[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH097588A - Hydrogen absorbing electrode - Google Patents

Hydrogen absorbing electrode

Info

Publication number
JPH097588A
JPH097588A JP7154179A JP15417995A JPH097588A JP H097588 A JPH097588 A JP H097588A JP 7154179 A JP7154179 A JP 7154179A JP 15417995 A JP15417995 A JP 15417995A JP H097588 A JPH097588 A JP H097588A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
alloy
powder
hydrogen absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7154179A
Other languages
Japanese (ja)
Other versions
JP3560187B2 (en
Inventor
Yuichi Matsumura
勇一 松村
Toshiki Tanaka
俊樹 田中
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP15417995A priority Critical patent/JP3560187B2/en
Publication of JPH097588A publication Critical patent/JPH097588A/en
Application granted granted Critical
Publication of JP3560187B2 publication Critical patent/JP3560187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a high capacity and a long life and to suppress increasing an internal pressure in the case of a sealed battery, by having a hydrogen absorbing alloy formed with a transition metal rich layer, and containing a simple substance or a compound of rare earth element as an additive agent. CONSTITUTION: A hydrogen absorbing alloy having a composition of MmNi3.9 Al0.3 Co0.7 Mn0.2 is crushed into a suitable size. Crushed alloy powder is immersed in an acetic acid-sodium acetate buffer solution adjusted to pH3.6, stirred and dried after washing by water. This alloy sample and 0.5% powder of Er2 O3 are well mixed and formed into a paste state by adding a thickener to charge a nickel fiber substrate, to be pressed after drying to prepare an electrode A. On the other hand, the hydrogen absorbing alloy manufactures a hydrogen absorbing electrode without mixing Er2 O3 powder, to obtain a reference electrode 1. In the hydrogen absorbing alloy not immersed in an acetic acid-sodium acetate butter solution, an electrode 2 of mixing 0.5% Er2 O3 powder and an electrode 3 of not mixing Er2 O3 powder are manufactured. The electrode A and reference electrodes 1, 2, 3 are used, to perform charge/discharge with a nickel electrode serving as a mate electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素吸蔵合金を用いた水
素吸蔵電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage electrode using a hydrogen storage alloy.

【0002】[0002]

【従来の技術】水素吸蔵合金を負極材料として用いるニ
ッケル−水素化物二次電池は低公害性で高エネルギ−密
度であることから、ニッケル−カドミウム電池に代わる
電源としてポ−タブル機器や電気自動車などに用いら
れ、研究開発が盛んに行われている。
2. Description of the Related Art Nickel-hydride secondary batteries using a hydrogen storage alloy as a negative electrode material are low in pollution and have high energy density. Therefore, they can be used as portable power sources for nickel-cadmium batteries, portable devices, electric vehicles, etc. , And is being actively researched and developed.

【0003】[0003]

【発明が解決しようとする課題】ニッケル−水素化物二
次電池は密閉型電池として使用されており、この場合、
電池内部の圧力上昇は安全性の問題や、安全弁が作動し
た場合の電解液流出に伴う性能劣化の問題と密接な関係
にある。従って、電池の高容量化、長寿命化に加えて内
圧上昇の抑制は高性能密閉型電池の開発において重要な
課題とされている。
The nickel-hydride secondary battery is used as a sealed battery, and in this case,
The rise in the pressure inside the battery is closely related to the problem of safety and the problem of performance deterioration due to electrolyte outflow when the safety valve operates. Therefore, in addition to high capacity and long life of the battery, suppression of increase in internal pressure is an important issue in the development of a high performance sealed battery.

【0004】本発明は上記問題点に鑑みてなされたもの
であり、高容量、長寿命を満たすとともに密閉型電池に
したときに内圧上昇を引き起こさない水素吸蔵電極を提
供しようとするものである。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a hydrogen storage electrode which has a high capacity and a long life and which does not cause an increase in internal pressure when a sealed battery is formed.

【0005】[0005]

【課題を解決するための手段】本発明の第1は、遷移金
属リッチ層を形成させた水素吸蔵合金を有し、且つ希土
類元素の単体または化合物を添加剤として含有している
ことを特徴とする水素吸蔵電極である。
The first aspect of the present invention is characterized by having a hydrogen storage alloy in which a transition metal rich layer is formed and containing a rare earth element simple substance or compound as an additive. It is a hydrogen storage electrode.

【0006】本発明の第2は、前記希土類元素が、L
a,Ce,PrNd,Sm,Eu,Gd,Tb,Dy,
Ho,Y,Er、Tu,Yb,Lu,Scの中から選択
される少なくとも1種類である水素吸蔵電極である。
A second aspect of the present invention is that the rare earth element is L
a, Ce, PrNd, Sm, Eu, Gd, Tb, Dy,
The hydrogen storage electrode is at least one kind selected from Ho, Y, Er, Tu, Yb, Lu and Sc.

【0007】本発明の第3は、前記希土類元素の化合物
が、酸化物、水酸化物、ハロゲン化物の中から選択され
る少なくとも1種類である水素吸蔵電極である。
A third aspect of the present invention is a hydrogen storage electrode, wherein the compound of the rare earth element is at least one selected from oxides, hydroxides and halides.

【0008】本発明の第4は、前記遷移金属リッチ層
が、水素吸蔵合金を酸性水溶液中又はアルカリ性水溶液
中に浸漬することにより、該水素吸蔵合金の表面に形成
されている水素吸蔵電極である。
A fourth aspect of the present invention is the hydrogen storage electrode, wherein the transition metal rich layer is formed on the surface of the hydrogen storage alloy by immersing the hydrogen storage alloy in an acidic aqueous solution or an alkaline aqueous solution. .

【0009】本発明の第5は、前記遷移金属リッチ層
が、ニッケルを主体とする水素吸蔵電極である。
A fifth aspect of the present invention is the hydrogen storage electrode, wherein the transition metal rich layer is mainly composed of nickel.

【0010】[0010]

【作用】充放電の繰り返しによる電池内圧上昇は、水素
ガスにより引き起こされることがわかっており、従っ
て、負極特性を改良することにより内圧上昇の抑制が可
能である。
It has been known that the increase in the internal pressure of the battery due to repeated charging and discharging is caused by hydrogen gas. Therefore, it is possible to suppress the increase in the internal pressure by improving the negative electrode characteristics.

【0011】密閉型電池では負極容量は正極容量よりも
多く、多少の過充電では負極からの水素ガス発生は起こ
り得ないはずである。にもかかわらず、充電末期に負極
からの水素ガス発生が起こる原因は主に次の2つが挙げ
られる。第1は、負極の初期活性化が遅いため、負極の
充電効率が悪く、充電末期で水素ガス発生が起こること
によるものである。第2は、リザーブのバランスがずれ
て充電リザーブが減少し、充電末期で水素ガス発生が起
こることによるものである。
In the sealed battery, the negative electrode capacity is larger than the positive electrode capacity, and hydrogen gas generation from the negative electrode should not occur with some overcharge. Nevertheless, there are mainly two causes of the generation of hydrogen gas from the negative electrode at the end of charging. First, the initial activation of the negative electrode is slow, so the charging efficiency of the negative electrode is poor and hydrogen gas is generated at the end of charging. Secondly, the reserve balance is deviated, the charge reserve is reduced, and hydrogen gas is generated at the end of charge.

【0012】このうち第1の原因の解決方法としては合
金を表面処理する方法がある。水素吸蔵合金電極の初期
活性化とは合金表面に濃縮されている希土類元素を溶解
させ、遷移金属リッチ層を形成する工程である。この遷
移金属層は電極反応場として働くので表面処理によりあ
らかじめ形成しておくと初期活性化が早くなる。ここ
で、表面処理を行う処理液は弱酸性水溶液とアルカリ性
水溶液の2種類が挙げられる。弱酸性水溶液においては
種々検討した結果、特定pH領域で水素吸蔵合金表面の
希土類元素を選択的に溶解でき、絶縁性物質を生成する
ことなく、合金表面層に遷移金属リッチ層を容易に形成
することが可能であることを見い出した。酢酸ー酢酸ナ
トリウム緩衝溶液を用いると、pHコントロールがしや
すい。ここで、弱酸を用いるのは、強酸を用いると遷移
金属リッチ層の主成分であるニッケルまで侵食されるお
それがあるからである。これらの操作は高温で処理する
ことで、処理時間を短縮することができる。また、アル
カリ性水溶液での処理は、一般に合金表面から絶縁性の
希土類水酸化物の針状析出物が生成することが知られて
いる。しかし、処理液として電池の中で使用する電解液
と同じ濃度、組成のものを用いると、希土類水酸化物の
生成がかなり抑制される。LiOH水溶液を含む水溶液
系では希土類元素はイオン化し易く、使用している電解
液はKOHとLiOHの混合水溶液であるので、電解液
を用いた処理では希土類元素は水酸化物として析出しに
くい。従って、弱酸処理と同等の初期活性化が早い電極
が得られる。
Of these, the first solution to the cause is a method of surface-treating the alloy. The initial activation of the hydrogen storage alloy electrode is a step of dissolving the concentrated rare earth element on the alloy surface to form a transition metal rich layer. Since this transition metal layer acts as an electrode reaction field, if it is formed in advance by surface treatment, the initial activation becomes faster. Here, the treatment liquid for performing the surface treatment includes two types, a weakly acidic aqueous solution and an alkaline aqueous solution. As a result of various studies in a weakly acidic aqueous solution, a rare earth element on the surface of the hydrogen storage alloy can be selectively dissolved in a specific pH range, and a transition metal rich layer can be easily formed on the alloy surface layer without generating an insulating substance. I have found that it is possible. When an acetic acid-sodium acetate buffer solution is used, it is easy to control the pH. Here, the weak acid is used because the strong acid may corrode even nickel, which is the main component of the transition metal rich layer. By treating these operations at a high temperature, the treatment time can be shortened. In addition, it is generally known that the treatment with the alkaline aqueous solution produces needle-like insulating rare earth hydroxide precipitates from the alloy surface. However, when a treatment solution having the same concentration and composition as the electrolytic solution used in the battery is used, the production of rare earth hydroxide is considerably suppressed. The rare earth element is easily ionized in an aqueous solution system containing the LiOH aqueous solution, and since the electrolytic solution used is a mixed aqueous solution of KOH and LiOH, the rare earth element is unlikely to precipitate as a hydroxide in the treatment using the electrolytic solution. Therefore, an electrode having an early activation equivalent to that of the weak acid treatment can be obtained.

【0013】次に第2の原因の大きなものは合金腐食に
よるものであると考えられる。例えば、水素吸蔵合金中
の希土類金属が酸化したとき、その対反応となる還元反
応は水素発生反応であるが、この場合水素は水素吸蔵合
金内に吸蔵される。その結果、放電リザーブが増加し、
充電リザーブが減少する。従って、この問題の解決策は
合金腐食の抑制である。そのためには希土類元素の単体
または化合物からなる添加剤の少量の混合が有効であ
る。この添加剤はいったん電解液中へ溶解した後、数十
Åの薄い緻密な膜として再析出して合金表面を覆い、合
金腐食を抑制する。また、添加量が少量なのは、多く添
加すると不動態皮膜が厚すぎて水素吸蔵合金の活性化を
遅くしてしまうためである。
The second major cause is considered to be alloy corrosion. For example, when the rare earth metal in the hydrogen storage alloy is oxidized, the reduction reaction which is a counter reaction thereof is a hydrogen generation reaction, but in this case, hydrogen is stored in the hydrogen storage alloy. As a result, the discharge reserve increases,
Charge reserve is reduced. Therefore, the solution to this problem is the inhibition of alloy corrosion. For that purpose, it is effective to mix a small amount of an additive composed of a simple substance or a compound of a rare earth element. This additive, once dissolved in the electrolytic solution, re-precipitates as a thin and dense film of several tens of liters to cover the alloy surface and suppress alloy corrosion. The reason why the amount of addition is small is that if the amount of addition is large, the passivation film becomes too thick and the activation of the hydrogen storage alloy is delayed.

【0014】内圧上昇抑制効果は上記の2つの対策が両
方同時に満たされたときに有効に発揮される。表面処理
をしていない合金に希土類元素を添加しても活性化が遅
い合金が更に活性化が遅くなる。また、表面処理だけ行
った合金では合金腐食の進行が早く、密閉型電池にした
ときの内圧上昇が起こり易い。
The effect of suppressing the increase in internal pressure is effectively exhibited when both of the above two measures are simultaneously satisfied. Even if a rare earth element is added to an alloy which has not been surface-treated, the activation of the alloy having a slower activation is further delayed. In addition, alloys that have undergone only surface treatment proceed rapidly to alloy corrosion, and the internal pressure tends to rise when a sealed battery is formed.

【0015】このように水素吸蔵合金の表面処理と希土
類元素の単体または化合物の混合の両方を満たすことに
より高容量、長寿命で密閉型電池にしたときに内圧上昇
を抑制することができる。
By satisfying both the surface treatment of the hydrogen storage alloy and the mixture of the rare earth element alone or the compound as described above, it is possible to suppress the increase in the internal pressure when the sealed battery has a high capacity and a long life.

【0016】[0016]

【実施例】以下、実施例に基づき本発明を説明する。 (実施例1)先ず、MmNi3.8 Al0.3 Co0.7 Mn
0.2 の組成を有する水素吸蔵合金を準備して適当な大き
さに粉砕する。なお、Mmはミッシュメタルであり、L
a,Ce,Pr,Ndのうち少なくとも1種類を含んだ
希土類元素の複合体である。次にこの粉砕した合金粉末
をpHを3.6に調整した酢酸−酢酸ナトリウム緩衝溶
液中に浸漬して撹拌し水洗、乾燥した。
EXAMPLES The present invention will be described below based on examples. (Example 1) First, MmNi 3.8 Al 0.3 Co 0.7 Mn
A hydrogen storage alloy having a composition of 0.2 is prepared and crushed to an appropriate size. In addition, Mm is misch metal, L
It is a composite of rare earth elements containing at least one of a, Ce, Pr and Nd. Next, this crushed alloy powder was immersed in an acetic acid-sodium acetate buffer solution whose pH was adjusted to 3.6, stirred, washed with water and dried.

【0017】この合金試料とEr2 3 粉末0.5%と
を乳鉢でよく混合してから、増粘剤を加えてペ−スト状
にし、ニッケル繊維基板に充填、乾燥後プレスして本発
明電極Aを作製した。一方、水素吸蔵合金は同じでEr
2 3 粉末を混合していない水素吸蔵電極を上記と同様
にして作製した。これを比較電極1とする。また、酢酸
−酢酸ナトリウム緩衝溶液中に浸漬していない上記と同
様の組成の水素吸蔵合金を準備し、これにEr2 3
末0.5%を混合した水素吸蔵電極を上記と同様にして
作製した。これを比較電極2とする。さらに酢酸−酢酸
ナトリウム緩衝溶液中に浸漬していない上記と同様の組
成の水素吸蔵合金にEr2 3 粉末を混合していない水
素吸蔵電極を上記と同様にして作製した。これを比較電
極3とする。
This alloy sample and Er 2 O 3 powder 0.5% were mixed well in a mortar, and then a thickener was added to form a paste, which was filled in a nickel fiber substrate, dried and pressed to form a book. Invention electrode A was produced. On the other hand, the hydrogen storage alloy is the same, Er
A hydrogen storage electrode not mixed with 2 O 3 powder was produced in the same manner as above. This is referred to as reference electrode 1. Further, a hydrogen storage alloy having the same composition as the above, which was not immersed in an acetic acid-sodium acetate buffer solution, was prepared, and a hydrogen storage electrode obtained by mixing 0.5% of Er 2 O 3 powder therein was used in the same manner as above. It was made. This is referred to as a reference electrode 2. Further, a hydrogen storage electrode was prepared in the same manner as described above, in which the hydrogen storage alloy of the same composition as above, which was not immersed in the acetic acid-sodium acetate buffer solution, was not mixed with Er 2 O 3 powder. This is referred to as a reference electrode 3.

【0018】このようにして作製した本発明電極Aと比
較電極1、比較電極2及び比較電極3を用いて、通常の
ニッケル電極を相手極として、充放電を行った。その結
果を図1に示す。図1から明らかな通り、表面処理を行
っていない比較電極2及び比較電極3は初期活性化が遅
い。比較電極2に限っては混合したEr2 3 粉末が不
動態化するので更に活性化が遅い。表面処理を行った本
発明電極Aと比較電極1は活性化が早く高容量を示し
た。
Using the electrode A of the present invention thus produced and the comparative electrodes 1, 2, and 3, charging / discharging was carried out using a normal nickel electrode as a counter electrode. The result is shown in FIG. As is clear from FIG. 1, the comparison electrodes 2 and 3 which are not surface-treated have a slow initial activation. Only in the comparative electrode 2, since the mixed Er 2 O 3 powder is passivated, the activation is slower. The surface-treated electrode A of the present invention and the comparative electrode 1 were activated quickly and showed a high capacity.

【0019】これら4種類の電極を用いて公称1000
mAのAAサイズの密閉型電池を作製した。それぞれ本
発明電池A、比較電池1、比較電池2及び比較電池3と
する。各電池の内圧測定用の圧力センサーを取り付け、
充放電を行った。その結果を図2に示す。図2から明ら
かな通り、比較電池1はサイクル数の増加とともに内圧
が上昇する傾向にあるが、本発明電池Aは内圧上昇が著
しく抑制された。比較電池2及び比較電池3は著しい内
圧上昇を見せた。また、放電容量においても本発明電池
A及び比較電池1は初期から優れていることがわかる。
Nominal 1000 using these four types of electrodes
A mA size AA sealed battery was fabricated. The invention battery A, the comparative battery 1, the comparative battery 2, and the comparative battery 3 are referred to as the present invention, respectively. Attach a pressure sensor for measuring the internal pressure of each battery,
It was charged and discharged. The result is shown in FIG. As is clear from FIG. 2, the internal pressure of the comparative battery 1 tends to increase as the number of cycles increases, but the internal pressure increase of the battery A of the present invention is significantly suppressed. Comparative battery 2 and comparative battery 3 showed a significant increase in internal pressure. Further, it is understood that the battery A of the present invention and the comparative battery 1 are also excellent in discharge capacity from the beginning.

【0020】上記電池を解体し、水素吸蔵電極から水素
吸蔵合金を取り出し、X線回折および電子顕微鏡観察を
行った。図3にX線回折結果を示す。図3中で円で囲っ
た部分のピークが希土類水酸化物のピークを示してい
る。図4に図3の中央部のピークの拡大図を示す。Er
2 3 粉末を混合した本発明電極Aには希土類水酸化物
の生成量が少なく、Er2 3 混合は合金腐食を抑制し
ていることがわかる。また、図5に本発明電極Aの電子
顕微鏡写真、図6に比較電極1の電池顕微鏡写真を示
す。図中針状に析出しているものが希土類水酸化物であ
り、この図5、図6からもEr2 3 の混合により合金
腐食が抑制されていることがわかる。
The above battery was disassembled, the hydrogen storage alloy was taken out from the hydrogen storage electrode, and X-ray diffraction and electron microscope observation were carried out. FIG. 3 shows the X-ray diffraction result. The peak of the portion surrounded by a circle in FIG. 3 indicates the peak of the rare earth hydroxide. FIG. 4 shows an enlarged view of the peak in the center of FIG. Er
It can be seen that in the electrode A of the present invention in which 2 O 3 powder was mixed, the amount of rare earth hydroxide produced was small, and the Er 2 O 3 mixture suppressed alloy corrosion. 5 shows an electron micrograph of the electrode A of the present invention, and FIG. 6 shows a battery micrograph of the comparative electrode 1. The acicular precipitation in the figure is the rare earth hydroxide, and it can be seen from FIGS. 5 and 6 that alloy corrosion is suppressed by mixing Er 2 O 3 .

【0021】(実施例2)先ず、MmNi3.8 Al0.3
Co0.7 Mn0.2 の組成を有する水素吸蔵合金を準備し
て適当な大きさに粉砕する。次にこの粉砕した合金粉末
をKOHとLiOHを混合した高温アルカリ水溶液中に
浸漬して撹拌し水洗、乾燥した。なお、このアルカリ水
溶液は電解液として用いているものと同じ組成、濃度の
ものである。
Example 2 First, MmNi 3.8 Al 0.3
A hydrogen storage alloy having a composition of Co 0.7 Mn 0.2 is prepared and crushed to an appropriate size. Next, this crushed alloy powder was immersed in a high temperature alkaline aqueous solution in which KOH and LiOH were mixed, stirred, washed with water and dried. The alkaline aqueous solution has the same composition and concentration as that used as the electrolytic solution.

【0022】この合金試料と、Yb2 3 粉末0.5%
とを乳鉢でよく混合してから、増粘剤を加えてペ−スト
状にし、ニッケル繊維基板に充填、乾燥後、プレスして
本発明電極Bを作製した。一方、水素吸蔵合金は同じで
Yb2 3 粉末を混合していない水素吸蔵電極を上記と
同様にして作製した。これを比較電極4とする。また、
KOHとLiOH混合アルカリ水溶液中に浸漬していな
い上記と同様の組成の水素吸蔵合金を準備し、これにY
2 3 粉末0.5%を混合した水素吸蔵電極を上記と
同様にして作製した。これを比較電極5とする。さらに
KOHとLiOH混合アルカリ水溶液中に浸漬していな
い上記と同様の組成の水素吸蔵合金にYb2 3 粉末を
混合していない水素吸蔵電極を上記と同様にして作製し
た。これを比較電極6とする。
This alloy sample and Yb 2 O 3 powder 0.5%
Was thoroughly mixed in a mortar, a thickener was added to form a paste, the nickel fiber substrate was filled, dried and pressed to prepare an electrode B of the present invention. On the other hand, a hydrogen storage electrode having the same hydrogen storage alloy and containing no Yb 2 O 3 powder was prepared in the same manner as above. This is referred to as a reference electrode 4. Also,
A hydrogen storage alloy having the same composition as the above, which is not immersed in a KOH / LiOH mixed alkaline aqueous solution, is prepared.
A hydrogen storage electrode mixed with 0.5% of b 2 O 3 powder was prepared in the same manner as above. This is referred to as a reference electrode 5. Further, a hydrogen storage electrode in which Yb 2 O 3 powder was not mixed with the hydrogen storage alloy having the same composition as above, which was not immersed in the KOH / LiOH mixed alkaline aqueous solution, was prepared in the same manner as above. This will be referred to as a reference electrode 6.

【0023】このようにして作製した本発明電極Bと比
較電極4、比較電極5及び比較電極6を用いて、通常の
ニッケル電極を相手極として、充放電を行った。その結
果を図7に示す。図7から明らかな通り、表面処理を行
っていない比較電極5及び比較電極6は初期活性化が遅
い。比較電極5に限っては混合したYb2 3 粉末が不
動態化するので更に活性化が遅い。表面処理を行った本
発明電極Bと比較電極4は活性化が早く高容量を示し
た。
Using the electrode B of the present invention thus produced and the comparative electrodes 4, 5, and 6, a normal nickel electrode was used as a counter electrode for charging and discharging. FIG. 7 shows the result. As is clear from FIG. 7, the initial activation of the comparative electrode 5 and the comparative electrode 6 not subjected to the surface treatment is slow. Only in the comparative electrode 5, since the mixed Yb 2 O 3 powder is passivated, the activation is slower. The surface-treated electrode B of the present invention and the comparative electrode 4 were activated quickly and showed a high capacity.

【0024】これら4種類の電極を用いて公称1000
mAのAAサイズの密閉型電池を作製した。それぞれ本
発明電池B、比較電池4、比較電池5及び比較電池6と
する。各電池に内圧測定用の圧力センサーを取り付け、
充放電を行った。その結果を図8に示す。図8から明ら
かな通り、比較電池4はサイクル数の増加とともに内圧
が上昇したが、本発明電池Bは内圧上昇が著しく抑制さ
れた。比較電池5及び比較電池6は充放電初期で著しい
内圧上昇を見せた。また、放電容量においても本発明電
池Bは優れていることが分かる。
Nominal 1000 using these four types of electrodes
A mA size AA sealed battery was fabricated. The present battery B, the comparative battery 4, the comparative battery 5, and the comparative battery 6, respectively. Attach a pressure sensor for internal pressure measurement to each battery,
It was charged and discharged. FIG. 8 shows the result. As is clear from FIG. 8, the internal pressure of Comparative Battery 4 increased as the number of cycles increased, but the internal pressure of Battery B of the present invention was significantly suppressed. Comparative battery 5 and comparative battery 6 showed a remarkable increase in internal pressure at the initial stage of charging and discharging. Further, it is understood that the battery B of the present invention is also excellent in discharge capacity.

【0025】(実施例3)先ず、MmNi3.8 Al0.3
Co0.7 Mn0.2 の組成を有する水素吸蔵合金を準備し
て適当な大きさに粉砕する。次にこの粉砕した合金粉末
をKOHとLiOHを混合した高温アルカリ水溶液中に
浸漬して撹拌し水洗、乾燥した。なお、このアルカリ水
溶液は電解液として用いているものと同じものである。
Example 3 First, MmNi 3.8 Al 0.3
A hydrogen storage alloy having a composition of Co 0.7 Mn 0.2 is prepared and crushed to an appropriate size. Next, this crushed alloy powder was immersed in a high temperature alkaline aqueous solution in which KOH and LiOH were mixed, stirred, washed with water and dried. The alkaline aqueous solution is the same as that used as the electrolytic solution.

【0026】この合金試料と、Er(OH)3 粉末0.
5%とを乳鉢でよく混合してから、増粘剤を加えてペ−
スト状にし、ニッケル繊維基板に充填、乾燥後、プレス
して本発明電極Cを作製した。さらにYbF3 を混合し
て同様に水素吸蔵電極を作製し、本発明電極Dとする。
このようにして作製した本発明電極C、本発明電極Dを
用いて、公称1000mAのAAサイズの密閉型電池を
作製した。それぞれ本発明電池C、本発明電池Dとす
る。各電池の内圧測定用の圧力センサーを取り付け、充
放電を行った。その結果を図9に示す。図9から明らか
な通り、いずれの添加剤においても内圧上昇抑制効果が
ある。
This alloy sample and Er (OH) 3 powder 0.
Mix well with 5% in a mortar, add thickener and add
The electrode C of the present invention was produced by forming a strike, filling a nickel fiber substrate, drying and pressing. Further, YbF 3 was mixed to prepare a hydrogen storage electrode in the same manner as the electrode D of the present invention.
Using the electrode C of the present invention and the electrode D of the present invention thus produced, an AA size sealed battery of nominally 1000 mA was produced. The present invention battery C and the present invention battery D are respectively referred to. A pressure sensor for measuring the internal pressure of each battery was attached and charged and discharged. The result is shown in FIG. As is clear from FIG. 9, any additive has an effect of suppressing an increase in internal pressure.

【0027】[0027]

【発明の効果】上記のように、本発明の水素吸蔵電極で
は、水素吸蔵合金の表面処理と希土類元素の単体または
化合物の混合の両方を施すことにより高容量、長寿命で
あると同時に密閉型電池にしたときに内圧上昇を抑制す
ることができるという極めて優れた効果が得られる。
As described above, in the hydrogen storage electrode of the present invention, both the surface treatment of the hydrogen storage alloy and the mixture of the rare earth element or the compound of the rare earth element provide a high capacity and a long life, and at the same time, the sealed type. An extremely excellent effect that an increase in internal pressure can be suppressed when used as a battery is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】サイクル数と放電容量の関係を示した図であ
る。
FIG. 1 is a diagram showing the relationship between the number of cycles and discharge capacity.

【図2】サイクル数と放電容量および電池内圧の関係を
示した図である。
FIG. 2 is a diagram showing the relationship among the number of cycles, discharge capacity, and battery internal pressure.

【図3】本発明電極Aと比較電極1のX線回折図であ
る。
FIG. 3 is an X-ray diffraction diagram of an electrode A of the present invention and a comparative electrode 1.

【図4】図3の中央部の拡大図である。FIG. 4 is an enlarged view of a central portion of FIG.

【図5】本発明電極Aの電子顕微鏡写真である。FIG. 5 is an electron micrograph of electrode A of the present invention.

【図6】比較電極1の電子顕微鏡写真である。FIG. 6 is an electron micrograph of comparative electrode 1.

【図7】サイクル数と放電容量の関係を示した図であ
る。
FIG. 7 is a diagram showing the relationship between the number of cycles and the discharge capacity.

【図8】サイクル数と放電容量および電池内圧の関係を
示した図である。
FIG. 8 is a diagram showing the relationship among the number of cycles, discharge capacity, and battery internal pressure.

【図9】サイクル数と放電容量および電池内圧の関係を
示した図である。
FIG. 9 is a diagram showing the relationship among the number of cycles, discharge capacity, and battery internal pressure.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 遷移金属リッチ層を形成させた水素吸蔵
合金を有し、且つ希土類元素の単体または化合物を添加
剤として含有していることを特徴とする水素吸蔵電極。
1. A hydrogen storage electrode, comprising a hydrogen storage alloy having a transition metal rich layer formed thereon, and containing a rare earth element simple substance or compound as an additive.
【請求項2】 前記希土類元素が、La,Ce,Pr,
Nd,Sm,Eu,Gd,Tb,Dy,Ho,Y,E
r、Tu,Yb,Lu,Scの中から選択される少なく
とも1種類である請求項1記載の水素吸蔵電極。
2. The method according to claim 1, wherein the rare earth element is La, Ce, Pr,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, E
The hydrogen storage electrode according to claim 1, which is at least one selected from r, Tu, Yb, Lu, and Sc.
【請求項3】 前記希土類元素の化合物が、酸化物、水
酸化物、ハロゲン化物の中から選択される少なくとも1
種類である請求項1記載の水素吸蔵電極。
3. The method according to claim 1, wherein the rare earth compound is at least one selected from oxides, hydroxides, and halides.
The hydrogen storage electrode according to claim 1, wherein the hydrogen storage electrode is of a kind.
【請求項4】 前記遷移金属リッチ層が、水素吸蔵合金
を酸性水溶液中又はアルカリ性水溶液中に浸漬すること
により、該水素吸蔵合金の表面に形成されている請求項
1記載の水素吸蔵電極。
4. The hydrogen storage electrode according to claim 1, wherein the transition metal rich layer is formed on the surface of the hydrogen storage alloy by immersing the hydrogen storage alloy in an acidic aqueous solution or an alkaline aqueous solution.
【請求項5】 前記遷移金属リッチ層が、ニッケルを主
体とする請求項1記載の水素吸蔵電極。
5. The hydrogen storage electrode according to claim 1, wherein the transition metal-rich layer is mainly composed of nickel.
JP15417995A 1995-06-21 1995-06-21 Method for producing hydrogen storage electrode Expired - Fee Related JP3560187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15417995A JP3560187B2 (en) 1995-06-21 1995-06-21 Method for producing hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15417995A JP3560187B2 (en) 1995-06-21 1995-06-21 Method for producing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH097588A true JPH097588A (en) 1997-01-10
JP3560187B2 JP3560187B2 (en) 2004-09-02

Family

ID=15578569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15417995A Expired - Fee Related JP3560187B2 (en) 1995-06-21 1995-06-21 Method for producing hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP3560187B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012182A (en) * 1985-08-07 1991-04-30 Ngk Insulators, Ltd. Electrical measuring device
EP0794584A1 (en) * 1995-09-28 1997-09-10 Yuasa Corporation Hydrogen storage electrode, nickel electrode, and alkaline storage battery
WO1999065095A1 (en) * 1998-06-08 1999-12-16 Toshiba Battery Co., Ltd. Nickel-hydrogen secondary cell
US6207323B1 (en) 1998-03-09 2001-03-27 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode
US6331367B1 (en) * 1998-09-11 2001-12-18 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery hydrogen-absorbing alloy electrode and method for producing the same
WO2004068625A1 (en) * 2003-01-31 2004-08-12 Yuasa Corporation Sealed alkaline storage battery, electrode structure thereof, charging method and charger for sealed alkaline storage battery
WO2007004703A1 (en) * 2005-07-04 2007-01-11 Gs Yuasa Corporation Nickel-hydrogen battery
WO2007004712A1 (en) * 2005-07-04 2007-01-11 Gs Yuasa Corporation Nickel-hydrogen battery and production method thereof
JP2007165277A (en) * 2005-11-16 2007-06-28 Matsushita Electric Ind Co Ltd Alkaline battery, composite material for electrode and its manufacturing method
JP2009295575A (en) * 2008-05-08 2009-12-17 Panasonic Corp Composite material for electrode, production method thereof, and alkaline storage battery using the material
WO2017169163A1 (en) * 2016-03-28 2017-10-05 Fdk株式会社 Negative electrode for alkali secondary cell and alkali secondary cell including negative electrode

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012182A (en) * 1985-08-07 1991-04-30 Ngk Insulators, Ltd. Electrical measuring device
EP0794584A4 (en) * 1995-09-28 2007-01-31 Yuasa Battery Co Ltd Hydrogen storage electrode, nickel electrode, and alkaline storage battery
EP0794584A1 (en) * 1995-09-28 1997-09-10 Yuasa Corporation Hydrogen storage electrode, nickel electrode, and alkaline storage battery
US6207323B1 (en) 1998-03-09 2001-03-27 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode
WO1999065095A1 (en) * 1998-06-08 1999-12-16 Toshiba Battery Co., Ltd. Nickel-hydrogen secondary cell
US6440607B1 (en) 1998-06-08 2002-08-27 Toshiba Battery Co., Ltd. Nickel-hydrogen secondary cell
US6331367B1 (en) * 1998-09-11 2001-12-18 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery hydrogen-absorbing alloy electrode and method for producing the same
US6699617B2 (en) 1998-09-11 2004-03-02 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery, hydrogen-absorbing alloy electrode and method for producing the same
WO2004068625A1 (en) * 2003-01-31 2004-08-12 Yuasa Corporation Sealed alkaline storage battery, electrode structure thereof, charging method and charger for sealed alkaline storage battery
US7527890B2 (en) 2003-01-31 2009-05-05 Yuasa Corporation Sealed alkaline storage battery, electrode structure and charging method for the same, and charger for sealed alkaline storage battery
WO2007004703A1 (en) * 2005-07-04 2007-01-11 Gs Yuasa Corporation Nickel-hydrogen battery
WO2007004712A1 (en) * 2005-07-04 2007-01-11 Gs Yuasa Corporation Nickel-hydrogen battery and production method thereof
JP2007012572A (en) * 2005-07-04 2007-01-18 Gs Yuasa Corporation:Kk Nickel hydrogen battery
JP2007012573A (en) * 2005-07-04 2007-01-18 Gs Yuasa Corporation:Kk Nickel hydrogen battery and its manufacturing method
US7867655B2 (en) 2005-07-04 2011-01-11 Gs Yuasa Corporation Nickel metal-hydride battery
JP2007165277A (en) * 2005-11-16 2007-06-28 Matsushita Electric Ind Co Ltd Alkaline battery, composite material for electrode and its manufacturing method
JP2009295575A (en) * 2008-05-08 2009-12-17 Panasonic Corp Composite material for electrode, production method thereof, and alkaline storage battery using the material
WO2017169163A1 (en) * 2016-03-28 2017-10-05 Fdk株式会社 Negative electrode for alkali secondary cell and alkali secondary cell including negative electrode

Also Published As

Publication number Publication date
JP3560187B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP4678130B2 (en) Sealed nickel metal hydride storage battery and its manufacturing method
JPH097588A (en) Hydrogen absorbing electrode
JPWO2002071527A1 (en) Manufacturing method of nickel metal hydride battery
JP5257823B2 (en) Method for producing hydrogen storage electrode and method for producing nickel metal hydride battery
JPH10334913A (en) Alkaline storage battery and its manufacture
JP2899849B2 (en) Surface treatment method of hydrogen storage alloy for alkaline secondary battery and alkaline secondary battery equipped with hydrogen storage alloy subjected to the surface treatment as electrode
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JP2001102085A (en) Formation method of airtight type nickel-hydrogen storage battery
JP3316394B2 (en) Method for producing hydrogen storage alloy for electrode
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
KR100405016B1 (en) Hydrogen Absorbing Alloy Electrode and Method of Producing the Same
JP4839433B2 (en) Sealed nickel hydride secondary battery
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP3827023B2 (en) Hydrogen storage electrode and method for manufacturing the same
JPH08321302A (en) Hydrogen storage electrode
JP2002198045A (en) Negative electrode active substance for nickel - hydrogen storage battery, negative electrode for nickel - hydrogen storage battery and nickel - hydrogen storage battery
JPH11204104A (en) Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof
JPS63126163A (en) Alkaline storage battery
JP3561577B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3651324B2 (en) Alkaline storage battery, hydrogen storage alloy powder used therefor, and manufacturing method thereof
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2001006666A (en) Hydrogen storage alloy for alkaline storage battery and manufacture of such alloy
JP2002198044A (en) Hydrogen storage alloy system active substance, hydrogen storage alloy electrode and nickel-hydrogen storage battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees