離することにより画素電極1および基準
電極2の平面パターンの設計自由度が大きくなり画素開
口率を向上させることが可能となる。また、画素電極1
と基準電極2の重畳部は液晶容量と並列に接続される付
加容量として作用するので液晶印加電圧の保持能を向上
させることが出来る。このような効果は従来の櫛歯状電
極では得られないものであり、画素電極1および信号配
線電極12と基準電極2を絶縁分離することにより初め
て達成される。図16から明らかなように、画素電極と
共通電極を同層とした場合のように表示部の一部をわざ
わざさいて容量素子を形成する必要はなく、共通電極を
表示領域の外側に引き回すための配線の一部において重
畳しさえすれば良い。
By insulating and separating the pixel electrode 1 and the signal wiring electrode 12 from the reference electrode 2, the degree of freedom in designing the plane pattern of the pixel electrode 1 and the reference electrode 2 is increased, and the pixel aperture ratio can be improved. Also, the pixel electrode 1
Since the overlapping portion of the reference electrode 2 and the reference electrode 2 acts as an additional capacitance connected in parallel with the liquid crystal capacitance, the ability to hold the liquid crystal applied voltage can be improved. Such an effect cannot be obtained by the conventional comb-teeth-shaped electrode, and can be achieved only by insulatingly separating the pixel electrode 1, the signal wiring electrode 12, and the reference electrode 2. As is clear from FIG. 16, it is not necessary to purposely form a part of the display portion to form a capacitor as in the case where the pixel electrode and the common electrode are in the same layer, and the common electrode is laid out to the outside of the display region. It only has to overlap in a part of the wiring.

【0047】本実施例における液晶表示装置でも画質劣
化は発生せず、実施例1と同様の広い視野角と10W以
下の低い消費電力とが得られた。
In the liquid crystal display device of this embodiment, the image quality was not deteriorated, and the wide viewing angle and the low power consumption of 10 W or less were obtained as in the first embodiment.

【0048】〔実施例6〕図18は画素電極1と基準電
極2とを絶縁層を介して異層化した本実施例の単位画素
の平面図を示す。本実施例では基準電極2を十字型と
し、一方画素電極1はリング型とした点に特徴がある。
基準電極2と画素電極1は互いに重なり付加容量を形成
している。本実施例によれば、基準電極2と走査配線電
極10の間の距離を大きくとれるので基準電極2と走査
配線電極10間の短絡不良を防止出来る。また、画素電
極1をリング型にすることにより、ソース電極の任意の
箇所で断線が発生しても2箇所以上の断線がないかぎり
ソース電極全体に給電され、正常な動作が可能である。
即ち、本構造は断線に対し冗長性をもち歩留まりを向上
させることができる。この冗長性のために、リング状電
極の配線幅を狭くしたり、或いはリング電極と走査配線
電極の配線部とを近づけることが異層化のため可能とな
り、さらに開口率を引き上げることが可能である。
[Embodiment 6] FIG. 18 is a plan view of a unit pixel of this embodiment in which the pixel electrode 1 and the reference electrode 2 are made different layers with an insulating layer interposed therebetween. The present embodiment is characterized in that the reference electrode 2 has a cross shape, while the pixel electrode 1 has a ring shape.
The reference electrode 2 and the pixel electrode 1 overlap with each other to form an additional capacitance. According to this embodiment, the distance between the reference electrode 2 and the scanning wiring electrode 10 can be made large, so that a short circuit defect between the reference electrode 2 and the scanning wiring electrode 10 can be prevented. Further, by making the pixel electrode 1 of a ring type, even if disconnection occurs at an arbitrary location of the source electrode, power is supplied to the entire source electrode as long as there is no disconnection at two or more locations, and normal operation is possible.
That is, this structure has redundancy against disconnection and can improve the yield. Due to this redundancy, it is possible to narrow the wiring width of the ring-shaped electrode or bring the ring electrode and the wiring portion of the scanning wiring electrode close to each other because of the different layers, and it is possible to further increase the aperture ratio. is there.

【0049】本実施例における液晶表示装置でも画質劣
化は発生せず、実施例1と同様の広い視野角と10W以
下の低い消費電力とが得られた。
In the liquid crystal display device of this embodiment, the image quality was not deteriorated, and the wide viewing angle and the low power consumption of 10 W or less were obtained as in the first embodiment.

【0050】〔実施例7〕図19は画素電極1と基準電
極2とを絶縁層を介して異層化した本発明の更に別の実
施例の単位画素の平面図を示す。本実施例では、画素電
極1を工字型とし、基準電極2はリング型とした点に特
徴がある。本実施例では前記実施例6と同様に開口率を
向上させることができることに加え、画素電極1と基準
電極2の重なりを大きく出来るので付加容量を大きく出
来る。
[Embodiment 7] FIG. 19 is a plan view of a unit pixel according to still another embodiment of the present invention in which the pixel electrode 1 and the reference electrode 2 are different layers with an insulating layer interposed therebetween. The present embodiment is characterized in that the pixel electrode 1 is of a letter type and the reference electrode 2 is of a ring type. In this embodiment, the aperture ratio can be improved as in the sixth embodiment, and the overlap between the pixel electrode 1 and the reference electrode 2 can be increased, so that the additional capacitance can be increased.

【0051】本実施例における液晶表示装置でも画質劣
化は発生せず、実施例1と同様の広い視野角と10W以
下の低い消費電力とが得られた。
In the liquid crystal display device of this embodiment, the image quality was not deteriorated, and the wide viewing angle and the low power consumption of 10 W or less were obtained as in the first embodiment.

【0052】〔実施例8〕図20は画素電極1と基準電
極2とを絶縁層を介して異層化した本実施例の単位画素
の平面図を示す。本実施例では基準電極2は走査配線電
極10の下層に下地絶縁膜33を介して設けた新たな電
極によって構成した。従って、基準電極2は走査配線電
極10および画素電極1,信号配線電極12の全てと異
層化される。そこで、本実施例は基準電極2を走査配線
電極10と平行な方向だけでなく走査配線電極10と垂
直な方向にも引出して網目状とすることが可能となる。
このことにより、基準電極2の抵抗値を下げられるので
コモン電圧の波形歪を低減しスミアの発生を防止出来る
効果がある。
[Embodiment 8] FIG. 20 is a plan view of a unit pixel of this embodiment in which the pixel electrode 1 and the reference electrode 2 are different layers with an insulating layer interposed therebetween. In this embodiment, the reference electrode 2 is composed of a new electrode provided below the scanning wiring electrode 10 with the underlying insulating film 33 interposed therebetween. Therefore, the reference electrode 2 is formed in a different layer from all of the scanning wiring electrode 10, the pixel electrode 1 and the signal wiring electrode 12. Therefore, in this embodiment, the reference electrode 2 can be drawn out not only in the direction parallel to the scanning wiring electrode 10 but also in the direction perpendicular to the scanning wiring electrode 10 to form a mesh shape.
As a result, the resistance value of the reference electrode 2 can be lowered, so that the waveform distortion of the common voltage can be reduced and the smear can be prevented.

【0053】本実施例における液晶表示装置でも画質劣
化は発生せず、実施例1と同様の広い視野角と10W以
下の低い消費電力とが得られた。
In the liquid crystal display device of this embodiment, the image quality was not deteriorated, and the wide viewing angle and the low power consumption of 10 W or less were obtained as in the first embodiment.

【0054】〔実施例9〕図21は画素電極1と基準電
極2とを絶縁層を介して異層化した本実施例の単位画素
の平面図を示す。本実施例では基準電極2は保護絶縁膜
15上に設けた新たな電極によって構成した。本実施例
においても、前記実施例8と同様に基準電極2は走査配
線電極および画素電極1,信号配線電極12の全てと異
層化されるので、基準電極2を走査配線電極と平行な方
向だけでなく走査配線電極と垂直な方向にも引出して網
目状とすることが可能となりコモン電圧の波形歪を低減
しスミアの発生を防止出来る。
[Embodiment 9] FIG. 21 is a plan view of a unit pixel of this embodiment in which the pixel electrode 1 and the reference electrode 2 are different layers with an insulating layer interposed therebetween. In this embodiment, the reference electrode 2 is composed of a new electrode provided on the protective insulating film 15. Also in this embodiment, the reference electrode 2 is formed in a different layer from all of the scanning wiring electrodes and the pixel electrodes 1 and the signal wiring electrodes 12 as in the case of the eighth embodiment. Not only can it be drawn out in the direction perpendicular to the scanning wiring electrodes to form a mesh, and the waveform distortion of the common voltage can be reduced and smear can be prevented.

【0055】本実施例における液晶表示装置でも画質劣
化は発生せず、実施例1と同様の広い視野角と10W以
下の低い消費電力とが得られた。
In the liquid crystal display device of this embodiment, the image quality was not deteriorated, and the wide viewing angle and the low power consumption of 10 W or less as in the first embodiment were obtained.

【0056】〔実施例10〕図22は画素電極1と基準
電極2とを絶縁層を介して異層化した本発明の更に別の
実施例の単位画素の平面図を示す。本実施例では走査配
線電極10および基準電極2はアルミニウム(Al)で
構成され、その表面はAlの自己酸化膜であるアルミナ
膜32によって被覆されている点に特徴がある。このよ
うな2層絶縁膜構造を採用することにより基準電極2と
信号配線電極12,画素電極1との絶縁不良が低減でき
るので画素欠陥を低減できる。
[Embodiment 10] FIG. 22 is a plan view of a unit pixel according to still another embodiment of the present invention in which the pixel electrode 1 and the reference electrode 2 are different layers with an insulating layer interposed therebetween. The present embodiment is characterized in that the scanning wiring electrode 10 and the reference electrode 2 are made of aluminum (Al), and the surface thereof is covered with an alumina film 32 which is an Al self-oxidation film. By adopting such a two-layer insulating film structure, the insulation defect between the reference electrode 2, the signal wiring electrode 12, and the pixel electrode 1 can be reduced, so that the pixel defect can be reduced.

【0057】本実施例における液晶表示装置でも画質劣
化は発生せず、広い視野角と10W以下の低い消費電力
とが得られた。
Even in the liquid crystal display device of this example, the image quality did not deteriorate, and a wide viewing angle and low power consumption of 10 W or less were obtained.

【0058】〔実施例11〕本実施例の構成は下記の要
件を除けば、実施例1と同一である。
[Embodiment 11] The configuration of this embodiment is the same as that of the embodiment 1 except for the following requirements.

【0059】カラーフィルタ上に有機絶縁層として透明
ポリマからなる平坦化膜14を積層し、その表面を直接
ラビングした。透明ポリマの材料としてはエポキシ樹脂
を用いた。液晶組成物層はエポキシ樹脂に直接接し、界
面での傾き角は0.5 度であった。これにより、配向膜
を塗布する工程がなくなり、製造がより容易かつ短くな
った。一般に従来方式であるTN型では、配向制御膜に
要求される特性が多岐にわたり、それら全てを満足する
必要があり、そのためポリイミド等の一部の材料に限ら
れていた。特に重要な特性は、傾き角である。
A flattening film 14 made of a transparent polymer was laminated as an organic insulating layer on the color filter, and the surface thereof was directly rubbed. An epoxy resin was used as the material of the transparent polymer. The liquid crystal composition layer was in direct contact with the epoxy resin, and the inclination angle at the interface was 0.5 degree. As a result, the step of applying the alignment film was eliminated, and the manufacturing process became easier and shorter. Generally, in the TN type which is the conventional method, the characteristics required for the orientation control film are diverse, and it is necessary to satisfy all of them, so that it is limited to some materials such as polyimide. A particularly important characteristic is the tilt angle.

【0060】本実施例における電気光学特性を測定した
ところ、視角を左右,上下に変えた場合に表示特性はほ
とんど変化しないという結果を得た。また、傾き角が
0.5度と小さいにもかかわらず液晶配向性も良好で、
配向不良ドメインは発生しなかった。また、10W以下
の低い消費電力が得られた。
When the electro-optical characteristics in this example were measured, it was found that the display characteristics hardly changed when the viewing angle was changed to the left and right and up and down. In addition, the liquid crystal alignment is good even though the tilt angle is as small as 0.5 degree,
No misaligned domains were generated. Moreover, low power consumption of 10 W or less was obtained.

【0061】〔実施例12〕実施例11の平坦化膜をエ
ポキシ樹脂からポリイミド樹脂に変えた。同様にポリイ
ミド樹脂の表面を直接ラビングし、平坦化と液晶分子の
配向制御の両方の機能を兼ね備えた。界面での傾き角は
2度であった。他の実施例と比較して、表示特性はほと
んど変化しないという結果を得た。また、液晶配向性も
良好で、配向不良ドメインは発生しなかった。
Example 12 The flattening film of Example 11 was changed from epoxy resin to polyimide resin. Similarly, the surface of the polyimide resin was directly rubbed to have both the functions of flattening and controlling the alignment of liquid crystal molecules. The tilt angle at the interface was 2 degrees. As a result, the display characteristics hardly changed as compared with the other examples. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated.

【0062】本実施例における液晶表示装置でも画質劣
化は発生せず、広い視野角と10W以下の低い消費電力
とが得られた。
Even in the liquid crystal display device of this embodiment, the image quality was not deteriorated, and a wide viewing angle and low power consumption of 10 W or less were obtained.

【0063】〔実施例13〕本実施例の構成は下記の要
件を除けば、実施例1と同一である。
[Embodiment 13] The constitution of this embodiment is the same as that of the embodiment 1 except for the following requirements.

【0064】薄膜トランジスタを保護する保護絶縁膜1
5を窒化シリコンからエポキシ樹脂よりなる有機絶縁層
に交換し、その上を直接ラビング処理し、有機絶縁層に
保護膜と液晶分子配向制御膜の両方の機能を持たせた。
傾き角は0.5 度である。
Protective insulating film 1 for protecting thin film transistors
5 was replaced with an organic insulating layer made of epoxy resin from silicon nitride, and the organic insulating layer was directly rubbed to give the organic insulating layer a function as both a protective film and a liquid crystal molecule orientation control film.
The tilt angle is 0.5 degrees.

【0065】本実施例における電気光学特性を測定した
ところ、実施例1と比較して、ほとんど変わらない表示
特性を得た。また、傾き角が0.5 度と小さいにもかか
わらず液晶配向性も良好で、配向不良ドメインは発生し
なかった。
When the electro-optical characteristics in this example were measured, display characteristics which were almost the same as those in Example 1 were obtained. Further, although the tilt angle was as small as 0.5 degree, the liquid crystal alignment was good and no misalignment domain was generated.

【0066】本実施例における液晶表示装置でも画質劣
化は発生せず、広い視野角と10W以下の低い消費電力
とが得られた。
Even in the liquid crystal display device of this example, the image quality was not deteriorated, and a wide viewing angle and low power consumption of 10 W or less were obtained.

【0067】〔実施例14〕実施例13で保護膜に用い
たエポキシ樹脂を同様に有機絶縁層となるポリイミドに
変えた。
[Embodiment 14] The epoxy resin used for the protective film in Embodiment 13 was changed to polyimide, which is the same as the organic insulating layer.

【0068】本実施例における電気光学特性を測定した
ところ、実施例1と比較して、ほとんど変わらない表示
特性を得た。また、実施例13に比べ、傾き角は2.0
度と若干上昇した。液晶配向性は良好で、配向不良ドメ
インは発生しなかった。
When the electro-optical characteristics in this example were measured, display characteristics which were almost the same as those in Example 1 were obtained. Further, the tilt angle is 2.0 as compared with the thirteenth embodiment.
It went up a little. The liquid crystal alignment was good and no misaligned domains were generated.

【0069】本実施例における液晶表示装置でも画質劣
化は発生せず、広い視野角と10W以下の低い消費電力
とが得られた。
Even in the liquid crystal display device of this example, the image quality was not deteriorated, and a wide viewing angle and low power consumption of 10 W or less were obtained.

【0070】〔実施例15〜19〕これらの実施例の構
成は下記の要件を除けば、実施例1と同一である。
[Examples 15 to 19] The configurations of these examples are the same as those of the example 1 except for the following requirements.

【0071】実施例15では上下界面上の液晶分子長軸
方向(ラビング方向)は互いにほぼ平行で、かつ印加電
界方向とのなす角度を89.5度(φLC1=φLC2=89.
5°)、一方の偏光板の偏光透過軸をラビング方向にほ
ぼ平行(φP1=89.5°)とし、他方をそれに直交(φ
P2=−0.5°)とした。
In Example 15, the major axis directions (rubbing directions) of the liquid crystal molecules on the upper and lower interfaces are substantially parallel to each other, and the angle formed by the direction of the applied electric field is 89.5 degrees (φ LC1 = φ LC2 = 89.
5 °), the polarization transmission axis of one of the polarizing plates is almost parallel to the rubbing direction (φ P1 = 89.5 °), and the other is orthogonal to it (φ
P2 = -0.5 °).

【0072】同様に実施例16ではφLC1=φLC2=φP1
=88°,φP2=−2.0°とした。同様に実施例17で
はφLC1=φLC2=φP1=75°,φP2=−25°とし
た。同様に実施例18ではφLC1=φLC2=φP1=45
°,φP2=−45°とした。同様に実施例19ではφ
LC1=φLC2=φP1=30°,φP2=−60°とした。こ
れらの実施例における電気光学特性の測定結果を図7に
まとめて表わす。尚ここでは明るさを印加電圧が0ボル
トから10ボルト(実効値Vrms)の範囲で再大となると
きを100%,最小となるときを0%とした規格化した
値で表わした。角度φLCを大きくすることで、しきい値
特性のカーブがより急峻になる傾向を示した。中間調表
示を大きな電圧裕度を持って行うには、φLCを小さくす
れば良いが、45度以下になると明るさが低下する傾向
を示した。角度φLCの最適な値は、表示する中間調レベ
ルの数,明るさに対する要求値,駆動する電圧,コモン
電極に電圧を印加するか否かによって代わる。設計者
は、φLCの選択により大きな範囲でしきい値特性が制御
できる。明るさを考慮すると、望ましくはφLCを45度
以上とすると良い。また更により望ましくは60度から
88度の間とすると良い。
Similarly, in Example 16, φ LC1 = φ LC2 = φ P1
= 88 ° and φ P2 = −2.0 °. Similarly, in Example 17, φ LC1 = φ LC2 = φ P1 = 75 ° and φ P2 = −25 °. Similarly, in Example 18, φ LC1 = φ LC2 = φ P1 = 45
And φ P2 = −45 °. Similarly, in Example 19, φ
LC1 = φ LC2 = φ P1 = 30 ° and φ P2 = −60 °. The measurement results of the electro-optical characteristics in these examples are collectively shown in FIG. In this case, the brightness is expressed as a standardized value with 100% when the applied voltage becomes the maximum again in the range of 0 to 10 V (effective value V rms ) and 0% when the applied voltage becomes the minimum. By increasing the angle φ LC , the curve of the threshold characteristic tended to become steeper. In order to perform halftone display with a large voltage tolerance, it is sufficient to reduce φ LC , but when it becomes 45 degrees or less, the brightness tends to decrease. The optimum value of the angle φ LC depends on the number of halftone levels to be displayed, the required value for brightness, the driving voltage, and whether or not the voltage is applied to the common electrode. The designer can control the threshold characteristic in a large range by selecting φ LC . Considering brightness, it is desirable to set φ LC to 45 degrees or more. Further more preferably, it is set between 60 degrees and 88 degrees.

【0073】視角特性を測定したところ、いずれの場合
も実施例1と同様に視角を左右,上下に変えた場合のカ
ーブの差が極めて小さく、表示特性はほとんど変化しな
いという結果を得た。また、液晶配向性も良好で、配向
不良ドメインは発生しなかった。消費電力も10W以下
と低い値を得た。
When the viewing angle characteristics were measured, it was found that the difference in the curves when the viewing angle was changed to the left, right and up and down was very small in all cases, and the display characteristics were hardly changed. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated. The power consumption was as low as 10 W or less.

【0074】〔実施例20〜23〕以上の実施例と本実
施例の最大の相違点は、液晶組成物層の誘電率異方性の
値を負にし、それに合わせてラビング方向を変えた点で
ある。Δεが−4.8 ,Δnが0.0437(589n
m,20℃)のネマチック液晶組成物(メルク社製,Z
LI−2806)を用いた。実施例20〜23の実施例
に於いては、いずれも上下界面上の液晶分子長軸方向
(ラビング方向φLC1,φLC2)を互いにほぼ平行(φ
LC1=φLC2)とし、印加電界方向とのなす角度φLC1
0度を超え45度未満である範囲とした。また一方の偏
光板の偏光透過軸(φP1)はラビング方向にほぼ平行と
し、他方(φP2)をそれと直交にした。
Examples 20 to 23 The greatest difference between the above examples and this example is that the value of the dielectric anisotropy of the liquid crystal composition layer is made negative and the rubbing direction is changed accordingly. Is. Δε is -4.8, Δn is 0.0437 (589n)
m, 20 ° C.) nematic liquid crystal composition (Merck, Z
LI-2806) was used. In each of Examples 20 to 23, the liquid crystal molecule major axis directions (rubbing directions φ LC1 and φ LC2 ) on the upper and lower interfaces are substantially parallel to each other (φ).
LC1 = φ LC2 ), and the angle φ LC1 formed with the direction of the applied electric field is set in a range of more than 0 degrees and less than 45 degrees. The polarization transmission axis (φ P1 ) of one polarizing plate was made substantially parallel to the rubbing direction, and the other (φ P2 ) was made orthogonal to it.

【0075】即ち、実施例20ではφLC1=φLC2=φP1
=1.5°,φP2=−88.5°とした。
That is, in Example 20, φ LC1 = φ LC2 = φ P1
= 1.5 ° and φ P2 = −88.5 °.

【0076】実施例21ではφLC1=φLC2=φP1=15
°,φP2=−75°とした。
In Example 21, φ LC1 = φ LC2 = φ P1 = 15
And φ P2 = −75 °.

【0077】実施例22ではφLC1=φLC2=φP1=30
°,φP2=−60°とした。
In Example 22, φ LC1 = φ LC2 = φ P1 = 30
And φ P2 = -60 °.

【0078】実施例23ではφLC1=φLC2=φP1=45
°,φP2=−45°とした。
In Example 23, φ LC1 = φ LC2 = φ P1 = 45
And φ P2 = −45 °.

【0079】ギャップdは液晶封入状態で6.3μmと
し、Δn・dを0.275μmとした。薄膜トランジス
タ,電極の構造等の以上以外の条件は実施例3と同じで
ある。
The gap d was set to 6.3 μm when the liquid crystal was sealed, and Δn · d was set to 0.275 μm. The other conditions such as the structure of the thin film transistor and the electrode are the same as those in the third embodiment.

【0080】これらの実施例における電気光学特性の測
定結果を図11にまとめて表わす。尚、図11では2枚
の偏光板を偏光透過軸を互いに平行に貼り合わせた時の
輝度透過率を100%として規格化した。誘電率異方性
が正の場合とは逆に、角度φLCを小さくするに従い、し
きい値特性のカーブがより急峻になる傾向を示した。中
間調表示を大きな電圧裕度を持って行うには、φLCを大
きくすれば良いが、45度以上になると明るさが低下す
る傾向を示した。誘電率異方性が正の場合と同様に、角
度φLCの最適な値は、表示する中間調レベルの数,明る
さに対する要求値,駆動する電圧,共通電極に電圧を印
加するか否かによって代わる。設計者は、φLCの選択に
より大きな範囲でしきい値特性が制御できる。明るさを
考慮すると、より望ましくはφLCを45度以下とすると
良い。
The measurement results of the electro-optical characteristics in these examples are summarized in FIG. In addition, in FIG. 11, when the two polarizing plates are attached so that their polarization transmission axes are parallel to each other, the luminance transmittance is normalized to 100%. Contrary to the case where the dielectric anisotropy was positive, the curve of the threshold characteristic tended to become steeper as the angle φ LC was decreased. In order to perform halftone display with a large voltage margin, it is sufficient to increase φ LC , but when it becomes 45 degrees or more, the brightness tends to decrease. As with the case where the dielectric anisotropy is positive, the optimum value of the angle φ LC is the number of halftone levels to be displayed, the required value for brightness, the driving voltage, and whether or not to apply a voltage to the common electrode. Replaced by. The designer can control the threshold characteristic in a large range by selecting φ LC . Considering brightness, it is more desirable to set φ LC to 45 degrees or less.

【0081】尚、視角特性を測定したところ、いずれの
場合も実施例1と同様に視角を左右,上下に変えた場合
のカーブの差が極めて小さく、表示特性はほとんど変化
しないという結果を得た。特に中間調表示(8階調)し
たときのレベルの反転が上下,左右ともに±50度の範
囲内ではまったく見られなかった。また、液晶配向性も
良好で、配向不良ドメインは発生しなかった。消費電力
も10W以下と低い値を得た。
When the viewing angle characteristics were measured, it was found that the difference in the curves when the viewing angle was changed to the left, right, up and down was very small and the display characteristics were hardly changed in all cases. . In particular, no level reversal was observed at half-range display (8 gradations) within ± 50 degrees both vertically and horizontally. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated. The power consumption was as low as 10 W or less.

【0082】〔実施例24〜26〕本実施例では、実施
例20〜23に於いて最も特性が良好であった実施例2
1(φLC1=φLC2=φP1=15°,φP2=−75°)と
液晶分子長軸方向,偏光板配置を同一とし、液晶組成物
層の厚みdと屈折率異方性Δnの積d・Δnを変えた。
実施例24,25,26それぞれの液晶組成物層の厚み
dを4.0,4.9,7.2μm、即ちd・Δnをそれぞ
れ0.1748,0.2141,0.3146μmとした。
尚、ここでは屈折率異方性Δnを一定とし、液晶組成物
層の厚みdのみを変えたが、他の液晶表示方式(例え
ば、90度ツイステッドネマチック方式)と同様に、屈
折率異方性Δnを変えても明るさの最適値については同
様の結果が得られる。また、液晶組成物層の誘電率異方
性の値を正にしても同様の結果が得られる。結果を実施
例21の結果も含めて、図12にまとめて示す。図12
(a)は横軸を印加電圧とし、図12(b)は図12
(a)に於いて印加電圧を7ボルトに固定して横軸をd
・Δnにして表わしたものである。図12(b)から明
らかなように、明るさはd・Δn強く依存し、かつ最適
な値が存在する。明るさを実用性のある30%以上とす
るにはd・Δnを0.21から0.36μmの間にすれば
良く、さらに明るさを50%以上に引き上げるには0.
23から0.33μmの間にすれば良い。また、液晶の
封入時間や液晶組成物層の厚みの制御等、量産性を考慮
するとdの値を5.0μm以上とし、Δnを本実施例の
ように0.08以下とすることが望ましい。
[Examples 24 to 26] In this example, Example 2 was the best in Examples 20 to 23.
1 (φ LC1 = φ LC2 = φ P1 = 15 °, φ P2 = −75 °), the liquid crystal molecule major axis direction and the polarizing plate arrangement are the same, and the thickness d of the liquid crystal composition layer and the refractive index anisotropy Δn are The product d · Δn was changed.
The thickness d of the liquid crystal composition layer of each of Examples 24, 25 and 26 was 4.0, 4.9 and 7.2 μm, that is, d · Δn was 0.1748, 0.2141 and 0.3146 μm, respectively.
Although the refractive index anisotropy Δn is constant and only the thickness d of the liquid crystal composition layer is changed here, the refractive index anisotropy is the same as in other liquid crystal display systems (for example, 90 ° twisted nematic system). Even if Δn is changed, the same result can be obtained for the optimum brightness value. Similar results can be obtained even when the value of the dielectric anisotropy of the liquid crystal composition layer is positive. The results are collectively shown in FIG. 12, including the results of Example 21. FIG.
12A shows the applied voltage on the horizontal axis, and FIG.
In (a), the applied voltage is fixed to 7 volts and the horizontal axis is d.
-It is expressed as Δn. As is clear from FIG. 12B, the brightness strongly depends on d · Δn, and there is an optimum value. To achieve a practical brightness of 30% or more, d · Δn should be set between 0.21 and 0.36 μm, and to further raise the brightness to 50% or more, it should be 0.0.
It should be between 23 and 0.33 μm. Further, considering mass productivity such as control of the liquid crystal filling time and the thickness of the liquid crystal composition layer, it is desirable that the value of d be 5.0 μm or more and Δn be 0.08 or less as in this embodiment.

【0083】本実施例における液晶表示装置でも画質劣
化は発生せず、実施例1と同様の広い視野角と10W以
下の低い消費電力とが得られた。
In the liquid crystal display device of this embodiment, the image quality was not deteriorated, and the wide viewing angle and the low power consumption of 10 W or less were obtained as in the first embodiment.

【0084】〔実施例27〜29〕実施例24〜26の
結果から明らかなように、d・Δnの最適値は0.21
から0.36μm の間、望ましくは0.23から0.33
μmの間にある。量産性のある液晶組成物層の厚みが
5.0μm 以上であることを鑑みると、屈折率異方性Δ
nの値は0.072以下、望ましくは0.066以下でな
くてはならない。ところが、このように極めてΔnの低
い液晶化合物の種類は非常に少なく、十分に他の実用上
の要求特性と両立することが困難である。そこで液晶組
成物層のd・Δnをやや高めに設定しておき、最適値よ
りも超過した分をこの液晶組成物層のd・Δnよりも低
い位相差Rf を有する光学的異方性媒質を液晶組成物層
により生じた位相差を補償するように挿入し、その結果
液晶組成物層と光学的異方性媒質とで合わせた実効的な
位相差が最適値である0.21から0.36μmの間に入
るようにする方法を考案した。
[Embodiments 27 to 29] As is clear from the results of Embodiments 24 to 26, the optimum value of d · Δn is 0.21.
To 0.36 μm, preferably 0.23 to 0.33
between μm. Considering that the thickness of the liquid crystal composition layer having mass productivity is 5.0 μm or more, the refractive index anisotropy Δ
The value of n must be 0.072 or less, preferably 0.066 or less. However, there are very few kinds of liquid crystal compounds having such an extremely low Δn, and it is difficult to be sufficiently compatible with other practically required properties. Therefore, d · Δn of the liquid crystal composition layer is set to be slightly higher, and an optically anisotropic medium having a phase difference R f lower than d · Δn of the liquid crystal composition layer is exceeded. Is inserted so as to compensate for the phase difference caused by the liquid crystal composition layer, and as a result, the effective phase difference of the liquid crystal composition layer and the optically anisotropic medium is 0.21 to 0, which is the optimum value. I devised a method to make it enter between 0.36 μm.

【0085】実施例27〜29では下記に示す条件以外
は実施例3と同じ構成とした。液晶組成物層の厚みをそ
れぞれ5.0,5.2,5.5μm とした。屈折率異方性
Δnが0.072(589nm,20℃)のネマチック液
晶組成物を用いている為、d・Δnの値は0.360,
0.3744,0.396μm である。このままでは、
明るさ及び色調が良好な0.21から0.36μmの範囲
よりも高い値となっている為、オレンジ色に着色してい
る。この液晶セルにポリビニルアルコール製一軸延伸フ
ィルムの光学的異方性媒質を、低電圧駆動時(ここでは
0ボルト)に液晶の複屈折位相差を補償するように積層
した。即ち、φRをφLC1(=φLC2)と同じ85度とし
た。位相差はRfはそれぞれ0.07,0.08,0.10
μmとし、(d・Δn−Rf)の値を0.29,0.30
44,0.296μmと明るさ及び色調が良好な0.21
から0.36μmの範囲に入るようにした。
In Examples 27 to 29, the constitution was the same as that of Example 3 except for the conditions shown below. The thickness of the liquid crystal composition layer was set to 5.0, 5.2 and 5.5 μm, respectively. Since a nematic liquid crystal composition having a refractive index anisotropy Δn of 0.072 (589 nm, 20 ° C.) is used, the value of d · Δn is 0.360.
It is 0.3744, 0.396 μm. If this goes on,
The value is higher than the range of 0.21 to 0.36 μm in which the brightness and the color tone are good, so that it is colored orange. An optically anisotropic medium of a uniaxially stretched film made of polyvinyl alcohol was laminated on this liquid crystal cell so as to compensate the birefringence phase difference of the liquid crystal when driven at a low voltage (here, 0 V). That is, φ R was set to 85 °, which is the same as φ LC1 (= φ LC2 ). The phase difference R f is 0.07, 0.08, and 0.10, respectively.
μm, and the value of (d · Δn−R f ) is 0.29, 0.30.
44, 0.296 μm, with good brightness and color tone of 0.21
To 0.36 μm.

【0086】その結果、他の実施例と同様に視野角が広
く画質劣化がなくかつ10W以下の低い消費電力を得
た。
As a result, similar to the other examples, a wide viewing angle was obtained, image quality was not deteriorated, and low power consumption of 10 W or less was obtained.

【0087】〔実施例30〕実施例27の液晶組成物層
を誘電率異方性Δεが負で、その値が−2.5 であり、
Δnが0.0712(589nm,20℃)のネマチック
液晶組成物(メルク社製,ZLI−4518)に変え
た。他の構成は下記を除けば実施例21と同じである。
液晶組成物層の厚みは5.5μm、即ちd・Δnは0.3
916μmである。この液晶セルに位相差Rfが0.11
μmであるポリビニルアルコール製一軸延伸フィルムの
光学的異方性媒質を積層し、(d・Δn−Rf)の値を0.
2816μmと明るさ及び色調が良好な0.21から0.
36μmの範囲に入るようにした。
Example 30 The liquid crystal composition layer of Example 27 had a negative dielectric anisotropy Δε and a value of −2.5.
The nematic liquid crystal composition (ZLI-4518, manufactured by Merck & Co., Inc.) having Δn of 0.0712 (589 nm, 20 ° C.) was used. The other structure is the same as that of the twenty-first embodiment except the following.
The thickness of the liquid crystal composition layer is 5.5 μm, that is, d · Δn is 0.3.
916 μm. This liquid crystal cell has a phase difference R f of 0.11.
The optically anisotropic medium of a polyvinyl alcohol uniaxially stretched film having a thickness of μm is laminated, and the value of (d · Δn−R f ) is set to 0.
Good brightness and color tone of 2816μm from 0.21 to 0.2.
It was set to fall within the range of 36 μm.

【0088】その結果、他の実施例と同様に視野角が広
く画質劣化がなくかつ10W以下の低い消費電力を得
た。
As a result, as in the other examples, a wide viewing angle was obtained, no image quality deterioration was caused, and low power consumption of 10 W or less was obtained.

【0089】〔実施例31〕本実施例の構成は下記の要
件を除けば、実施例15と同一である。
[Embodiment 31] The construction of the present embodiment is the same as that of Embodiment 15 except for the following requirements.

【0090】液晶組成物層のΔnは0.072でギャッ
プdは7.0μmとした。よってd・Δnは0.504μ
m である。φLC1を89.5度とし、上下基板上の液晶
分子配向方向を互いに交差させ、|φLC1−φLC2|=9
0度とした。偏光板の配置は互いに直交(|φP2−φP1
|=90°)させかつ液晶分子配向方向との関係を旋光
モードとなるようにφLC1=φP1 とした。この結果、ノ
ーマリオープン型が得られた。
The Δn of the liquid crystal composition layer was 0.072 and the gap d was 7.0 μm. Therefore, d · Δn is 0.504μ
m. φ LC1 is set to 89.5 degrees and the liquid crystal molecule alignment directions on the upper and lower substrates are crossed with each other, and | φ LC1 −φ LC2 | = 9
0 degrees. The arrangement of the polarizing plate is orthogonal to each other (| φ P2P1
│ = 90 °) and φ LC1 = φ P1 so that the relationship with the liquid crystal molecule alignment direction is the optical rotation mode. As a result, a normally open type was obtained.

【0091】本実施例における電気光学特性を測定した
ところ、複屈折モードである他の実施例に比べてしきい
値電圧V10,V90が約2倍になった点を除けば、他の実
施例と同様に視野角が広く画質劣化がなくかつ10W以
下の低い消費電力を得た。また、液晶配向性も良好で、
配向不良ドメインは発生しなかった。
When the electro-optical characteristics in this example were measured, other than the examples in which the birefringence mode was used, the threshold voltages V 10 and V 90 were about doubled, and other values were found. As in the example, a wide viewing angle was obtained, image quality was not deteriorated, and low power consumption of 10 W or less was obtained. Also, the liquid crystal alignment is good,
No misaligned domains were generated.

【0092】〔実施例32,33〕本実施例の構成は下
記の要件を除けば、実施例1と同一である。
[Embodiments 32 and 33] The configuration of this embodiment is the same as that of the first embodiment except for the following requirements.

【0093】偏光板の配置を、電界が0ではなくやや印
加された状態で暗状態が得られるように設定した。即
ち、|φLC1−φP1|を実施例32,33でそれぞれ5
度,15度とし、|φP2−φP1|=90度とした。
The arrangement of the polarizing plates was set so that a dark state could be obtained when the electric field was not 0 but slightly applied. That is, | φ LC1 −φ P1 | is 5 in each of Examples 32 and 33.
And 15 degrees, and | φ P2 −φ P1 | = 90 degrees.

【0094】他の実施例と同じく、視野角特性,画質の
両面で良好な表示特性と10W以下の低消費電力とが得
られた。また、液晶配向性も良好で、配向不良ドメイン
は発生しなかった。
Similar to the other examples, good display characteristics in terms of viewing angle characteristics and image quality and low power consumption of 10 W or less were obtained. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated.

【0095】〔実施例34,35〕本実施例の構成は下
記の要件を除けば、実施例21と同一である。
[Embodiments 34 and 35] The construction of this embodiment is the same as that of Embodiment 21 except for the following requirements.

【0096】偏光板の配置を、電界が0ではなくやや印
加された状態で暗状態が得られるように、設定した。即
ち、|φP1−φLC1|を実施例34,35でそれぞれ5
度,7度とし、|φP2−φP1|=90 度とした。ま
た、液晶組成物層の厚みdは6.3μmとした。よっ
て、d・Δnは0.275μm である。
The arrangement of the polarizing plates was set so that a dark state could be obtained when the electric field was not 0 but slightly applied. That is, | φ P1 −φ LC1 | is 5 in each of Examples 34 and 35.
7 degrees, and | φ P2 −φ P1 | = 90 degrees. The thickness d of the liquid crystal composition layer was 6.3 μm. Therefore, d · Δn is 0.275 μm.

【0097】本実施例における電気光学特性の測定結果
を図13に示す。実施例34の場合、暗状態となる電圧
OFFは3.0ボルト,最も明るくなる電圧VONは9.2
ボルトであった。駆動をVOFFとVON の間で行えば、十
分に高いコントラストが得られる。同様に、実施例35
の場合はVOFFは5.0ボルト,VONは9.0 ボルトであ
った。
FIG. 13 shows the measurement results of electro-optical characteristics in this example. In the case of Example 34, the dark state voltage V OFF is 3.0 V and the brightest voltage V ON is 9.2.
It was a bolt. If driving is performed between V OFF and V ON , a sufficiently high contrast can be obtained. Similarly, Example 35
In this case, V OFF was 5.0 V and V ON was 9.0 V.

【0098】VOFF とVONの間で駆動した場合、他の実
施例と同じく、視野角特性,画質の両面で良好な表示特
性と10W以下の低消費電力とが得られた。また、液晶
配向性も良好で、配向不良ドメインは発生しなかった。
When driven between V OFF and V ON , good display characteristics in terms of viewing angle characteristics and image quality and low power consumption of 10 W or less were obtained as in the other examples. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated.

【0099】〔実施例36〕本実施例の構成は下記の要
件を除けば、実施例34と同一である。
[Embodiment 36] The structure of the present embodiment is the same as that of the embodiment 34 except for the following requirements.

【0100】信号配線電極に画像信号を印加すると共
に、共通電極に3.0V の交流波形を印加した。その結
果、信号配線電極に供給する電圧の低電圧化(8.3V
⇒6.2V)が実現した。
An image signal was applied to the signal wiring electrode and an AC waveform of 3.0 V was applied to the common electrode. As a result, the voltage supplied to the signal wiring electrode is lowered (8.3V).
⇒6.2V) was realized.

【0101】このようにしてVOFFとVON の間で駆動を
行い、他の実施例と同じく、また、液晶配向性も良好
で、配向不良ドメインは発生しなかった。
In this way, driving was performed between V OFF and V ON , and as in the other examples, the liquid crystal alignment was good, and no alignment failure domain was generated.

【0102】〔実施例37〕本実施例の構成は下記の要
件を除けば、実施例1と同一である。
[Example 37] The configuration of this example is the same as that of the example 1 except for the following requirements.

【0103】偏光板の配置を、電界が0ではなく印加さ
れた状態で暗状態が得られるように、設定した。即ち、
LC1−φP1|を45度,|φP2−φP1|を90度とし
た。これにより、低電圧印加時に明状態,高電圧印加時
に暗状態となった。この時の明るさの電圧依存性の測定
結果を図14で実線で示した。
The arrangement of the polarizing plates was set so that a dark state could be obtained when an electric field was applied instead of 0. That is,
| φ LC1 −φ P1 | was set to 45 degrees and | φ P2 −φ P1 | was set to 90 degrees. As a result, a bright state was applied when a low voltage was applied, and a dark state was applied when a high voltage was applied. The measurement result of the voltage dependence of the brightness at this time is shown by the solid line in FIG.

【0104】他の実施例と同じく、視野角特性,画質の
両面で良好な表示特性と10W以下の低消費電力とが得
られた。コントラスト比は35となった。また、液晶配
向性も良好で、配向不良ドメインは発生しなかった。
Similar to the other examples, good display characteristics in terms of viewing angle characteristics and image quality and low power consumption of 10 W or less were obtained. The contrast ratio was 35. In addition, the liquid crystal alignment was good, and no domain with poor alignment was generated.

【0105】〔実施例38〕実施例37の構成に於い
て、2枚の偏光板の間に界面残留位相差を補償する複屈
折媒体(一軸延伸したポリビニルアルコールフィルム)
を挿入した。このフィルムの延伸方向φR は−45度と
し、偏光板透過軸に直交させた。また、位相差Rf は1
5nmである。
Example 38 In the structure of Example 37, a birefringent medium (uniaxially stretched polyvinyl alcohol film) for compensating for an interface residual retardation between two polarizing plates.
Was inserted. The stretching direction φ R of this film was set to −45 degrees, and was orthogonal to the polarizing plate transmission axis. The phase difference R f is 1
It is 5 nm.

【0106】図14の点線で示したように、実施例37
に比べて高電圧印加時の光漏れが抑制され、コントラス
ト比は150に更に改善された。
As shown by the dotted line in FIG. 14, Example 37 was used.
Compared with the above, light leakage at the time of applying a high voltage was suppressed, and the contrast ratio was further improved to 150.

【0107】[0107]

【発明の効果】本発明によれば、視野角が広く,コント
ラスト比が高く,液晶パネルの光透過率が高くかつ消費
電力の低い薄膜トランジスタ型液晶表示装置が得られ
る。
According to the present invention, a thin film transistor type liquid crystal display device having a wide viewing angle, a high contrast ratio, a high light transmittance of a liquid crystal panel and a low power consumption can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液晶表示装置における液晶の動作を示
す図。
FIG. 1 is a diagram showing an operation of liquid crystal in a liquid crystal display device of the present invention.

【図2】本発明の薄膜トランジスタ及び電極構造の一例
を示す図。
FIG. 2 is a diagram showing an example of a thin film transistor and an electrode structure of the present invention.

【図3】本発明の駆動波形の一例を示す図。FIG. 3 is a diagram showing an example of drive waveforms according to the present invention.

【図4】本発明の1画素内の等価回路を示す模式図。FIG. 4 is a schematic diagram showing an equivalent circuit in one pixel of the present invention.

【図5】本発明の駆動波形の他の一例を示す図。FIG. 5 is a diagram showing another example of the drive waveform of the present invention.

【図6】電界方向に対する、界面上の分子長軸配向方向
φLC,偏光板偏光軸φP ,位相板進相軸φR のなす角を
示す図。
FIG. 6 is a diagram showing an angle formed by a molecular long axis orientation direction φ LC , a polarizing plate polarization axis φ P , and a phase plate fast axis φ R with respect to an electric field direction.

【図7】界面上の分子長軸配向方向φLCを変えた種々の
実施例における電気光学特性を示す図。誘電率異方性が
正の場合。
FIG. 7 is a diagram showing electro-optical characteristics in various examples in which the molecular long axis orientation direction φ LC on the interface is changed. When the dielectric anisotropy is positive.

【図8】本発明の液晶表示駆動回路システムを表わす
図。
FIG. 8 is a diagram showing a liquid crystal display drive circuit system of the present invention.

【図9】本発明の液晶表示透過型光学システムを表わす
図。
FIG. 9 is a diagram showing a liquid crystal display transmission type optical system of the present invention.

【図10】本発明の液晶表示反射型光学システムを表わ
す図。
FIG. 10 is a diagram showing a liquid crystal display reflective optical system of the present invention.

【図11】界面上の分子長軸配向方向φLCを変えた種々
の実施例における電気光学特性を示す図。誘電率異方性
が負の場合。
FIG. 11 is a diagram showing electro-optical characteristics in various examples in which the molecular long axis orientation direction φ LC on the interface is changed. When the dielectric anisotropy is negative.

【図12】液晶組成物層の厚みdを変えた種々の実施例
における電気光学特性を示す図。誘電率異方性が負の場
合。
FIG. 12 is a diagram showing electro-optical characteristics in various examples in which the thickness d of the liquid crystal composition layer is changed. When the dielectric anisotropy is negative.

【図13】偏光板の配置を、電界が0ではなくやや印加
された状態で暗状態が得られるように設定した時の電気
光学特性を示す図。
FIG. 13 is a diagram showing electro-optical characteristics when the arrangement of polarizing plates is set so that a dark state can be obtained when an electric field is applied rather than 0.

【図14】ノーマリオープン型の特性及び界面残留位相
差を補償した時の特性を表わす図。
FIG. 14 is a diagram showing a normally open type characteristic and a characteristic when an interface residual phase difference is compensated.

【図15】対向基板上に備えた共通電極と画素電極との
間で容量素子を形成した第4の実施例を示す図。
FIG. 15 is a diagram showing a fourth embodiment in which a capacitive element is formed between a common electrode and a pixel electrode provided on a counter substrate.

【図16】画素電極と共通電極とを絶縁層を介して異層
化した実施例5の電界無印加時の画素平面模式図。
FIG. 16 is a schematic plan view of a pixel according to a fifth embodiment in which a pixel electrode and a common electrode are different layers with an insulating layer in between when no electric field is applied.

【図17】画素電極と共通電極とを絶縁層を介して異層
化した実施例5の電界無印加時の画素断面模式図。
FIG. 17 is a schematic cross-sectional view of a pixel in Example 5 in which a pixel electrode and a common electrode are formed in different layers with an insulating layer in between when no electric field is applied.

【図18】画素電極と共通電極とを絶縁層を介して異層
化し、画素電極をリング状にし共通電極を十字状にした
実施例6の電界無印加時の画素平面模式図。
FIG. 18 is a schematic plan view of a pixel in Example 6 when no electric field is applied, in which the pixel electrode and the common electrode are different layers with an insulating layer interposed therebetween, the pixel electrode has a ring shape, and the common electrode has a cross shape.

【図19】画素電極と共通電極とを絶縁層を介して異層
化し、画素電極を工の字状,共通電極をリング状にした
実施例7の電界無印加時の画素平面模式図。
FIG. 19 is a schematic plan view of a pixel in Example 7 in which no electric field is applied, in which the pixel electrode and the common electrode are different layers via an insulating layer, the pixel electrode has a V shape, and the common electrode has a ring shape.

【図20】画素電極と共通電極とを絶縁層を介して異層
化し、走査配線電極と共通電極との間に更に絶縁層を挿
入した実施例8の電界無印加時の画素平面模式図。
20 is a schematic plan view of a pixel in Example 8 when no electric field is applied, in which the pixel electrode and the common electrode are different layers with an insulating layer interposed and an insulating layer is further inserted between the scanning wiring electrode and the common electrode.

【図21】画素電極と共通電極とを絶縁層を介して異層
化し、共通電極を保護絶縁膜の上に形成した実施例9の
電界無印加時の画素平面模式図。
FIG. 21 is a schematic plan view of a pixel in Example 9 in which no electric field is applied, in which the pixel electrode and the common electrode are different layers with an insulating layer in between, and the common electrode is formed on the protective insulating film.

【図22】画素電極と共通電極とを絶縁層を介して異層
化し、走査配線電極と共通電極の両方を自己酸化膜で被
覆されたアルミニウムで構成した実施例10の電界無印
加時の画素平面模式図。
FIG. 22 is a pixel of Example 10 in which no electric field is applied, in which the pixel electrode and the common electrode are made different layers with an insulating layer in between, and both the scanning wiring electrode and the common electrode are made of aluminum covered with a self-oxidation film. Schematic plan view.

【符号の説明】[Explanation of symbols]

1…画素電極(ソース電極)、2…基準電極、3…基
板、4…配向膜、5…液晶組成物層中の液晶分子、6…
偏光板、7…電界方向、8…界面上の分子長軸配向方向
(ラビング方向)、9…偏光板偏光軸方向、10…走査
配線電極、11…補助(付加)容量素子、12…信号配
線電極、13…ゲート絶縁膜、14…平坦化膜、15…
保護絶縁膜、16…アモルファスシリコン、17…カラ
ーフィルタ、18…遮光層、19…偏光板偏光透過軸、
20…位相差板進相軸、21…信号配線電極駆動回路、
22…走査配線電極駆動回路、23…信号配線電極、2
4…走査配線電極、25…下側基板、26…上側基板、
27…コントロール回路、28…位相差板、29…バッ
クライト、30…反射板、31…液晶組成物層、32…
アルミナ膜、33…下地絶縁膜、34…薄膜トランジス
タ素子、35…画像情報信号源、36…共通電極駆動回
路、37…表示領域、38…遮光層境界。
1 ... Pixel electrode (source electrode), 2 ... Reference electrode, 3 ... Substrate, 4 ... Alignment film, 5 ... Liquid crystal molecule in liquid crystal composition layer, 6 ...
Polarizing plate, 7 ... Electric field direction, 8 ... Molecular major axis alignment direction on interface (rubbing direction), 9 ... Polarizing plate polarization axis direction, 10 ... Scan wiring electrode, 11 ... Auxiliary (additional) capacitive element, 12 ... Signal wiring Electrodes, 13 ... Gate insulating film, 14 ... Flattening film, 15 ...
Protective insulating film, 16 ... Amorphous silicon, 17 ... Color filter, 18 ... Shading layer, 19 ... Polarizing plate polarization transmission axis,
20 ... Phase difference plate fast axis, 21 ... Signal wiring electrode drive circuit,
22 ... Scan wiring electrode driving circuit, 23 ... Signal wiring electrode, 2
4 ... Scan wiring electrode, 25 ... Lower substrate, 26 ... Upper substrate,
27 ... Control circuit, 28 ... Retardation plate, 29 ... Backlight, 30 ... Reflector, 31 ... Liquid crystal composition layer, 32 ...
Alumina film, 33 ... Base insulating film, 34 ... Thin film transistor element, 35 ... Image information signal source, 36 ... Common electrode drive circuit, 37 ... Display area, 38 ... Shading layer boundary.

Claims (34)

【特許請求の範囲】[Claims] 【請求項1】一対の基板と、 前記基板上に形成された複数の信号配線電極及び走査配
線電極と、 前記一対の基板間に挾持された液晶組成物層とを有する
液晶表示装置であって、 前記複数の信号配線電極及び走査配線電極がマトリクス
状に交差して複数の画素を形成し、 前記画素内には、前記画素内の画素電極をオンオフする
アクティブ素子が形成され、 前記アクティブ素子をオンにした際、前記画素電極と基
準電極との間に基板面にほぼ平行に電界が印加され、 前記走査配線電極には2値以上の非選択電圧を有する走
査信号を供給する走査配線電極駆動回路が接続され、 前記信号配線電極には画像信号を供給する信号配線電極
駆動回路が接続されていることを特徴とする液晶表示装
置。
1. A liquid crystal display device comprising a pair of substrates, a plurality of signal wiring electrodes and scanning wiring electrodes formed on the substrates, and a liquid crystal composition layer sandwiched between the pair of substrates. The plurality of signal wiring electrodes and the scanning wiring electrodes intersect in a matrix to form a plurality of pixels, and an active element that turns on and off a pixel electrode in the pixel is formed in the pixel, and the active element is When turned on, an electric field is applied between the pixel electrode and the reference electrode substantially parallel to the substrate surface, and a scan signal having a non-selective voltage of two or more values is supplied to the scan line electrode drive. A circuit is connected, and a signal wiring electrode drive circuit for supplying an image signal is connected to the signal wiring electrode.
【請求項2】一対の基板と、 前記基板上に形成された複数の信号配線電極及び走査配
線電極と、 前記一対の基板を挟むようにして配置された偏光手段
と、 前記一対の基板間に挾持された液晶組成物層とを有する
液晶表示装置であって、 前記複数の信号配線電極及び走査配線電極がマトリクス
状に交差して複数の画素を形成し、 前記画素内には、前記画素内の画素電極をオンオフする
アクティブ素子が形成され、 前記アクティブ素子をオンにした際、前記画素電極と基
準電極との間に基板面にほぼ平行に電界が印加され、 前記液晶組成物層及び偏光手段は、前記基板と垂直な方
向のコントラスト比が10以上,輝度透過率が15%以
上となるように設定され、 前記画素電極及び基準電極が1画素内で前記信号配線電
極にほぼ平行な第1の方向に伸びており、 前記走査配線電極には2値以上の非選択電圧を有する走
査信号を供給する走査配線電極駆動回路が接続され、 前記信号配線電極には画像信号を供給する信号配線電極
駆動回路が接続されていることを特徴とする液晶表示装
置。
2. A pair of substrates, a plurality of signal wiring electrodes and scanning wiring electrodes formed on the substrates, a polarization means arranged so as to sandwich the pair of substrates, and a pair of substrates sandwiched between the pair of substrates. A liquid crystal display device having a liquid crystal composition layer, wherein the plurality of signal wiring electrodes and the scanning wiring electrodes intersect in a matrix to form a plurality of pixels, An active element for turning on and off an electrode is formed, and when the active element is turned on, an electric field is applied between the pixel electrode and the reference electrode substantially in parallel to the substrate surface, and the liquid crystal composition layer and the polarizing means are: The contrast ratio in the direction perpendicular to the substrate is set to 10 or more and the luminance transmittance is set to 15% or more, and the pixel electrode and the reference electrode are substantially parallel to the signal wiring electrode in one pixel. A scanning wiring electrode driving circuit that supplies a scanning signal having a non-selective voltage of binary or more is connected to the scanning wiring electrode, and a signal wiring electrode driving circuit that supplies an image signal to the signal wiring electrode. A liquid crystal display device characterized in that circuits are connected.
【請求項3】前記基準電極は、複数の画素にわたって共
通の電位を有する共通電極であることを特徴とする請求
項1項に記載の液晶表示装置。
3. The liquid crystal display device according to claim 1, wherein the reference electrode is a common electrode having a common potential across a plurality of pixels.
【請求項4】前記走査配線電極に印加される走査信号の
非選択電圧が全ての行において、同周期,同位相で変化
し、かつこれに同期して共通電極の全期間,画素電極の
非選択期間にも同周期,同位相で変化する電圧波形が印
加されることを特徴とする請求項1項或いは2項に記載
の液晶表示装置。
4. The non-selection voltage of the scanning signal applied to the scanning wiring electrode changes in all rows in the same period and in the same phase, and in synchronization with this, the non-selection voltage of the pixel electrode during the entire period of the common electrode. 3. The liquid crystal display device according to claim 1, wherein voltage waveforms that change in the same cycle and in the same phase are applied during the selection period.
【請求項5】前記走査配線電極に印加される走査信号の
非選択電圧,共通電極の全期間,画素電極の非選択期間
に印加される電圧の振幅がほぼ同一であることを特徴と
する請求項4項に記載の液晶表示装置。
5. The non-selection voltage of the scanning signal applied to the scan wiring electrode, the entire period of the common electrode, and the amplitude of the voltage applied during the non-selection period of the pixel electrode are substantially the same. Item 4. The liquid crystal display device according to item 4.
【請求項6】前記画素のうちの1画素内で、前記画素電
極とそれに隣合う前記基準電極との間隔Dが前記画素電
極,前記基準電極の幅WP,WCのいずれの3分の1より
も大きいことを特徴とする請求項1項から5項のいずれ
かに記載の液晶表示装置。
6. In one pixel of the pixels, a distance D between the pixel electrode and the reference electrode adjacent thereto is a third of any one of the widths W P and W C of the pixel electrode and the reference electrode. It is larger than 1, The liquid crystal display device in any one of Claim 1 to 5 characterized by the above-mentioned.
【請求項7】前記画素電極,前記信号配線電極,前記基
準電極及び前記走査配線電極のいずれもが前記一対の基
板の一方に配置されていることを特徴とする請求項1項
から5項のいずれかに記載の液晶表示装置。
7. The method according to claim 1, wherein all of the pixel electrode, the signal wiring electrode, the reference electrode and the scanning wiring electrode are arranged on one of the pair of substrates. The liquid crystal display device according to any one of claims.
【請求項8】前記基準電極が前記アクティブ素子を有す
る基板に対向する側の基板に配置され、前記画素電極と
の間に絶縁物を介して補助容量素子を形成したことを特
徴とする請求項1項から5項のいずれかに記載の液晶表
示装置。
8. The auxiliary electrode is arranged on the substrate opposite to the substrate having the active element, and an auxiliary capacitance element is formed between the reference electrode and the pixel electrode via an insulator. The liquid crystal display device according to any one of items 1 to 5.
【請求項9】前記画素電極と前記基準電極とが同層であ
って、前記画素電極と前記走査配線との間に絶縁物を介
して補助容量素子を形成していることを特徴とする請求
項1項から6項のいずれかに記載の液晶表示装置。
9. The auxiliary electrode is formed between the pixel electrode and the reference electrode in the same layer and an insulator is formed between the pixel electrode and the scanning wiring. Item 7. The liquid crystal display device according to any one of items 1 to 6.
【請求項10】前記画素電極と前記基準電極とが互いに
絶縁物を介して異層化され、前記画素電極と前記基準電
極を少なくともその一部において絶縁物を介して重畳さ
せ、その重畳部をもって補助容量素子を形成したことを
特徴とする請求項1項から6項のいずれかに記載の液晶
表示装置。
10. The pixel electrode and the reference electrode are formed in different layers with an insulator interposed therebetween, and the pixel electrode and the reference electrode are overlapped at least in part with the insulator interposed therebetween, and the overlap portion is provided. The liquid crystal display device according to claim 1, wherein an auxiliary capacitance element is formed.
【請求項11】前記走査配線電極駆動回路から出力され
る駆動信号における1垂直走査期間を、前記容量素子を
構成する絶縁物の比抵抗と誘電率の積で表わされる時定
数よりも小さく設定したことを特徴とする請求項8項か
ら10項のいずれかに記載の液晶表示装置。
11. A vertical scanning period in a drive signal output from the scanning wiring electrode drive circuit is set to be smaller than a time constant represented by a product of a specific resistance and a dielectric constant of an insulator forming the capacitive element. 11. The liquid crystal display device according to claim 8, wherein the liquid crystal display device is a liquid crystal display device.
【請求項12】前記基準電極を、隣接する画素と共用す
る構造としたことを特徴とする請求項8項から10項の
いずれかに記載の液晶表示装置。
12. The liquid crystal display device according to claim 8, wherein the reference electrode has a structure shared by adjacent pixels.
【請求項13】前記基準電極を、隣接する画素と共用す
る構造とし、共用配線の一部の信号配線と直交すること
を特徴とする請求項8項から10項のいずれかに記載の
液晶表示装置。
13. The liquid crystal display according to claim 8, wherein the reference electrode has a structure shared by adjacent pixels and is orthogonal to a part of the signal wiring of the shared wiring. apparatus.
【請求項14】前記画素電極または前記基準電極は、リ
ング型,十字型,T字型,Π字型,工字型,梯子型のい
ずれかの平面形状を有することを特徴とする請求項10
項に記載の液晶表示装置。
14. The pixel electrode or the reference electrode has any one of a ring shape, a cross shape, a T shape, a Π shape, a work shape, and a ladder shape in a plan view.
A liquid crystal display device according to the item.
【請求項15】前記基準電極はその表面が自己酸化膜ま
たは自己窒化膜で被覆された金属電極によって構成され
たことを特徴とする請求項10項に記載の液晶表示装
置。
15. The liquid crystal display device according to claim 10, wherein the reference electrode is formed of a metal electrode whose surface is covered with an auto-oxidation film or a self-nitridation film.
【請求項16】前記一対の基板のいずれか一方の基板上
に、色の異なる少なくとも2種以上のカラーフィルタを
備え、該カラーフィルタの境界が、前記信号配線電極或
いは前記基準電極のいずれかと重なることを特徴とする
請求項1項から15項のいずれかに記載の液晶表示装
置。
16. At least two kinds of color filters having different colors are provided on one of the pair of substrates, and a boundary of the color filters overlaps with either the signal wiring electrode or the reference electrode. 16. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is a liquid crystal display device.
【請求項17】前記一対の基板のいずれか一方の基板上
に、色の異なる少なくとも2種以上のカラーフィルタを
備え、該カラーフィルタ上に表面をより平坦化する有機
ポリマを積層し、該有機ポリマが透明ポリマであり、更
に該透明ポリマをその表面処理するか或いは異方性を有
する膜とすることで界面上の液晶分子を所定方向に配向
制御する配向膜として用いることを特徴とする請求項1
項から16項のいずれかに記載の液晶表示装置。
17. An organic polymer for flattening the surface is provided on at least two kinds of color filters having different colors on one of the pair of substrates, and the organic polymer is laminated on the color filter. The polymer is a transparent polymer, and the transparent polymer is used as an alignment film for controlling the alignment of liquid crystal molecules on the interface in a predetermined direction by subjecting the transparent polymer to a surface treatment or forming a film having anisotropy. Item 1
Item 17. The liquid crystal display device according to any one of items 16 to 16.
【請求項18】前記有機ポリマが少なくとも2種以上の
素材からなり、液晶に接する前記有機ポリマに液晶分子
を所定方向に配向制御する機能を、カラーフィルタ側の
前記有機ポリマに平坦化機能を持たせたことを特徴とす
る請求項17項に記載の液晶表示装置。
18. The organic polymer is made of at least two kinds of materials, and the organic polymer in contact with the liquid crystal has a function of controlling alignment of liquid crystal molecules in a predetermined direction, and the organic polymer on the color filter side has a flattening function. The liquid crystal display device according to claim 17, wherein the liquid crystal display device is provided.
【請求項19】少なくとも1層以上からなる前記有機ポ
リマが前記アクティブ素子に直接接する有機絶縁層であ
ることを特徴とする請求項17項或いは18項に記載の
液晶表示装置。
19. The liquid crystal display device according to claim 17, wherein the organic polymer composed of at least one layer is an organic insulating layer which is in direct contact with the active element.
【請求項20】前記有機ポリマが前記アクティブ素子及
び前記液晶組成物層に直接接する有機絶縁層であり、前
記有機絶縁層に前記アクティブ素子の保護膜と液晶分子
配向制御膜の両方の機能を持たせたことを特徴とする請
求項19項に記載の液晶表示装置。
20. The organic polymer is an organic insulating layer that is in direct contact with the active element and the liquid crystal composition layer, and the organic insulating layer has the functions of both a protective film for the active element and a liquid crystal molecule alignment control film. The liquid crystal display device according to claim 19, wherein the liquid crystal display device is provided.
【請求項21】前記液晶組成物層の誘電率異方性が正で
あり、かつ少なくとも一方の基板界面上での液晶分子配
向方向と電界方向とのなす角度|φLC|が45度以上9
0度未満であることを特徴とする請求項1項から20項
のいずれかに記載の液晶表示装置。
21. The liquid crystal composition layer has a positive dielectric anisotropy, and an angle | φ LC | formed between the liquid crystal molecule alignment direction and the electric field direction on at least one substrate interface is 45 degrees or more 9
21. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is less than 0 degree.
【請求項22】前記角度|φLC|が60度以上88度以
下であることを特徴とする請求項21項に記載の液晶表
示装置。
22. The liquid crystal display device according to claim 21, wherein the angle | φ LC | is 60 degrees or more and 88 degrees or less.
【請求項23】前記液晶組成物層の誘電率異方性が負で
あり、かつ少なくとも一方の基板界面上での液晶分子配
向方向と電界方向とのなす角度|φLC|が0度を超え4
5度未満であることを特徴とする請求項1項から18項
のいずれかに記載の液晶表示装置。
23. The liquid crystal composition layer has a negative dielectric anisotropy, and an angle | φ LC | formed between the liquid crystal molecule alignment direction and the electric field direction on at least one substrate interface exceeds 0 degree. Four
19. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is less than 5 degrees.
【請求項24】前記角度|φLC|が2度以上30度以下
であることを特徴とする請求項23項に記載の液晶表示
装置。
24. The liquid crystal display device according to claim 23, wherein the angle | φ LC | is 2 degrees or more and 30 degrees or less.
【請求項25】前記液晶組成物層内の配向に関して、一
方の基板界面上での液晶分子配向方向角度φLC1と他方
基板界面上での液晶分子配向方向角度φLC2とが互いに
略平行(φLC1≒φLC2)であり、かつ前記液晶組成物層
の厚みd及び屈折率異方性Δnの積d・Δnが0.21
μmから0.36μmの間であることを特徴とする請求
項21項から24項のいずれかに記載の液晶表示装置。
25. Regarding the orientation in the liquid crystal composition layer, the liquid crystal molecule orientation direction angle φ LC1 on one substrate interface and the liquid crystal molecule orientation direction angle φ LC2 on the other substrate interface are substantially parallel to each other (φ LC1 ≈ φ LC2 ) and the product d · Δn of the thickness d of the liquid crystal composition layer and the refractive index anisotropy Δn is 0.21.
25. The liquid crystal display device according to claim 21, wherein the liquid crystal display device has a thickness of .mu.m to 0.36 .mu.m.
【請求項26】前記液晶組成物層の厚みd及び屈折率異
方性Δnの積d・Δnよりも低い位相差Rf を有する光
学的異方性媒質を液晶組成物層により生じた位相差を補
償するように挿入し、かつその絶対値の差|d・Δn|
−|Rf|を0.21μmから0.36μm の間としたこ
とを特徴とする請求項25項に記載の液晶表示装置。
26. A retardation produced by the liquid crystal composition layer is an optically anisotropic medium having a retardation R f lower than the product d · Δn of the thickness d of the liquid crystal composition layer and the refractive index anisotropy Δn. , And the difference in absolute value | d · Δn |
26. The liquid crystal display device according to claim 25, wherein − | R f | is set between 0.21 μm and 0.36 μm.
【請求項27】前記液晶組成物層内の配向に関して、一
方の基板界面上での液晶分子配向方向角度φLC1と他方
基板界面上での液晶分子配向方向角度φLC2とが互いに
交差し、その角度|φLC1−φLC2|が80度以上100
度以下であり、かつ前記液晶組成物層の厚みd及び屈折
率異方性Δnの積d・Δnが0.40μmから0.60μ
mの間であることを特徴とする請求項21項から24項
のいずれかに記載の液晶表示装置。
27. Regarding the orientation in the liquid crystal composition layer, a liquid crystal molecule orientation direction angle φ LC1 on one substrate interface and a liquid crystal molecule orientation direction angle φ LC2 on the other substrate interface intersect with each other, and Angle | φ LC1 −φ LC2 | is 80 degrees or more 100
And the product d · Δn of the thickness d of the liquid crystal composition layer and the refractive index anisotropy Δn is 0.40 μm to 0.60 μm.
25. The liquid crystal display device according to claim 21, wherein the liquid crystal display device is between m.
【請求項28】液晶分子の傾き角が、少なくともいずれ
か一方の界面上に於いて4度以下であることを特徴とす
る請求項17項から27項のいずれかに記載の液晶表示
装置。
28. The liquid crystal display device according to claim 17, wherein a tilt angle of the liquid crystal molecules is 4 degrees or less on at least one of the interfaces.
【請求項29】前記液晶組成物層の誘電率異方性が正で
あり、前記偏光手段が前記液晶組成物層を挟む一対の偏
光板であり、少なくとも一方の前記界面上の液晶分子の
長軸方向と電界方向とのなす角度φLCが該一対の偏光板
のうちの一方の偏光板の透過軸(或いは吸収軸)の角度
φP とほぼ等しいことを特徴とする請求項22項に記載
の液晶表示装置。
29. The liquid crystal composition layer has a positive dielectric anisotropy, the polarizing means is a pair of polarizing plates sandwiching the liquid crystal composition layer, and the length of liquid crystal molecules on at least one of the interfaces is long. The angle φ LC formed by the axial direction and the electric field direction is substantially equal to the angle φ P of the transmission axis (or the absorption axis) of one of the pair of polarizing plates. Liquid crystal display device.
【請求項30】前記液晶組成物層の誘電率異方性が正で
あり、前記偏光手段が前記液晶組成物層を挟む一対の偏
光板であり、少なくとも一方の前記界面上の液晶分子の
長軸方向と電界方向とのなす角度φLCと該一対の偏光板
のうちの一方の偏光板の透過軸(或いは吸収軸)の角度
φPとが同符号でかつφLCの絶対値がφPの絶対値よりも
大きく、かつその差|φLC−φP|が3度以上15度以下
であることを特徴とする請求項21項或いは22項に記
載の液晶表示装置。
30. The liquid crystal composition layer has a positive dielectric anisotropy, the polarizing means is a pair of polarizing plates sandwiching the liquid crystal composition layer, and the length of liquid crystal molecules on at least one of the interfaces is long. The angle φ LC formed by the axial direction and the electric field direction has the same sign as the angle φ P of the transmission axis (or the absorption axis) of one of the pair of polarizing plates, and the absolute value of φ LC is φ P. 23. The liquid crystal display device according to claim 21, wherein the liquid crystal display device is larger than the absolute value of and the difference | φ LC −φ P | is 3 degrees or more and 15 degrees or less.
【請求項31】前記液晶組成物層の誘電率異方性が負で
あり、前記偏光手段が前記液晶組成物層を挟む一対の偏
光板であり、少なくとも一方の前記界面上の液晶分子の
長軸方向と電界方向とのなす角φLCと該一対の偏光板の
うちの一方の偏光板の透過軸(或いは吸収軸)の角度φ
Pとが同符号でかつφLCの絶対値がφPの絶対値とほぼ等
しいことを特徴とする請求項24項に記載の液晶表示装
置。
31. The liquid crystal composition layer has a negative dielectric anisotropy, the polarizing means is a pair of polarizing plates sandwiching the liquid crystal composition layer, and the length of liquid crystal molecules on at least one of the interfaces is long. The angle φ LC formed by the axial direction and the electric field direction and the angle φ between the transmission axis (or the absorption axis) of one of the pair of polarizing plates.
25. The liquid crystal display device according to claim 24, wherein P has the same sign and the absolute value of φ LC is substantially equal to the absolute value of φ P.
【請求項32】前記液晶組成物層の誘電率異方性が負で
あり、前記偏光手段が前記液晶組成物層を挟む一対の偏
光板であり、前記界面上の液晶分子の長軸方向と電界方
向とのなす角φLCが該偏光板の吸収軸或いは透過軸の角
度φP よりも小さく、かつその差|φP−φLC|が3度以
上15度以下であることを特徴とする請求項24項に記
載の液晶表示装置。
32. The liquid crystal composition layer has a negative dielectric anisotropy, and the polarizing means is a pair of polarizing plates sandwiching the liquid crystal composition layer, and the long axis direction of liquid crystal molecules on the interface. The angle φ LC formed with the electric field direction is smaller than the angle φ P of the absorption axis or the transmission axis of the polarizing plate, and the difference | φ P −φ LC | is 3 degrees or more and 15 degrees or less. The liquid crystal display device according to claim 24.
【請求項33】前記画素電極に画像信号を印加し、かつ
前記液晶組成物層に印加される電圧がより高まるように
前記基準電極に電圧信号波形を印加することを特徴とす
る請求項29項から32項のいずれかに記載の液晶表示
装置。
33. An image signal is applied to the pixel electrode, and a voltage signal waveform is applied to the reference electrode so that the voltage applied to the liquid crystal composition layer is further increased. 33. The liquid crystal display device according to any one of items 32 to 32.
【請求項34】前記偏光手段が前記液晶組成物層を挟む
一対の偏光板であり、それらを低電圧VL印加時に明状
態,高電圧VH印加時に暗状態となる配置に設定し、前
記一対の偏光板間に、VH 印加時の液晶層の界面残留位
相差を補償する透明媒体を挿入したことを特徴とする請
求項26項に記載の液晶表示装置。
34. The polarizing means is a pair of polarizing plates sandwiching the liquid crystal composition layer, and the polarizing means is set to a bright state when a low voltage V L is applied and a dark state when a high voltage V H is applied, 27. The liquid crystal display device according to claim 26, wherein a transparent medium for compensating for the residual phase difference at the interface of the liquid crystal layer when VH is applied is inserted between the pair of polarizing plates.
JP23231795A 1995-09-11 1995-09-11 Liquid crystal display device Pending JPH0980383A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23231795A JPH0980383A (en) 1995-09-11 1995-09-11 Liquid crystal display device
CN 96111986 CN1168478A (en) 1995-09-11 1996-09-10 Liquid crystal display apparatus
SG9610599A SG80556A1 (en) 1995-09-11 1996-09-11 Liquid crystal display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23231795A JPH0980383A (en) 1995-09-11 1995-09-11 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH0980383A true JPH0980383A (en) 1997-03-28

Family

ID=16937314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23231795A Pending JPH0980383A (en) 1995-09-11 1995-09-11 Liquid crystal display device

Country Status (3)

Country Link
JP (1) JPH0980383A (en)
CN (1) CN1168478A (en)
SG (1) SG80556A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005115404A (en) * 2005-01-24 2005-04-28 Nec Lcd Technologies Ltd Liquid crystal display device
US6896940B2 (en) 2000-08-30 2005-05-24 Matsushita Electric Industrial Co., Ltd. Liquid crystal screen display
US11099434B2 (en) 2019-02-04 2021-08-24 Sharp Kabushiki Kaisha Liquid crystal display panel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW514854B (en) * 2000-08-23 2002-12-21 Semiconductor Energy Lab Portable information apparatus and method of driving the same
JP2012032601A (en) * 2010-07-30 2012-02-16 Sony Corp Liquid crystal display device and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691277A (en) * 1979-12-25 1981-07-24 Citizen Watch Co Ltd Liquiddcrystal display panel
DE69333323T2 (en) * 1992-09-18 2004-09-16 Hitachi, Ltd. A liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896940B2 (en) 2000-08-30 2005-05-24 Matsushita Electric Industrial Co., Ltd. Liquid crystal screen display
US6906769B2 (en) 2000-08-30 2005-06-14 Matsushita Electric Industrial Co., Ltd. Liquid crystal screen display
JP2005115404A (en) * 2005-01-24 2005-04-28 Nec Lcd Technologies Ltd Liquid crystal display device
US11099434B2 (en) 2019-02-04 2021-08-24 Sharp Kabushiki Kaisha Liquid crystal display panel

Also Published As

Publication number Publication date
CN1168478A (en) 1997-12-24
SG80556A1 (en) 2001-05-22

Similar Documents

Publication Publication Date Title
JP2940354B2 (en) Liquid crystal display
KR100356604B1 (en) LCD Display
US6104450A (en) Liquid crystal display device, and methods of manufacturing and driving same
US7453086B2 (en) Thin film transistor panel
US8094282B1 (en) Method of fabricating a liquid crystal display device having image-displaying and viewing angle-adjusting sub pixels and method of driving the same
KR100233187B1 (en) Liquid crystal display with an improved optical compensation layer
US20070030428A1 (en) Liquid crystal display
WO2011058804A1 (en) Liquid crystal display device
US6873377B2 (en) Liquid crystal display device
US7136132B2 (en) Liquid crystal display device and manufacturing method therefor
JP3127640B2 (en) Active matrix type liquid crystal display
JPH06148596A (en) Active matrix type liquid crytal diplay device
TWI672550B (en) Liquid crystal display device
JPH0980383A (en) Liquid crystal display device
JPH09230364A (en) Liquid crystal display device
JPH08179278A (en) Active matrix type liquid crystal display element
KR100773875B1 (en) In Plane Switching mode Liquid crystal display device
JP2000162627A (en) Liquid crystal display device
KR100895307B1 (en) Liquid crystal display having a pixel including a plurality of subpixels
KR101108387B1 (en) Twisted nematic mode liquid crystal display device and method for manufacturing lcd
JP3441999B2 (en) Liquid crystal display
JP3811695B2 (en) Liquid crystal display
JPH07230074A (en) Liquid crystal display device
JP5032010B2 (en) Liquid crystal display device and driving method thereof
JP2004310141A (en) Liquid crystal display device