JPH0968330A - Heat pump type air conditioning system and method - Google Patents
Heat pump type air conditioning system and methodInfo
- Publication number
- JPH0968330A JPH0968330A JP8213696A JP8213696A JPH0968330A JP H0968330 A JPH0968330 A JP H0968330A JP 8213696 A JP8213696 A JP 8213696A JP 8213696 A JP8213696 A JP 8213696A JP H0968330 A JPH0968330 A JP H0968330A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat storage
- storage means
- tank
- outdoor unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Other Air-Conditioning Systems (AREA)
- Central Heating Systems (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ヒートポンプ方式によ
る建物(以下ではビルと云う場合がある)の空調システ
ムと方法に関する。更に特定して云えば、本発明はヒー
トポンプ回路の3要素である、熱媒体の圧縮機、凝縮
器、(次に膨張弁を加える場合には4要素となるが、此
処では膨張弁を省略する)蒸発器、に加えて、オフピー
ク時の電力を利用して、空調負荷の増大時に備えた蓄熱
を行う蓄熱手段を特定の態様で配置したヒートポンプ方
式の空調システムと方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioning system and method for a building (hereinafter, also referred to as a building). More specifically, the present invention comprises three elements of the heat pump circuit, a heat medium compressor, a condenser, and four elements if an expansion valve is added next, but the expansion valve is omitted here. ) In addition to the evaporator, the present invention relates to a heat pump type air conditioning system and method in which heat storage means for storing heat when the air conditioning load increases is arranged in a specific mode by utilizing electric power at the time of off-peak.
【0002】[0002]
【従来技術と解決課題】従来からヒートポンプ方式の空
調システムでは、夏季の冷房能力の向上乃至夏季昼間の
電力需要の逼迫の問題を解決する為、夜間の余剰深夜電
力を利用して、冷熱能力(ポテンシャル)を蓄積するこ
とが行われている。即ち、この種の従来技術を図5を用
いて説明すると、図5Aにおいて、100はビルの屋上
又はビル全体を示す平面。102はヒートポンプ方式空
調システムの屋外機。104は夜間電力を利用して水を
氷結して冷熱能力を蓄積する製氷器(氷蓄熱器)。10
6、108は屋外機と製氷器の間の配管。110、11
2は製氷器からビル内に配置された屋内機(114a、
114b,114c,,,,)への配管。114a、1
14b,114c,は空調空気の吹出しに用いられる屋
内機。110a,110b;110b,112c;11
0c,112cは配管110、112から室内機への分
岐配管である。図5Bにより更に符番を説明すると、1
02aは室外機102に装備のファン。102bは熱媒
体(冷媒)の圧縮機。102cは熱交換器。102dは
通風の為の多孔板。104aは製氷器104の熱交換
器。104bは製氷器中の水。115aは屋内機114
aに装備の冷媒の蒸発器(熱交換器)。116aは空気
吹出し用ファンである。2. Description of the Related Art Conventionally, in heat pump type air conditioning systems, in order to solve the problems of improvement of cooling capacity in summer and tight power demand during summer daytime, the cooling capacity ( Potential) is being accumulated. That is, a conventional technique of this type will be described with reference to FIG. 5. In FIG. 5A, 100 is a rooftop of a building or a plane showing the entire building. 102 is an outdoor unit of a heat pump type air conditioning system. Reference numeral 104 denotes an ice maker (ice heat accumulator) that uses nighttime electric power to freeze water to accumulate cooling capacity. 10
6 and 108 are pipes between the outdoor unit and the ice maker. 110, 11
2 is an indoor unit (114a,
Piping to 114b, 114c ,. 114a, 1
14b and 114c are indoor units used for blowing out conditioned air. 110a, 110b; 110b, 112c; 11
0c and 112c are branch pipes from the pipes 110 and 112 to the indoor unit. The numbering will be further explained with reference to FIG. 5B.
02a is a fan equipped in the outdoor unit 102. 102b is a heat medium (refrigerant) compressor. 102c is a heat exchanger. 102d is a perforated plate for ventilation. 104a is a heat exchanger of the ice maker 104. 104b is water in the ice maker. 115a is an indoor unit 114
Evaporator of refrigerant (heat exchanger) equipped in a. Reference numeral 116a is an air blowing fan.
【0003】上記のシステムにおいて、夜間電力を利用
する製氷時には、室内機114a、114b,114c
等へ至る配管110、112を閉止し、屋外機102と
製氷器104との間で冷凍サイクルを構成し、図5Bに
おいて点線矢印で示す方向に冷媒を循環させて製氷器内
の水104bを冷却する。ここで問題になるのは、水の
凍結ー解凍の潜熱を冷熱能力として利用する為には、水
を氷結させる必要があるが、水の氷結を実現するには、
冷凍サイクルの蒸発器(製氷器104の熱交換器104
a)の蒸発温度を大きく低下させること、即ち約ー10
℃に下げる必要がある。しかし、その様な運転条件では
冷凍機(屋外機+製氷器)の成績係数(COP)が悪く
なる事と、又この条件では昼間の冷房運転時と異なる運
転条件で冷凍機を運転する必要がある事から、冷凍機の
運用に複雑な負担がかかる問題があった。それでは、水
を氷結させずに、この水を夜間電力で例えば、5℃前後
に冷却するシステムが考えられるが、5℃前後の冷却水
を用いる事は、水の顕熱を利用する事であり、採(冷)
熱方法としては、水の有する固相/液相の相変化の際に
得られる大きな潜熱を利用するものではない。此処で、
上記の従来技術について注記すべき事は、屋外機102
と製氷機(氷蓄熱器)と室内機114a、114b,1
14c、、、は直列で結合されていることである。In the above system, the indoor units 114a, 114b, 114c are used at the time of ice making using night power.
The pipes 110 and 112 leading to the etc. are closed, a refrigeration cycle is configured between the outdoor unit 102 and the ice maker 104, and the refrigerant is circulated in the direction indicated by the dotted arrow in FIG. 5B to cool the water 104b in the ice maker. To do. The problem here is that in order to use the latent heat of freezing and thawing water as cold heat capacity, it is necessary to freeze water, but in order to realize freezing of water,
Refrigeration cycle evaporator (heat exchanger 104 of ice maker 104)
greatly lowering the evaporation temperature of a), ie about -10
Need to lower to ℃. However, under such operating conditions, the coefficient of performance (COP) of the refrigerator (outdoor unit + ice maker) becomes poor, and under these conditions, it is necessary to operate the refrigerator under operating conditions different from those during the daytime cooling operation. Therefore, there is a problem that a complicated load is applied to the operation of the refrigerator. Then, without cooling the water, a system that cools this water at night power, for example, around 5 ° C is conceivable. However, using cooling water around 5 ° C means utilizing the sensible heat of the water. , Harvest (cold)
The heat method does not utilize the large latent heat obtained during the solid / liquid phase change of water. Where
What should be noted about the above-mentioned conventional technology is that the outdoor unit 102
And ice machine (ice heat storage) and indoor units 114a, 114b, 1
14c, ... are connected in series.
【0004】[0004]
【本発明の概要】本発明のヒートポンプ回路では、熱媒
体の圧縮機から、室外機(これは夏季の冷房運転時は凝
縮器となり、冬季の暖房運転時は蒸発器となる)に至
り、次いで室内機(これは夏季の冷房運転時は蒸発器と
なり、冬季の暖房運転時は凝縮器となる)に至り、これ
から、再び圧縮機に戻るループにおいて、圧縮機に対し
て室外機に並列に蓄熱手段を含む中間回路を付加して設
ける。該蓄熱手段は、オフピーク時の電力を利用して、
圧縮機ー室外機ー蓄熱手段のループでヒートポンプ回路
を運転し、温熱又は冷熱の蓄積を行うことが目的であ
る。即ち、温熱蓄積の場合は、蓄熱手段は凝縮器、室外
機は蒸発器となり、冷熱蓄積の場合は、室外機は凝縮
器、蓄熱手段は蒸発器となる。SUMMARY OF THE INVENTION In the heat pump circuit of the present invention, a heat medium compressor is connected to an outdoor unit (which serves as a condenser during the cooling operation in the summer and serves as an evaporator during the heating operation in the winter). In the loop that returns to the indoor unit (this becomes the evaporator during the cooling operation in summer and the condenser during the heating operation in winter) and then returns to the compressor, the heat is stored in parallel with the outdoor unit with respect to the compressor. An intermediate circuit including means is additionally provided. The heat storage means uses the power during off-peak hours,
The purpose is to operate the heat pump circuit in a loop of the compressor, the outdoor unit, and the heat storage means to store hot or cold heat. That is, in the case of warm heat accumulation, the heat storage means becomes a condenser and the outdoor unit becomes an evaporator, and in the case of cold heat accumulation, the outdoor unit becomes a condenser and the heat storage means becomes an evaporator.
【0005】本発明の他の特徴である蓄熱剤について述
べると、冷熱と温熱の蓄積の為に、例えば、0〜5℃に
相変化温度を有する冷熱用蓄熱剤(即ち、水以外の相変
化物質)を夏季の冷房運転時に用い、40℃前後に相変
化温度を有する温熱用蓄熱剤を冬季の暖房運転時に用い
ることは可能であるが、この場合には、冷房運転から暖
房運転にシステムを変更する時には、蓄熱剤の入れ換え
を実施する手間が必要となる。本発明では、顕熱利用の
点では、温度差の減少で不利になっても、夏季の冷房運
転及び冬季の暖房運転を通して、蓄熱剤を交換せず、年
間を一つのもので切り抜け、蓄熱剤の相変化に伴う潜熱
を利用して、冷房及び暖房運転を通して、空調システム
の熱エネルギー負担の変化に対応しようとするものであ
る。A heat storage agent which is another feature of the present invention will be described. For the purpose of storing cold heat and warm heat, for example, a heat storage agent for cold heat having a phase change temperature of 0 to 5 ° C. (ie, phase change other than water). It is possible to use the (material) during the cooling operation in summer and to use the heat storage agent having a phase change temperature of around 40 ° C. during the heating operation in winter. In this case, the system is changed from the cooling operation to the heating operation. When changing it, it is necessary to replace the heat storage agent. In the present invention, in terms of utilization of sensible heat, even if it becomes disadvantageous due to a decrease in temperature difference, through the cooling operation in the summer and the heating operation in the winter, the heat storage agent is not exchanged, and one year passes through, and the heat storage agent is passed through. By utilizing the latent heat associated with the phase change of (3), it is intended to cope with the change of the thermal energy load of the air conditioning system through the cooling and heating operations.
【0006】即ち、蓄熱手段に包含される蓄熱槽の温度
は、前記夏季の冷房運転時は0〜5℃、冬季の暖房運転
時は40℃前後の温度とした二つの温度の中間の温度
で、即ち、温度範囲が約5〜35℃、好ましくは約7〜
20℃、更に好ましくは約10〜15℃の間で固相/液
相の相変化を起こし潜熱作用を提供する物質で蓄熱槽の
熱能力(冷房運転時は蓄冷熱能力として利用し、暖房運
転時は蓄加熱能力として利用する)を増強するものであ
り、年間を通して、蓄熱槽の温度を変更せず、蓄熱剤の
取り替えは行わない利点を有するものである。上記従来
技術の氷蓄熱器はビル屋上に設置される事を想定した
が、空調システムの規模が大きくなると、蓄熱槽はビル
の地下室に設置されることあるが、その場合には地下室
の年間平均温度に、蓄熱剤の相変化の温度を略一致させ
る様に蓄熱剤を選択することが望ましい。更に一般的に
云えば、蓄熱槽が設置される場所の気温環境を考慮し、
その場所の年間平均気温を予め調査して、その年間平均
気温に略一致する(±5℃)温度に蓄熱剤(材)の相変
化温度を合わせる様にすることが望ましい。That is, the temperature of the heat storage tank included in the heat storage means is an intermediate temperature between two temperatures, which are 0 to 5 ° C. during the cooling operation in summer and about 40 ° C. during the heating operation in winter. That is, the temperature range is about 5 to 35 ° C., preferably about 7 to
It is a substance that provides a latent heat effect by causing a solid / liquid phase change between 20 ° C, more preferably between about 10 ° C and 15 ° C. When used as a heat storage and heating capacity), it has the advantage that the temperature of the heat storage tank is not changed and the heat storage agent is not replaced throughout the year. The above-mentioned conventional ice heat storage was assumed to be installed on the roof of the building, but when the scale of the air conditioning system increases, the heat storage tank may be installed in the basement of the building, but in that case, the annual average of the basement is averaged. It is desirable to select the heat storage agent so that the temperature of the phase change of the heat storage agent substantially matches the temperature. More generally speaking, considering the temperature environment of the place where the heat storage tank is installed,
It is desirable to investigate the annual average temperature of the place in advance and adjust the phase change temperature of the heat storage agent (material) to a temperature that is approximately equal to the annual average temperature (± 5 ° C).
【0007】本発明の潜熱蓄熱システムは、(1)夏季
の冷房運転時には、従来の蓄熱無しのシステムに比べ
て、冷凍機としての容量が約20%低減し得る。(2)
冬季暖房運転時には(一般に最大負荷は夏季より冬季の
方が小さいが)、従来の蓄熱無しのシステムに比べて、
冷凍機としての容量は約20%低減される。(3)本発
明の蓄熱手段により、従来に氷蓄熱システムに比べて約
40%の電力消費の低減が可能である。(4)蓄熱手段
を並列配置しているので、熱媒(冷媒)の循環比率を調
節することにより、放熱量を自由に調節し得る。従っ
て、大幅な負荷変動に対しても対応が可能である。The latent heat storage system of the present invention (1) can reduce the capacity as a refrigerator by about 20% during the cooling operation in summer, as compared with the conventional system without heat storage. (2)
During winter heating operation (generally, the maximum load is smaller in winter than in summer), compared to conventional systems without heat storage,
The capacity as a refrigerator is reduced by about 20%. (3) The heat storage means of the present invention can reduce the power consumption by about 40% as compared with the conventional ice heat storage system. (4) Since the heat storage means are arranged in parallel, the heat radiation amount can be freely adjusted by adjusting the circulation ratio of the heat medium (refrigerant). Therefore, it is possible to cope with a large load change.
【0008】[0008]
【発明実施の形態】固相/液相の相変化で潜熱作用を提
供する(”潜熱作用を提供する”とは、潜熱熱量を吸収
することと、放出することの両方を指すものである)物
質(Phase Change Material、PCM)としては、石油
パラフィンワックス[nーテトラデカン(融点:5.5
℃)、nーペンタデカン(融点:10.0℃)、nーヘ
キサデカン(融点:18.1℃)、nーヘプタデカン
(融点:22.5℃)、n−オクタデカン(融点:2
8.0℃)、n−ノナデカン(融点:32℃)、nーエ
イコサン(融点:36.4℃)]、高級脂肪ー酸[カプ
リル酸(融点:16.7℃)、ペラルゴン酸(融点:1
2.5℃)、カプリン酸(融点:31.6℃)、ウンデ
カン酸(融点:29.3℃)]、高級脂肪酸ーエステル
[ミリスチン酸メチル(融点:18.5℃)、ペンタデ
カン酸メチル(融点:18.5℃)、パルミチン酸メチ
ル(融点:30.6℃)]、高級脂肪ーアルコール[デ
カノールー1(融点:6.9℃)、ウンデカノールー1
(融点:15.9℃)、ドデカノールー1(融点:2
4.0℃)、トリデカノールー1(融点:30.6
℃)] その他無機化合物では、硫酸ナトリューム(sodium sul
fate)を基礎物質とする水化物、塩水化物混合系[硫酸
ナトリューム10水化塩/塩化ナトリューム/塩化アン
モニア(融点:13℃)、硫酸ナトリューム10水塩
(融点:32.2℃)]を挙げることが出来る。BEST MODE FOR CARRYING OUT THE INVENTION Providing a latent heat effect by a solid / liquid phase change ("providing a latent heat effect" means both absorbing and releasing a latent heat quantity). As a substance (Phase Change Material, PCM), petroleum paraffin wax [n-tetradecane (melting point: 5.5
C.), n-pentadecane (melting point: 10.0 ° C.), n-hexadecane (melting point: 18.1 ° C.), n-heptadecane (melting point: 22.5 ° C.), n-octadecane (melting point: 2)
8.0 ° C.), n-nonadecane (melting point: 32 ° C.), n-eicosane (melting point: 36.4 ° C.)], higher fatty acid-caprylic acid (melting point: 16.7 ° C.), pelargonic acid (melting point: 1
2.5 ° C), capric acid (melting point: 31.6 ° C), undecanoic acid (melting point: 29.3 ° C)], higher fatty acid ester [methyl myristate (melting point: 18.5 ° C), methyl pentadecanoate (melting point) : 18.5 ° C), methyl palmitate (melting point: 30.6 ° C)], higher fatty alcohol-decanol-1 (melting point: 6.9 ° C), undecanol-1
(Melting point: 15.9 ° C.), dodecanol-1 (melting point: 2
4.0 ° C.), tridecanol-1 (melting point: 30.6
℃)] For other inorganic compounds, sodium sulphate (sodium sul
hydrate based on fate), salt hydrate mixed system [sodium sulfate 10 hydrate / sodium chloride / ammonia chloride (melting point: 13 ° C.), sodium sulfate 10 hydrate (melting point: 32.2 ° C.)] You can
【0009】これらの中で、特に石油パラフィンワック
スは、潤滑油精製過程における脱ロウ処理により生成す
るもので、商業製品として、入手が容易である。そし
て、本発明では、相変化する蓄熱物質は、その相変化温
度が、例えば、13℃に正確に一定している単一物質で
ある必要はなく、例えば、10〜15℃の間にあると云
う様な温度巾を有していてもよい。従って、石油ワック
スからの蓄熱剤の調製が容易である。Of these, petroleum paraffin wax is produced by dewaxing treatment in the lubricating oil refining process, and is easily available as a commercial product. Further, in the present invention, the heat storage substance that undergoes a phase change does not need to be a single substance whose phase change temperature is exactly constant at, for example, 13 ° C., but is between 10 and 15 ° C., for example. It may have a so-called temperature range. Therefore, it is easy to prepare a heat storage agent from petroleum wax.
【0010】又パラフィン蓄熱剤と無機塩蓄熱剤は、単
独で用いてもよいし、両者を併用してもよい。例えば、
パラフィンを直接又は一旦アクリル吸油性樹脂に含浸さ
せてから、水中に分散させるに当たり、分散媒である水
に無機塩蓄熱剤(他の無機増粘剤と併用してもよい)を
分散させて、パラフィンと無機塩の両者の蓄熱作用を利
用することが出来る。但し、この様な場合は蓄熱剤を容
器に収容した形態で[蓄熱槽に配置出来る形態に用意さ
れた蓄熱剤(Thermal Storage Composition)を、本発
明では蓄熱材(Thermal Storage Package)と述べてい
る]用いる必要があるであろう。The paraffin heat storage agent and the inorganic salt heat storage agent may be used alone or in combination. For example,
When the paraffin is directly or once impregnated in the acrylic oil-absorbing resin and then dispersed in water, an inorganic salt heat storage agent (which may be used in combination with another inorganic thickener) is dispersed in water as a dispersion medium, The heat storage effect of both paraffin and inorganic salt can be utilized. However, in such a case, a heat storage agent (Thermal Storage Composition prepared in a form that can be arranged in the heat storage tank is referred to as a heat storage material (Thermal Storage Package) in the present invention in a form of accommodating the heat storage agent in a container. ] Will need to be used.
【0011】蓄熱剤を収納する容器を用いず、直接蓄熱
槽に分散させるには、例えば、前記アクリル吸油性樹脂
にパラフィンを含浸させた状態で、その粒子の外周に親
水性樹脂を接着剤で結合させる手段を取り、(従って、
この場合はパラフィン蓄熱剤のみの使用となる)親水性
を粒子外周に付与した形態で蓄熱水槽中に分散する。こ
の場合には蓄熱剤を収容する容器は用いないので、蓄熱
剤は蓄熱材となる。従って、この場合は容器を用いない
蓄熱材であるから、蓄熱槽の水中に浸漬した状態で槽内
に留まらせる使用法もあるが、蓄熱槽に連なっている熱
交換器へ至る水の流動に、蓄熱材を同伴させて、熱搬送
体である水と一緒に流動させることも可能である。以上
に関連する蓄熱剤及び蓄熱手段については特開平6ー1
16550、特願平6ー274206を参考にし得る。In order to disperse the acryl oil absorbing resin directly in the heat accumulating tank without using a container for accommodating the heat accumulating agent, for example, the acrylic oil absorbing resin is impregnated with paraffin and the hydrophilic resin is adhered to the outer periphery of the particles with an adhesive. Take the means of combining (and thus
In this case, only the paraffin heat storage agent is used.) Hydrophilicity is imparted to the outer periphery of the particles and dispersed in the heat storage water tank. In this case, since the container that stores the heat storage agent is not used, the heat storage agent serves as the heat storage material. Therefore, in this case, since it is a heat storage material that does not use a container, there is also a method of using it so that it remains in the heat storage tank while it is immersed in water, but the flow of water to the heat exchanger connected to the heat storage tank It is also possible to entrain a heat storage material and cause it to flow together with water as a heat carrier. Regarding the heat storage agent and the heat storage means related to the above, Japanese Patent Laid-Open No. 6-1
16550 and Japanese Patent Application No. 6-274206 can be referred to.
【0012】前記図5の場合の様なビル屋上に蓄熱槽を
設置して本発明を実施する場合(図5の製氷器104に
代わる場合である)の蓄熱槽の例を図6で説明する。図
6Aの50は蓄熱剤52を充填した円筒形の収納筒(一
部断面を含む立面図で示す)。図6Bの60は収納筒5
0を多数縦に並べて収容した密閉式タンク(断面図で示
す)。62、64は多孔板で、下多孔板62の上に収納
筒は載置される。66a、66b;68a、68bは熱
媒(冷媒)をタンク内で上下に流通させる為の開口であ
る。An example of the heat storage tank when the heat storage tank is installed on the roof of the building as in the case of FIG. 5 to carry out the present invention (in the case of replacing the ice maker 104 of FIG. 5) will be described with reference to FIG. . Reference numeral 50 in FIG. 6A is a cylindrical storage cylinder filled with the heat storage agent 52 (shown in an elevation view including a partial cross section). In FIG. 6B, 60 is the storage cylinder 5.
A closed tank (shown in cross-section) in which a large number of 0s are arranged vertically. 62 and 64 are perforated plates, and the storage cylinder is placed on the lower perforated plate 62. Reference numerals 66a, 66b; 68a, 68b are openings for vertically circulating the heat medium (refrigerant) in the tank.
【0013】本発明のシステムに採用し得るその他の機
械、設備等について、簡単に説明すると、圧縮機として
は従来のレシプロ型、ロータリー型、スクロール型、ス
クリュー型、ターボ型圧縮機が採用出来る。凝縮器、蒸
発器として用いる熱交換器としては従来のプレートフィ
ンコイル型、シェルアンドチューブ型熱交換器が採用し
得るが、最近は同一の熱交換器で蒸発器としても、凝縮
器としても使用し得るものが市販にあり、この両用型熱
交換器は至便である。従って、後出の図面では簡単にす
る為、単に室外機、室内機として示すが、以上の記述か
ら判る様に、実体は複数の装置、機械が装置されること
を含むものである。膨張弁も従来のものが本発明に採用
可能である。Other machines, equipment and the like that can be used in the system of the present invention will be briefly described. As a compressor, a conventional reciprocating type, rotary type, scroll type, screw type or turbo type compressor can be used. A conventional plate fin coil type or shell and tube type heat exchanger can be adopted as the heat exchanger used as the condenser or the evaporator, but recently, the same heat exchanger has been used both as the evaporator and as the condenser. What can be done is commercially available, and this dual heat exchanger is convenient. Therefore, in the drawings described later, for simplification, they are simply shown as an outdoor unit and an indoor unit, but as can be understood from the above description, the substance includes a plurality of devices and machines. A conventional expansion valve can also be used in the present invention.
【0014】[0014]
【実施例】以下実施例により本発明を説明する。図1、
2において、図1の夏季運転図(これは冷房運転と云っ
てもよい)は1ー1図、1ー2図、1ー3図の分図から
なり、図2の冬季運転図(暖房運転と云ってもよい)は
2ー1図、2ー2図、2ー3図からなり、共通して、符
番10は圧縮機、11は四方弁(2方向切り換え弁)、
12(コイルを示す)は蓄熱手段、13は室外機、14
は室内機、15はビルの空調対象区域を示す。The present invention will be described with reference to the following examples. Figure 1,
2. In FIG. 2, the summer operation diagram of FIG. 1 (which may be called cooling operation) is composed of the partial diagrams of 1-1, 1-2 and 1-3, and the winter operation diagram (heating operation) of FIG. It may also be said that) consists of Figures 2-1 and 2-2 and 2-3. Commonly, reference numeral 10 is a compressor, 11 is a four-way valve (2-way switching valve),
Reference numeral 12 (indicates a coil) is heat storage means, 13 is an outdoor unit, and 14
Indicates an indoor unit, and 15 indicates an area to be air-conditioned in the building.
【0015】前記において、室外機(13)と室内機
(14)はヒートポンプ回路において熱媒体の相変化を
起こさせる装置、即ち蒸発器(液相から気相へ、媒体は
吸熱するから冷房効果を発揮する)又は凝縮器(気相か
ら液相へ、媒体は放熱するから暖房効果を発揮する)と
空気(室内機は空調対象区域の空気、室外機は空調対象
区域ではない空気)との熱交換装置を包含したものであ
る。ビル内に配置される空調空気の吹出し装置は、室内
機そのものであることもあり、又図示の室内機から更に
分岐して後に連なる装置となり、図示から省略されてい
る場合もある。In the above description, the outdoor unit (13) and the indoor unit (14) are devices for causing a phase change of the heat medium in the heat pump circuit, that is, an evaporator (from the liquid phase to the gas phase, the medium absorbs heat, so that the cooling effect is obtained. Heat) or the heat of the condenser (from the gas phase to the liquid phase, the medium radiates heat to provide a heating effect) and air (indoor unit air in the air conditioning target area, outdoor unit air not in the air conditioning target area) It includes a switching device. The air-conditioning air blowing device disposed in the building may be the indoor unit itself, or may be omitted from the drawing because it is a device that branches further from the indoor unit shown in the figure and is connected later.
【0016】更に図1と図2において、分図番号ー1、
ー2、ー3は各々対応しているが、図1ー1は通常(蓄
熱手段に関係なく冷房サイクルで運転されている状
態)、図1ー2は蓄冷熱(蓄熱手段に冷熱を蓄積してい
る状態)、図1ー3は放冷熱(蓄熱手段から冷熱を取り
出している状態)の状態を示す。同様に図2ー1は通常
(蓄熱手段に関係なく暖房運転されている状態)、図2
ー2は蓄温熱(蓄熱手段に温熱を蓄積している状態)、
図2ー3は放温熱(蓄熱手段から温熱を取り出している
状態)の状態を示す。尚各図において、太線で示したラ
インは運転中のラインであり、細線のままの部分は運転
されていない休止部分を示し、矢印は熱媒体の流れの方
向を示す。Further, in FIG. 1 and FIG.
-2 and -3 correspond to each other, but Fig. 1-1 is normal (state that is operated in the cooling cycle regardless of the heat storage means), and Fig. 1-2 is cold heat storage (where cold heat is stored in the heat storage means). 1), and FIGS. 1 to 3 show the state of radiated heat (the state in which cold heat is taken out from the heat storage means). Similarly, FIG. 2A shows a normal state (a heating operation is performed regardless of the heat storage means).
-2 is heat storage heat (state where heat is stored in the heat storage means),
2 to 3 show the state of heat release (a state where heat is taken out from the heat storage means). In each figure, the thick line indicates the line in operation, the thin line indicates the resting part that is not in operation, and the arrow indicates the flow direction of the heat medium.
【0017】図1の夏季(冷房)運転について説明する
と、1ー1図(通常)では、熱媒体(媒体)は蓄熱手段
を経由していない。そして、圧縮機の後に位置する室外
機はガス状媒体を放熱し、液化させており、図示されて
いないが、液化後に膨張弁に入る。次いで室内機でガス
化する際に、吸熱(冷房)効果を空調対象区域に与えて
いる。図1ー2(蓄冷熱)は室外機で液化した媒体を、
膨張弁を経て、蓄熱手段へ送り、冷熱能力の蓄積を行っ
ている状態であり、これは夏季の夜間深夜電力で実施さ
れる。The summer (cooling) operation of FIG. 1 will be described. In FIG. 1-1 (normal), the heat medium (medium) does not pass through the heat storage means. The outdoor unit located after the compressor radiates heat to liquefy the gaseous medium and, though not shown, enters the expansion valve after liquefaction. Next, when gasifying in the indoor unit, an endothermic (cooling) effect is given to the air conditioning target area. Figure 1-2 (cold heat storage) shows the liquefied medium in the outdoor unit,
It is in a state where it is sent to the heat storage means through the expansion valve to store the cold heat capacity, which is carried out by nighttime midnight power in summer.
【0018】図1ー3(放冷熱)が本発明の特徴を示す
もので、同図では圧縮機の後の室外機の前で、媒体の流
れ路が2つに分かれ、1つは蓄熱手段へ入り、冷却され
てガス媒体が液化される、即ち蓄熱手段が室外機と並列
関係で作用し、凝縮器の作用を補助している。蓄熱槽は
図6に示す密閉式タンクで、ビル屋上に設置されること
もあるが、大きなシステムではビルの地下室に設置され
るのが、普通であり、室外機のある室外の温度が高温で
ビル内外の温度差が大きい場合には、この地下室設置の
蓄熱槽の効用は大きい。冷房運転開始直後、又は夏季の
冷房ピーク時の様に冷房負荷が大きい時にこの状態を選
択する。FIGS. 1 to 3 (cooling heat) show the feature of the present invention. In the same figure, in the front of the outdoor unit after the compressor, the flow path of the medium is divided into two, one is the heat storage means. The gas medium is liquefied by going into the room, and the gas medium is liquefied, that is, the heat storage means operates in parallel with the outdoor unit to assist the operation of the condenser. The heat storage tank is a closed tank shown in Fig. 6, and it may be installed on the roof of the building, but in a large system, it is usually installed in the basement of the building, and the temperature outside the outdoor unit is high. When the temperature difference between the inside and outside of the building is large, the heat storage tank installed in this basement is very effective. This state is selected immediately after the start of the cooling operation or when the cooling load is large, such as at the peak of cooling in the summer.
【0019】図2の冬季(暖房)運転について説明する
と、四方弁11において媒体の流れが図1から変更され
ている。2ー1図(通常)では、熱媒体(媒体)は蓄熱
槽を経由していない。そして、圧縮機の後に位置する室
内機はガス状媒体を放熱し、液化させており、この際の
放熱(暖房)効果を空調対象区域に与えている。図2ー
2(蓄温熱)は圧縮機で加圧された媒体を蓄熱手段へ送
り、温熱能力の蓄積を行っている状態であり、これは冬
季の夜間深夜電力で実施される。To explain the winter (heating) operation of FIG. 2, the flow of the medium in the four-way valve 11 is changed from that of FIG. In Figure 2-1 (normal), the heat medium (medium) does not go through the heat storage tank. Then, the indoor unit located after the compressor radiates and liquefies the gaseous medium, and the heat radiation (heating) effect at this time is given to the air conditioning target area. FIG. 2-2 (heat storage heat) shows a state in which the medium pressurized by the compressor is sent to the heat storage means to store the heat capacity, which is carried out by nighttime midnight power in winter.
【0020】図2ー3(放温熱)が本発明の特徴を示す
もので、同図では圧縮機からの媒体はガス状で室内機に
入り、暖房効果を与えて液化する。次いで図示されてい
ないが、膨張弁に入り、蓄熱手段の前で流れ路が2つに
分かれ、1つは蓄熱手段へ入り、蓄熱槽で加温される、
即ち蓄熱手段が室外機と並列関係で作用し、蒸発器の作
用を補助することになる。そして、室外機のある室外の
温度が低温でビル内外の温度差が大きい場合には、蓄熱
手段の地下設置の効用は大きい。暖房運転開始直後の様
に暖房負荷が大きい時にこの効用を選択する。2 to 3 (heat release heat) show the feature of the present invention. In the figure, the medium from the compressor enters the indoor unit in the form of gas and is liquefied by giving a heating effect. Next, although not shown in the figure, the flow enters the expansion valve, the flow path is divided into two in front of the heat storage means, one enters the heat storage means and is heated in the heat storage tank,
That is, the heat storage means operates in parallel with the outdoor unit to assist the operation of the evaporator. When the outdoor temperature of the outdoor unit is low and the temperature difference between the inside and outside of the building is large, the effect of installing the heat storage means underground is great. This effect is selected when the heating load is large, such as immediately after the start of heating operation.
【0021】この様に、夏季と冬季の空調負荷のピーク
運転時に室外機と蓄熱手段を並列運転する事が出来るの
で、空調設備の設計容量を小型化し得る。以上の説明
で、夏季(冷房)運転時の冷熱源となった蓄熱槽の蓄冷
熱と冬季(暖房)運転時の温熱源となった蓄熱槽の蓄温
熱は同じものである。即ち、先記した固相/液相の相変
化潜熱作用を提供し得る蓄熱剤で、年間を通して、蓄熱
槽の温度を変更しなくて済む様に、増強した蓄熱槽であ
る。言葉を変えたのは、夏季(冷房)運転時には、冷熱
源として作用し、冬季(暖房)運転時には、温熱源とし
て作用するので、説明の都合で使い分けたのである。こ
の”同じ物”である事が、先記の説明から判る様に本発
明の特徴となっているのである。As described above, since the outdoor unit and the heat storage means can be operated in parallel during peak operation of the air conditioning load in summer and winter, the design capacity of the air conditioning equipment can be reduced. In the above description, the cold storage heat of the heat storage tank serving as the cold heat source during the summer (cooling) operation is the same as that of the heat storage tank serving as the warm heat source during the winter (heating) operation. That is, it is a heat storage agent capable of providing the above-mentioned latent heat action of solid phase / liquid phase change, and is an enhanced heat storage tank so that the temperature of the heat storage tank does not need to be changed throughout the year. The words were changed because they act as a cold heat source during the summer (cooling) operation and as a warm heat source during the winter (heating) operation, so they were used for convenience of explanation. This "same thing" is a feature of the present invention, as can be seen from the above description.
【0022】次ぎに、図3(図3A、図3B)により、
前記図1、2に示した本発明のヒートポンプ回路の具体
例を説明する。尚、図3では既に説明した図5及び図6
に示した機器と同等のものについては、同一の符番を採
用し、配管中のポンプ、制御弁、逆止弁、膨張弁等自明
のものは省略されている場合がある。Next, referring to FIG. 3 (FIGS. 3A and 3B),
A specific example of the heat pump circuit of the present invention shown in FIGS. Incidentally, in FIG. 3, FIG. 5 and FIG.
The same reference numerals are used for the same components as those shown in, and the pump, control valve, check valve, expansion valve, and other obvious components in the pipe may be omitted.
【0023】図3Aは、ビル屋上(100で示されて
いる)に蓄熱手段を設置し、それは前出図6に示した密
閉式タンクで蓄熱剤は容器(50で示されている)に収
納されており、熱媒体(冷媒と云ってもよい)は直接
蓄熱タンク(60で示されている)に入らず熱交換器
(120で示されている)で水と熱交換して、水が熱搬
送体がとして蓄熱タンク60に入る例である。同図にお
いて、図5及び図6に出て来なかった機器は、前出の熱
交換器120、これと蓄熱タンクとの間の配管124、
126、ポンプ122、室外機102の中の四方弁10
2e、室外機102と熱交換器120との間の配管12
8、130、及び室外機102と室内機114との間の
配管132、134である。FIG. 3A shows a heat storage means installed on the roof of a building (indicated by 100), which is the closed tank shown in FIG. 6 and stores the heat storage agent in a container (indicated by 50). The heat medium (which may be called a refrigerant) does not directly enter the heat storage tank (shown by 60) but exchanges heat with water in the heat exchanger (shown by 120), and This is an example in which the heat carrier enters the heat storage tank 60 as. In the figure, the devices not shown in FIGS. 5 and 6 are the heat exchanger 120 described above, the pipe 124 between the heat exchanger 120 and the heat storage tank,
126, pump 122, four-way valve 10 in the outdoor unit 102
2e, piping 12 between the outdoor unit 102 and the heat exchanger 120
8 and 130, and pipes 132 and 134 between the outdoor unit 102 and the indoor unit 114.
【0024】図3Bは、ビル地下室(地上面をGLで
示し、地下室を99で示す)に蓄熱手段を設置し、それ
は後出図4に示す開放式のタンクで蓄熱剤はタンク中に
遊置乃至漂置されており、熱媒体は図3Aの場合と同
様に蓄熱剤と直接熱交換せず、中間媒体である水と熱交
換する例である。新しい機器は1aで示される地下設置
のタンク1a、該タンクへの水の流入管5a、流出管4
aである。In FIG. 3B, a heat storage means is installed in the basement of the building (the ground plane is indicated by GL and the basement is indicated by 99), which is an open-type tank shown in FIG. 4 and the heat storage agent is left in the tank. In this example, the heat medium is not allowed to directly exchange heat with the heat storage agent as in the case of FIG. 3A but is exchanged with water as an intermediate medium. The new equipment is an underground tank 1a indicated by 1a, a water inflow pipe 5a, and an outflow pipe 4 into the tank.
a.
【0025】図1及び図2の説明から判る様に、図3A
及び図3Bのシステムでは、四方弁102eを導入し、
関連する配管102fを改変したことにより、熱媒体の
流れを図1、図2と同様に制御し得るのである。As can be seen from the description of FIGS. 1 and 2, FIG.
And in the system of FIG. 3B, a four-way valve 102e is introduced,
By modifying the associated piping 102f, the flow of the heat medium can be controlled in the same manner as in FIGS.
【0026】次ぎに、図4(前記の様に図4は図3に関
連している)について説明すると、図4は、16個に連
通可能に区分された蓄熱槽の平面図である。同図におい
て、1aは槽全体であり、5aは槽への流入管、4aは
槽からの流出管である。槽1aは、前記の様に16個の
小蓄熱槽(第1槽から第16槽)に区分されており、各
槽を対角線状に流水の経路が出来るように各小槽の間に
連通管11aが設けられている。即ち、水は流入管5a
で第1槽(1t)に入り、(水の概略の流れを矢印で示
す)水は第2槽(2t)、第3槽(3t)と進み、第5
槽(5t)で方向を転じて第6槽(6t)に至り、第8
槽(8t)で再び方向を転じて第11槽(11t)に至
り、再び方向を転じて流出管4aを備えた第16槽へ戻
る。Next, referring to FIG. 4 (as described above, FIG. 4 is related to FIG. 3), FIG. 4 is a plan view of a heat storage tank divided into 16 communicable sections. In the figure, 1a is the whole tank, 5a is an inflow pipe to the tank, and 4a is an outflow pipe from the tank. The tank 1a is divided into 16 small heat storage tanks (1st to 16th tanks) as described above, and a communication pipe is provided between the respective small tanks so that a running water path can be formed diagonally. 11a is provided. That is, water is the inflow pipe 5a.
In the first tank (1t), the water (an outline flow of water is shown by an arrow) advances to the second tank (2t), the third tank (3t), and the fifth tank.
Turned in the tank (5t) to reach the 6th tank (6t),
In the tank (8t), the direction is changed again to reach the 11th tank (11t), and the direction is changed again to return to the 16th tank including the outflow pipe 4a.
【0027】蓄熱材(剤)は、熱交換により槽の温度か
ら影響を受けて戻って来る水を最初に受け入れる第1槽
(1t)、次いで温度が変化する第2槽(2t)、第3
槽(3t)、第4槽(4t)と順次必要性のある槽へ投
入されて、蓄熱材は槽内に浸漬状態に配置される。更に
蓄熱材を槽内にどの様な態様で浸漬し維持するかは、蓄
熱材の形態に関係する事であるが、例えば、蓄熱材が容
器入りの形態であれば、容器を多数保持する棚段式のワ
ゴン車が通常使用される。蓄熱材が自身で蝟集する性質
の(cohesive)粒子状であれば、そのまま槽内に遊置又
は漂置されるが、蝟集する性質の無い粒子形態の場合に
は、蓄熱材は流出管5aを経て熱交換器との間の水(熱
搬送体)の流れに同伴する様にする事も可能である。The heat storage material (agent) is the first tank (1t) that first receives the water that is affected by the temperature of the tank due to heat exchange and returns, and then the second tank (2t) and the third tank whose temperature changes.
The heat storage material is placed in the tank (3t) and the fourth tank (4t) in that order as needed, and the heat storage material is placed in a immersed state in the tank. Furthermore, how the heat storage material is dipped and maintained in the tank depends on the form of the heat storage material. For example, if the heat storage material is in a container, a shelf that holds many containers Tiered wagons are usually used. If the heat storage material is in the form of cohesive particles that collect by itself, it is left alone in the tank or floated. However, if the heat storage material is in the form of particles that does not have the property of collecting heat, the heat storage material will flow through the outflow pipe 5a. It is also possible to entrain it in the flow of water (heat carrier) between the heat exchanger and the heat exchanger.
【0028】[0028]
【図1】 図1は夏季の冷房運転時のヒートポンプ回路
を説明する図である。FIG. 1 is a diagram illustrating a heat pump circuit during a cooling operation in summer.
【図2】 図2は冬季の暖房運転時のヒートポンプ回路
を説明する図である。FIG. 2 is a diagram illustrating a heat pump circuit during a heating operation in winter.
【図3】 図1及び図2に示したヒートポンプ方式空調
システムの具体例の説明図である。FIG. 3 is an explanatory diagram of a specific example of the heat pump type air conditioning system shown in FIGS. 1 and 2.
【図4】 図4は開放タンクからなる蓄熱槽の平面図で
ある。FIG. 4 is a plan view of a heat storage tank including an open tank.
【図5】 図5は従来の氷蓄熱を利用するヒートポンプ
式空調装置の簡略化した斜視図である。FIG. 5 is a simplified perspective view of a conventional heat pump type air conditioner utilizing ice heat storage.
【図6】 図6は密閉式タンクからなる蓄熱槽の断面立
面図である。FIG. 6 is a sectional elevation view of a heat storage tank including a closed tank.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成8年7月1日[Submission date] July 1, 1996
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図面の簡単な説明】[Brief description of drawings]
【図1】 図1は夏季の冷房運転時のヒートポンプ回路
を説明する図である。FIG. 1 is a diagram illustrating a heat pump circuit during a cooling operation in summer.
【図2】 図2は冬季の暖房運転時のヒートポンプ回路
を説明する図である。FIG. 2 is a diagram illustrating a heat pump circuit during a heating operation in winter.
【図3】 図1及び図2に示したヒートポンプ方式空調
システムの具体例(A)の簡略化した断面図である。FIG. 3 is a simplified cross-sectional view of a specific example (A) of the heat pump type air conditioning system shown in FIGS. 1 and 2.
【図4】 図1及び図2に示したヒートポンプ方式空調
システムの具体例(B)の簡略化した断面図である。FIG. 4 is a simplified cross-sectional view of a specific example (B) of the heat pump type air conditioning system shown in FIGS. 1 and 2.
【図5】 解放タンクからなる蓄熱槽の平面図である。FIG. 5 is a plan view of a heat storage tank including an open tank.
【図6】 従来の氷蓄熱を利用するヒートポンプ方式空
調装置の説明図であり、分図(A)は斜視図、(B)は
機構説明図である。6A and 6B are explanatory views of a conventional heat pump type air conditioner utilizing ice heat storage, in which FIG. 6A is a perspective view and FIG. 6B is a mechanism explanatory view.
【図7】 蓄熱剤容器(A)及びこれを使用する密閉式
タンクからなる蓄熱槽(B)の簡略化した断面図であ
る。FIG. 7 is a simplified cross-sectional view of a heat storage agent container (A) and a heat storage tank (B) including a closed tank using the heat storage agent container (A).
【手続補正2】[Procedure amendment 2]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】全図[Correction target item name] All figures
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図 1】 [Fig. 1]
【図 2】 FIG. 2
【図 3】 [Fig. 3]
【図 4】 [Fig. 4]
【図 5】 [Figure 5]
【図 6】 [Figure 6]
【図 7】 [Fig. 7]
【手続補正書】[Procedure amendment]
【提出日】平成8年7月24日[Submission date] July 24, 1996
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図面の簡単な説明】[Brief description of drawings]
【図1】 図1は夏季の冷房運転時のヒートポンプ回路
を説明する図である。FIG. 1 is a diagram illustrating a heat pump circuit during a cooling operation in summer.
【図2】 図2は冬季の暖房運転時のヒートポンプ回路
を説明する図である。FIG. 2 is a diagram illustrating a heat pump circuit during a heating operation in winter.
【図3】 図1及び図2に示したヒートポンプ方式空調
システムの具体例(A)の簡略化した断面図である。FIG. 3 is a simplified cross-sectional view of a specific example (A) of the heat pump type air conditioning system shown in FIGS. 1 and 2.
【図4】 図1及び図2に示したヒートポンプ方式空調
システムの具体例(B)の簡略化した断面図である。FIG. 4 is a simplified cross-sectional view of a specific example (B) of the heat pump type air conditioning system shown in FIGS. 1 and 2.
【図5】 解放タンクからなる蓄熱槽の平面図である。FIG. 5 is a plan view of a heat storage tank including an open tank.
【図6】 従来の氷蓄熱を利用するヒートポンプ方式空
調装置の説明図であり、分図(A)は斜視図、(B)は
機構説明図である。6A and 6B are explanatory views of a conventional heat pump type air conditioner utilizing ice heat storage, in which FIG. 6A is a perspective view and FIG. 6B is a mechanism explanatory view.
【図7】 蓄熱剤容器(A)及びこれを使用する密閉式
タンクからなる蓄熱槽(B)の簡略化した断面図であ
る。FIG. 7 is a simplified cross-sectional view of a heat storage agent container (A) and a heat storage tank (B) including a closed tank using the heat storage agent container (A).
【手続補正2】[Procedure amendment 2]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】全図[Correction target item name] All figures
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図 1】 [Fig. 1]
【図 2】 FIG. 2
【図 5】 [Figure 5]
【図 3】 [Fig. 3]
【図 4】 [Fig. 4]
【図 6】 [Figure 6]
【図 7】 [Fig. 7]
Claims (4)
て蓄積する蓄熱手段を、ヒートポンプ回路の室外機に並
列に設け、且つ該蓄熱手段には温度約5〜35℃の範囲
で相変化による潜熱作用を提供し得る蓄熱材を夏季及び
冬季を通して変更せず配置したことを特徴とするヒート
ポンプ方式の空調システム。1. A heat storage means for storing electric power during off-peak hours as a heat source for air conditioning is provided in parallel with an outdoor unit of a heat pump circuit, and the heat storage means has a latent heat action by a phase change within a temperature range of about 5 to 35 ° C. A heat pump type air conditioning system in which a heat storage material capable of providing heat is arranged without change throughout summer and winter.
て蓄積する蓄積手段を、ヒートポンプ回路の室外機に並
列に設け、且つ該蓄熱手段には温度約5〜35℃の範囲
で相変化による潜熱作用を提供し得る蓄熱材を夏季及び
冬季を通して変更せず配置したことを特徴とするヒート
ポンプ方式の空調方法。2. A storage means for storing electric power during off-peak hours as a heat source for air conditioning is provided in parallel with an outdoor unit of a heat pump circuit, and the heat storage means has a latent heat action by a phase change within a temperature range of about 5 to 35 ° C. A heat pump type air-conditioning method, in which a heat storage material capable of providing heat is arranged without change throughout summer and winter.
熱槽と熱交換器を包含し、蓄熱材は蓄熱槽の水に浸漬状
態で配置されていること。3. The heat storage means according to claim 1 or 2, wherein the heat storage means includes a heat storage tank and a heat exchanger, and the heat storage material is arranged so as to be immersed in water in the heat storage tank.
されている蓄熱剤は所要の温度範囲で相変化する石油パ
ラフィン単独、又は、石油パラフィンと所要の温度範囲
で相変化する無機塩類を併用したものであること。4. The heat storage agent according to claim 1 or 2, wherein the heat storage agent contained in the heat storage material is petroleum paraffin alone which changes phase in a required temperature range or an inorganic salt which changes phase in a required temperature range with petroleum paraffin. Must be used in combination.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8213696A JPH0968330A (en) | 1995-06-19 | 1996-01-25 | Heat pump type air conditioning system and method |
TW085103555A TW337547B (en) | 1995-06-19 | 1996-03-25 | System and process for air-conditioning of heat therefrom |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-187615 | 1995-06-19 | ||
JP18761595 | 1995-06-19 | ||
JP8213696A JPH0968330A (en) | 1995-06-19 | 1996-01-25 | Heat pump type air conditioning system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0968330A true JPH0968330A (en) | 1997-03-11 |
Family
ID=26423151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8213696A Pending JPH0968330A (en) | 1995-06-19 | 1996-01-25 | Heat pump type air conditioning system and method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH0968330A (en) |
TW (1) | TW337547B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007501925A (en) * | 2003-08-07 | 2007-02-01 | ティーシーピー・リライアブル・インコーポレーテッド | Thermal packaging system |
JP2009250581A (en) * | 2008-04-10 | 2009-10-29 | Three Yuu:Kk | Heating and cooling system using underground heat |
CN107246678A (en) * | 2017-03-16 | 2017-10-13 | 北京工业大学 | For the small-sized phase-change type water-cooling system of semiconductor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014137968A2 (en) | 2013-03-04 | 2014-09-12 | Johnson Controls Technology Company | A modular liquid based heating and cooling system |
-
1996
- 1996-01-25 JP JP8213696A patent/JPH0968330A/en active Pending
- 1996-03-25 TW TW085103555A patent/TW337547B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007501925A (en) * | 2003-08-07 | 2007-02-01 | ティーシーピー・リライアブル・インコーポレーテッド | Thermal packaging system |
JP2009250581A (en) * | 2008-04-10 | 2009-10-29 | Three Yuu:Kk | Heating and cooling system using underground heat |
CN107246678A (en) * | 2017-03-16 | 2017-10-13 | 北京工业大学 | For the small-sized phase-change type water-cooling system of semiconductor |
Also Published As
Publication number | Publication date |
---|---|
TW337547B (en) | 1998-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5211029A (en) | Combined multi-modal air conditioning apparatus and negative energy storage system | |
US4756164A (en) | Cold plate refrigeration method and apparatus | |
CN103857965A (en) | Thermal energy storage in a chiller system | |
CN104344479A (en) | Cold accumulation type energy-saving air conditioning system and operation method thereof | |
CN201003824Y (en) | Ice cold-storage air-conditioning device | |
CN102947653A (en) | Refrigerating air-conditioning device | |
US20040221589A1 (en) | Energy storage with refrigeration systems and method | |
JPH0968330A (en) | Heat pump type air conditioning system and method | |
JPS6367630B2 (en) | ||
JP2771952B2 (en) | Individually distributed air conditioner | |
JP3284582B2 (en) | Heat storage type air conditioner and cool storage device for air conditioner | |
JPH037834A (en) | Cold heat accumulator system | |
JP2000240980A (en) | Refrigerator/air conditioner | |
JPS6367633B2 (en) | ||
JPH11325769A (en) | Heat storage type heat exchanger | |
CN221403325U (en) | Ice cold-storage heat pump system | |
JPH05196267A (en) | Heat accumulating air-conditioner | |
JP2000234771A (en) | Secondary refrigerant heat-storing air-conditioning system | |
JP2013245850A (en) | Air conditioner | |
CN101344296A (en) | Coolant distribution ice storing type constant temperature air conditioning system | |
JPS6136130Y2 (en) | ||
JP2016125729A (en) | Heat storage type air conditioner | |
JP2906380B2 (en) | Heat storage type air conditioning cooling method | |
JPH02219933A (en) | Cold storage system | |
JPH09126500A (en) | Heat storage type air-conditioner |