JPH0968679A - Spectacle lens - Google Patents
Spectacle lensInfo
- Publication number
- JPH0968679A JPH0968679A JP7223516A JP22351695A JPH0968679A JP H0968679 A JPH0968679 A JP H0968679A JP 7223516 A JP7223516 A JP 7223516A JP 22351695 A JP22351695 A JP 22351695A JP H0968679 A JPH0968679 A JP H0968679A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- lens
- layer
- refractive index
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、眼鏡用プラスチックレ
ンズの構造及びその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a plastic lens for spectacles and a manufacturing method thereof.
【0002】[0002]
【従来の技術】眼鏡は、矯正用のほか、異物や光線から
の防御とファッション性が求められ、軽くて薄いレンズ
が絶えず要求されるところであり着色レンズはファッシ
ョン性には好適なものとされている。高屈折で透明性に
優れた高分子素材の発達に伴いプラスチックレンズの需
要はガラスレンズを越える状況である。プラスチックレ
ンズに求められる性能は、まずレンズとして透明性が高
く高屈折と低分散性、軽量、安全性、染色性、成形性な
どが挙げられる他、レンズ表面の反射光を低減し透過率
を高めることも重要である。一般的にレンズ表面の片面
における反射光は3%乃至4%あって屈折率の大きい素
材ほど反射光は大きくなる傾向にある。現状この反射光
を低減する手法は金属薄膜を多層に形成して各層におけ
る反射光を互いに干渉させ反射光を消滅させるもので3
層乃至7層に及ぶ反射防止層が用いられている。この反
射防止層の形成は真空蒸着器を用いて施工されるが大量
にレンズを加工するために極めて大型の蒸着器が必要
で、機器の価格もさることながらランニングコストもレ
ンズコストを押し上げる要因となっている。2. Description of the Related Art Eyeglasses are required not only for correction but also for protection from foreign matter and light rays and fashionability, and light and thin lenses are constantly required. Colored lenses are considered to be suitable for fashionability. There is. With the development of polymer materials with high refraction and excellent transparency, the demand for plastic lenses exceeds that of glass lenses. The performance required for plastic lenses is, first of all, high transparency as a lens, high refraction and low dispersibility, light weight, safety, dyeability, moldability, etc., as well as reducing the light reflected from the lens surface and increasing the transmittance. That is also important. Generally, the reflected light on one surface of the lens surface is 3% to 4%, and the reflected light tends to increase as the refractive index of the material increases. At present, the method of reducing the reflected light is to form a thin metal film in multiple layers and interfere the reflected light in each layer with each other to eliminate the reflected light.
Antireflection layers ranging from one to seven layers are used. The formation of this antireflection layer is performed using a vacuum vapor deposition device, but an extremely large vapor deposition device is required to process a large number of lenses, and running costs as well as running costs are factors that increase lens costs. Has become.
【0003】透明で平滑面を有する材料の空気との界面
における反射光を低減させる手法は空気と透明材料表面
の間の平均的な屈折率を連続的に変化させることで目的
を達成することができる。この考え方は不均質膜を透明
材料の表面に形成することで解決される。この不均質の
反射防止原理を考察するに、一例として図9のような凹
凸を持つ場合、この層の深さ方向をxとすると屈折率
(nf(x))は1式で表すことができる。A technique for reducing the reflected light at the interface between a transparent material having a smooth surface and air can achieve the object by continuously changing the average refractive index between the air and the surface of the transparent material. it can. This idea is solved by forming a heterogeneous film on the surface of the transparent material. In consideration of this non-uniform antireflection principle, in the case where there is unevenness as shown in FIG. 9 as an example, the refractive index (nf (x)) can be expressed by one equation, where x is the depth direction of this layer. .
【0004】[0004]
【数1】 nf(x)=ng・V(x)+n0 (1−V(x)) …(1)Nf (x) = ng · V (x) + n 0 (1-V (x)) (1)
【0005】ここに、ngはガラスの屈折率、V(x)
はxでのガラスの占める体積、n0は空気の屈折率であ
る。この場合、空気と膜との界面及び膜とガラス基板と
の界面では、図10に示すように不連続に屈折率が変化
するのでこの点における屈折率をそれぞれn1 、n2 と
すると、この層の反射率Rは2式で表すことができる。Where ng is the refractive index of glass, V (x)
Is the volume occupied by the glass at x, and n 0 is the refractive index of air. In this case, the refractive index changes discontinuously at the interface between the air and the film and at the interface between the film and the glass substrate, as shown in FIG. 10. Therefore, assuming that the refractive indices at this point are n 1 and n 2 , respectively. The reflectance R of the layer can be expressed by Equation 2.
【0006】[0006]
【数2】 [Equation 2]
【0007】この式において、n0 =1.0,n1 =
1.1,、n2 =1.477,ng=1.53とした場
合、表面の凹凸が100nmのとき最も低い反射率が得
られる。しかしこのように微細な凹凸を形成することは
非常に困難である。この問題を解決するために、超微粒
子を透明基材の表面に直接膜状に被覆することにより、
低反射率と透過率の両者を満足する反射防止体及びその
形成方法が特開平2−175601号公報に開示されて
いる。そして粒径とばらつきの少ないSiO2 超微粒子
を、ガラス基板上に単層配列することで、透過率を向上
し優れた反射防止効果が得られている。In this equation, n 0 = 1.0, n 1 =
When 1.1, n 2 = 1.477 and ng = 1.53, the lowest reflectance is obtained when the surface unevenness is 100 nm. However, it is very difficult to form such fine irregularities. In order to solve this problem, by directly coating the surface of the transparent substrate with ultrafine particles in a film form,
Japanese Patent Application Laid-Open No. 2-175601 discloses an antireflection member that satisfies both low reflectance and transmittance. Further, by arranging the SiO 2 ultrafine particles having a small variation in particle size and a single layer on the glass substrate, the transmittance is improved and an excellent antireflection effect is obtained.
【0008】SiO2 の超微粒子をガラス板上に単層固
定するには、ガラス板をエチルシリケート、エタノー
ル、IPA、MEKなどと、エチルシリケートを加水分
解させるための水と硝酸などが混合された溶液(S40
8,旭硝子(株)製)と120nmの粒径をもつSiO
2 をエタノールに20wt%分解させた混合液に浸し、
垂直に毎秒0.98mmの速度で引き上げて、揮発成分
が蒸発したのち、150°Cで約30分空気中で焼成し
テトラエトキシシランを分解する。分解してできたSi
O2 の連続した均一な薄膜中に強固に固着される。In order to immobilize ultra-fine particles of SiO 2 on a glass plate in a single layer, the glass plate was mixed with ethyl silicate, ethanol, IPA, MEK and the like, and water and nitric acid for hydrolyzing the ethyl silicate were mixed. Solution (S40
8. Asahi Glass Co., Ltd. and SiO with a particle size of 120 nm
Dip 2 into a mixed solution of 20% decomposed in ethanol,
After vertically elevating at a rate of 0.98 mm per second to evaporate volatile components, it is baked in air at 150 ° C. for about 30 minutes to decompose tetraethoxysilane. Si produced by decomposition
It is firmly fixed in a continuous and uniform thin film of O 2 .
【0009】図11はガラス板上に固着されたSiO2
超微粒子を上述したよう固定した模様を模式的に断面と
して示したものである。図中Aに示した位置は屈折率は
空気の屈折率n0 でその値を1とする。Bに示す位置で
は超微粒子4の屈折率n=1.48に等しくなるからこ
のA、Bに囲まれた部分の屈折率は前出の数式1に基づ
き平均的な屈折率はこの微少な仮想板の体積全体に占め
るSiO2 部分の体積の割合に応じて連続的に変化する
と考えて良い。Aよりわずかに内側に入ったC位置での
屈折率をn1 、SiO2 の超微粒子が占める体積がほぼ
100%になる位置をBとし屈折率をngとし、Bより
わずかに外側に出たD位置での屈折率をn2 とすればガ
ラス面表面の反射率Rが最小となる条件は、次式で示さ
れる。FIG. 11 shows SiO 2 fixed on a glass plate.
The pattern in which the ultrafine particles are fixed as described above is schematically shown as a cross section. The position shown by A in the figure has a refractive index n 0 of air and its value is 1. At the position shown in B, the refractive index n of the ultrafine particles 4 is equal to 1.48. Therefore, the refractive index of the portion surrounded by A and B is based on the above-mentioned formula 1, and the average refractive index is It can be considered that it continuously changes depending on the ratio of the volume of the SiO 2 portion to the entire volume of the plate. The refractive index at the position C slightly inside the A was n 1 , the position at which the volume of the ultrafine particles of SiO 2 occupied about 100% was B, and the refractive index was ng. The condition that the reflectance R of the glass surface is minimum when the refractive index at the position D is n 2 is given by the following equation.
【0010】[0010]
【数3】 (Equation 3)
【0011】これから、ng=n2 /n1 の条件を満た
すときに無反射性能が得られる。ここでn2 /n1 の値
は凹凸の形状によって決まる。ここでn1 及びn2 は仮
想する微少板内の体積の割合に応じて定まる数値である
から、超微粒子の直径には無関係のようにみえるが、実
験的に考察すると直径が30nm近辺より小さい方で
は、製造上の問題もあって、凹凸面が平滑になり反射光
を抑える機能がなくなり、一方300nm近辺より大き
い直径の場合は透明度が白濁したようになって透明体の
もつ透き通った感覚が得られない。単層に並ぶ超微粒子
の膜厚は100nm近辺が最も良い反射防止機能を有す
るのは先述の通りである。From this, antireflection performance can be obtained when the condition of ng = n 2 / n 1 is satisfied. Here, the value of n 2 / n 1 is determined by the shape of the unevenness. Here, since n 1 and n 2 are numerical values determined according to the ratio of the volume inside the virtual microplate, it seems that they are unrelated to the diameter of the ultrafine particles, but when examined experimentally, the diameter is smaller than around 30 nm. On the other hand, due to manufacturing problems, the uneven surface becomes smooth and the function of suppressing the reflected light is lost. On the other hand, when the diameter is larger than around 300 nm, the transparency becomes cloudy and the transparent feeling of the transparent body is felt. I can't get it. As described above, the thickness of the ultrafine particles arranged in a single layer has the best antireflection function in the vicinity of 100 nm.
【0012】ガラス板上にSiO2 を単層固着させるこ
とでは特に問題のないところであるが、透明な樹脂板上
にこの超微粒子を固定する場合、例えばアクリル板、ポ
リカーボネート板など汎用の透明板上に強い固着力を与
えるバインダーは存在しない。又、レンズなどに用いる
光学材料において、例えばCR−39、ウレタン樹脂な
どにおいても適当なバインダーは見当たらない。そこで
微少な凹凸面を透明樹脂体上に形成する手段として、単
層超微粒子面を樹脂体に直接転写することを試みその成
果を当出願人は特願平5−330768号で示した。There is no problem in fixing a single layer of SiO 2 on a glass plate, but when fixing these ultrafine particles on a transparent resin plate, for example, on a general-purpose transparent plate such as an acrylic plate or a polycarbonate plate. There are no binders that give strong adhesion to the. Further, in optical materials used for lenses and the like, for example, CR-39 and urethane resin, no suitable binder is found. Therefore, as a means for forming a minute uneven surface on the transparent resin body, an attempt was made to directly transfer the single-layer ultrafine particle surface to the resin body, and the result was shown in Japanese Patent Application No. 5-330768 by the present applicant.
【0013】上記手法は転写面を正確に転写することで
一定の成果は得られるのであるが、反復して転写を行う
場合、超微粒子の脱落や離型の難易度及び転写面の均一
性に問題を生じ、更なる改良が求められた。脱落を防止
するためにバインダーの量を増加させると超微粒子がバ
インダー内に埋没するようになり、連続的に屈折率を変
化させる作用が減少する。又、超微粒子の形状をできる
だけ正確に転写して粒子の曲率半径を再現するには、バ
インダーの量が少ない方が良い。離型の難易度では、樹
脂が粒子間に流入してアンカー効果を示す部分があり離
型に大きな力を必要とし母型の破損にもつながるので新
規な母型が望まれる。Although the above-mentioned method can achieve a certain result by accurately transferring the transfer surface, when the transfer is repeatedly performed, it is difficult to remove the ultrafine particles and release, and the uniformity of the transfer surface. It caused problems and required further improvements. When the amount of the binder is increased to prevent the particles from falling off, the ultrafine particles become embedded in the binder, and the effect of continuously changing the refractive index decreases. Further, in order to transfer the shape of the ultrafine particles as accurately as possible and reproduce the radius of curvature of the particles, it is preferable that the amount of the binder is small. In terms of the degree of difficulty of mold release, a new matrix is desired because the resin flows between the particles and there is a portion exhibiting an anchor effect, which requires a large force for mold release and leads to damage to the matrix.
【0014】[0014]
【発明が解決しようとする課題】解決しようとする課題
は、単層に並ぶ超微粒子面を転写するための新規な母型
を用いて転写することで表面の反射光を低減させたレン
ズを得ることである。The problem to be solved is to obtain a lens in which the reflected light on the surface is reduced by transferring by using a new matrix for transferring the ultrafine particle surface arranged in a single layer. That is.
【0015】[0015]
【課題を解決するための手段】本発明は、樹脂レンズの
表面、裏面あるいは界面の少なくとも一面に、曲率半径
が15nm乃至150nmの微細な凹面及び/又は凸面
を形成して眼鏡用レンズとする。The present invention provides a spectacle lens by forming a fine concave surface and / or a convex surface having a radius of curvature of 15 nm to 150 nm on at least one surface of a resin lens, a front surface, a back surface, or an interface.
【0016】又、微細な凹面及び/又は凸面をスタンパ
を用いて転写形成する方法を用いることである。Another method is to transfer and form fine concave and / or convex surfaces using a stamper.
【0017】[0017]
【実施例1】図1は、超微粒子面を転写した眼鏡用レン
ズの断面を模式図として示したものであり、1はレンズ
本体、2は単層超微粒子面の転写面である。図2は注型
重合用ガラスモールド3に、粒径が120nmのSiO
2 超微粒子を前出の手法にて強固に固定したものであ
る。図1に示すレンズ1を成形するために、図2に示し
た凸面側の超微粒子面5に充分な洗浄を施した後、ニッ
ケルの真空蒸着を行い、更にニッケルメッキを行いニッ
ケルメッキ層の厚さを均一にするために液中でモールド
を回転させる。メッキ層6が所定の膜厚になったところ
でメッキ槽から取り出し洗浄と乾燥を行ってメッキ層6
の曲面と同じ曲面を有するモールド7を接着する(図
4)。モールド7と3を引き離すような力を加えて真空
蒸着層と超微粒子面の間で分離させる。分離したモール
ド7側を一部を拡大して図5に示した。このようにして
得られたモールド7とニッケルメッキ部分をスタンパ8
として通常の注型重合を行い図1に示すような微細な凹
凸面2を有するレンズ1を得ることができる。ニッケル
メッキ層で構成される転写面を更に転写した第2のスタ
ンパを作成することが可能でこの場合当然の事ながら面
の形状は逆の形状となる。Example 1 FIG. 1 is a schematic view showing a cross section of an eyeglass lens to which an ultrafine particle surface is transferred. Reference numeral 1 is a lens body, and 2 is a transfer surface of a single layer ultrafine particle surface. FIG. 2 shows a glass mold 3 for casting polymerization, which has a particle size of 120 nm of SiO 2.
2 Ultrafine particles are firmly fixed by the method described above. In order to mold the lens 1 shown in FIG. 1, after the superfine particle surface 5 on the convex surface side shown in FIG. 2 is sufficiently washed, vacuum deposition of nickel is performed, and then nickel plating is performed to form the thickness of the nickel plating layer. The mold is rotated in the liquid to make the thickness uniform. When the plating layer 6 has a predetermined film thickness, it is taken out from the plating tank, washed and dried to obtain the plating layer 6
The mold 7 having the same curved surface as the curved surface of 1 is adhered (FIG. 4). A force that separates the molds 7 and 3 is applied to separate the vacuum-deposited layer and the ultrafine particle surface. A part of the separated mold 7 side is enlarged and shown in FIG. The mold 7 and the nickel-plated portion thus obtained are stamped 8
As a result, ordinary casting polymerization is carried out to obtain a lens 1 having a fine uneven surface 2 as shown in FIG. It is possible to create a second stamper that further transfers the transfer surface composed of the nickel-plated layer, and in this case, the shape of the surface naturally becomes the reverse shape.
【0018】レンズ成形のための樹脂に高屈折率ポリウ
レタン樹脂、屈折率1.66を用いて図1に示すような
眼鏡用マイナスレンズを成形し片面の反射率を測定した
ところ図6のような反射率を示した。この場合、目が一
番強く光を感じる500nm乃至550nm近辺の波長
域において0.3%程度の反射率を示し、真空蒸着によ
る金属薄膜が示す反射率がこの近辺で増加するのに対
し、可視光域でほぼ平坦なものとなる。本実施例で得ら
れるレンズの対物側面の反射光の色は紫色である。又、
本例では粒子が120nmを使用したが、30nmから
300nmの間で任意に粒径を定めて用いることができ
るので反射率特性を変化させることができる。When a minus lens for spectacles as shown in FIG. 1 is molded by using a high refractive index polyurethane resin and a refractive index of 1.66 as a resin for molding a lens and the reflectance of one surface is measured, it is as shown in FIG. The reflectance was shown. In this case, the reflectance is about 0.3% in the wavelength range around 500 nm to 550 nm where the eyes feel the strongest light, and the reflectance of the metal thin film formed by vacuum vapor deposition increases near this range, whereas It becomes almost flat in the light range. The color of the reflected light on the objective side surface of the lens obtained in this example is purple. or,
In this example, the particle size is 120 nm, but the particle size can be arbitrarily set between 30 nm and 300 nm, and therefore the reflectance characteristics can be changed.
【0019】上述の微細な凹凸面の耐擦傷性を向上させ
るためには、シリコン系のハードコート材を塗布しても
よいが、凹凸面が平滑な面になるおそれがあり、連続的
に屈折率を変化させることができなくなる。このような
問題の解決策として、まず通常のモールドで図1に示す
レンズ1を成しその表面に図7に示すような密着性を向
上させる粘着層9を形成後更にシリコンハードコート層
10を1μm乃至1.5μmの厚さに塗布しスタンパ8
で押圧する。この場合スタンパの微細な凹凸面の空気を
巻き込んで均一な転写面が得られないから、真空チャン
バー内で行う必要がある。実際にこの方法は工程が増え
るから、スタンパにハードコート液を塗布し、上記粘着
面9へ押圧し余分なハードコート液を押し出すことで作
業の簡略化を図ることができる。スタンパを押圧した状
態で加熱乾燥しスタンパを除去することで耐擦傷性のあ
る微細な凹凸面11を形成することができる(図8)。In order to improve the scratch resistance of the fine uneven surface described above, a silicon-based hard coat material may be applied, but the uneven surface may become a smooth surface, and continuous refraction may occur. You cannot change the rate. As a solution to such a problem, first, a lens 1 shown in FIG. 1 is formed by an ordinary mold, and an adhesive layer 9 for improving adhesion as shown in FIG. 7 is formed on the surface thereof, and then a silicon hard coat layer 10 is further formed. The stamper 8 is applied to a thickness of 1 μm to 1.5 μm.
Press with. In this case, it is necessary to carry out the process in a vacuum chamber because the air on the fine uneven surface of the stamper is entrained and a uniform transfer surface cannot be obtained. Actually, since this method requires more steps, the work can be simplified by applying the hard coat liquid to the stamper, pressing the sticker surface 9 and pushing out the extra hard coat liquid. By heating and drying the stamper in a pressed state and removing the stamper, it is possible to form the fine uneven surface 11 having scratch resistance (FIG. 8).
【0020】この手法によるハードコート層は粘着層と
レンズ界面で生ずる反射光を散乱させる効果があり、更
に該ハードコート層の表面に屈折率が1.38のMgF
2 を一層真空蒸着することで更に反射光を低減させるこ
とが可能である。The hard coat layer formed by this method has the effect of scattering the reflected light generated at the interface between the adhesive layer and the lens, and the surface of the hard coat layer has a refractive index of 1.38 MgF.
It is possible to further reduce the reflected light by further vacuum-depositing 2 .
【0021】[0021]
【発明の効果】以上説明したように本発明の反射光を低
減する超微細な凹凸面はレンズ成形時に加工できるか
ら、従来の多層金属薄膜による反射防止層は不要とな
り、作業工程の簡略化が図れるので製造原価を低くする
ことができる。又、この手法は射出成形法にも応用でき
るから反射光を低減する機能を有するレンズを連続的に
加工することも可能である。又、手あかなどによる汚染
や撥水性の改善については、フロン系のコーティング材
フロラード(住友スリーエム(株)製)が有効で屈折率
も1.36とMgF2 のそれより低いから反射光の低減
には有利になる。As described above, since the ultrafine uneven surface for reducing the reflected light of the present invention can be processed at the time of lens molding, the conventional antireflection layer made of a multi-layered metal thin film is unnecessary, and the working process can be simplified. As a result, the manufacturing cost can be reduced. Further, since this method can be applied to the injection molding method, it is possible to continuously process a lens having a function of reducing reflected light. In addition, for the improvement of contamination and water repellency due to hand marks, the fluorocarbon coating material Florard (Sumitomo 3M Co., Ltd.) is effective, and the refractive index is 1.36, which is lower than that of MgF 2 , and therefore reduces reflected light. Will be advantageous.
【図1】本発明になるレンズの断面図。FIG. 1 is a sectional view of a lens according to the present invention.
【図2】本発明に用いるガラスモールド。FIG. 2 is a glass mold used in the present invention.
【図3】メッキ層を構成したガラスモールドの断面図。FIG. 3 is a sectional view of a glass mold having a plated layer.
【図4】スタンパ製作過程を示す断面図。FIG. 4 is a sectional view showing a stamper manufacturing process.
【図5】スタンパの一部拡大断面図。FIG. 5 is a partially enlarged sectional view of a stamper.
【図6】本発明の反射率を示すグラフ。FIG. 6 is a graph showing the reflectance of the present invention.
【図7】本発明の一工程を示す断面図。FIG. 7 is a cross-sectional view showing one step of the present invention.
【図8】ハードコート層に微細な凸面を形成したレンズ
の断面図。FIG. 8 is a cross-sectional view of a lens having a hard coat layer on which fine convex surfaces are formed.
【図9】本発明の反射光防止の理論説明図。FIG. 9 is a theoretical explanatory diagram of reflected light prevention of the present invention.
【図10】屈折率の変化状況を示す説明図。FIG. 10 is an explanatory diagram showing a change situation of a refractive index.
【図11】本発明の連続的に屈折率の変化する概念を示
す説明図。FIG. 11 is an explanatory view showing the concept of continuous change of the refractive index of the present invention.
1 レンズ 2,2−1 微細な凹凸面 3 ガラスモールド 4 SiO2 超微粒子 6 ニッケルメッキ層 7 ガラスモールド 8 スタンパ 10 ハードコート層DESCRIPTION OF SYMBOLS 1 Lens 2, 2-1 Fine uneven surface 3 Glass mold 4 SiO 2 Ultrafine particle 6 Nickel plating layer 7 Glass mold 8 Stamper 10 Hard coat layer
Claims (2)
少なくとも一面に曲率半径が15nm乃至150nmの
微細な凹面及び/又は凸面を形成した眼鏡用レンズ。1. A spectacle lens in which at least one of a front surface, a back surface, or an interface of a resin lens has a minute concave surface and / or a convex surface having a radius of curvature of 15 nm to 150 nm.
用いて転写形成する請求項1に記載の眼鏡用レンズの製
造方法。2. The method for manufacturing a spectacle lens according to claim 1, wherein the fine concave surface and / or the convex surface is transferred and formed using a stamper.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22351695A JP4030601B2 (en) | 1995-08-31 | 1995-08-31 | Stamper for molding plastic lenses for eyeglasses |
PCT/JP1996/000350 WO1996025677A1 (en) | 1995-02-17 | 1996-02-16 | Convex ultra-fine particle surface structure |
KR1019960705880A KR970702504A (en) | 1995-02-17 | 1996-02-16 | Convex Ultrafine Surface Structure |
EP96902464A EP0757262A4 (en) | 1995-02-17 | 1996-02-16 | Convex ultra-fine particle surface structure |
CN96190116A CN1146810A (en) | 1995-02-17 | 1996-02-16 | Convex ultra-fine particle surface structure |
US08/732,482 US6075652A (en) | 1995-02-17 | 1996-02-16 | Convex-microgranular surface structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22351695A JP4030601B2 (en) | 1995-08-31 | 1995-08-31 | Stamper for molding plastic lenses for eyeglasses |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0968679A true JPH0968679A (en) | 1997-03-11 |
JP4030601B2 JP4030601B2 (en) | 2008-01-09 |
Family
ID=16799372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22351695A Expired - Fee Related JP4030601B2 (en) | 1995-02-17 | 1995-08-31 | Stamper for molding plastic lenses for eyeglasses |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4030601B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6437918B1 (en) | 1996-07-22 | 2002-08-20 | Nippon Sheet Glass Co., Ltd. | Method of manufacturing flat plate microlens and flat plate microlens |
JP2008107844A (en) * | 2001-10-01 | 2008-05-08 | Matsushita Electric Ind Co Ltd | Projection type display apparatus, rear projector and multi-vision system |
JP2010513961A (en) * | 2006-12-22 | 2010-04-30 | シュライフリング ウント アパラーテバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Optical rotary coupler with large return loss |
JP2010181791A (en) * | 2009-02-09 | 2010-08-19 | Seiko Epson Corp | Microlens substrate, method for producing the same and liquid crystal panel |
-
1995
- 1995-08-31 JP JP22351695A patent/JP4030601B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6437918B1 (en) | 1996-07-22 | 2002-08-20 | Nippon Sheet Glass Co., Ltd. | Method of manufacturing flat plate microlens and flat plate microlens |
JP2008107844A (en) * | 2001-10-01 | 2008-05-08 | Matsushita Electric Ind Co Ltd | Projection type display apparatus, rear projector and multi-vision system |
JP2010513961A (en) * | 2006-12-22 | 2010-04-30 | シュライフリング ウント アパラーテバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Optical rotary coupler with large return loss |
JP2010181791A (en) * | 2009-02-09 | 2010-08-19 | Seiko Epson Corp | Microlens substrate, method for producing the same and liquid crystal panel |
Also Published As
Publication number | Publication date |
---|---|
JP4030601B2 (en) | 2008-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7094452B2 (en) | Antireflective member and electronic equipment using same | |
EP1963891B1 (en) | Optical article having an antistatic, antireflection coating and method of manufacturing same | |
JP2000071290A (en) | Manufacture of antireflection article | |
US7578592B2 (en) | Ophthalmic lens with an optically transparent composite film exhibiting both impact-resistance property and polarizing property, and a process for its manufacture | |
US6886937B2 (en) | Ophthalmic lens with graded interference coating | |
US7815309B2 (en) | Bifocal plastic lens | |
JP2003222701A (en) | Optical parts and its manufacturing method | |
KR20030051703A (en) | Antireflective formed article and method for preparation thereof, and mold for antireflective formed article | |
JP2010033064A (en) | Ophthalmic lens comprising surface utility microstructure and manufacturing method thereof | |
ATE180241T1 (en) | LIGHT ABSORBING AND ANTI-REFLECTIVE COATING FOR SUNGLASSES | |
JP2012014084A (en) | Optical element, manufacturing method thereof, and optical system, optical device, imaging apparatus, and camera with interchangeable lenses using the same | |
JPH07186189A (en) | Transparent member and manufacture therefor | |
JP2004069878A (en) | Anti-dazzle and anti-reflective member and optical member | |
CN1379250A (en) | Antireflection substrate having weak reflective colour | |
JP4030601B2 (en) | Stamper for molding plastic lenses for eyeglasses | |
CN112334593A (en) | Optical article having an oriented microstructured or nanostructured film coating and method therefor | |
JP3974668B2 (en) | Plastic lens for high refractive index glasses | |
JP6488506B2 (en) | Mold having surface uneven structure, method for producing the same, and method for producing antiglare resin structure using the die | |
JPH10206604A (en) | Reflection preventive film | |
JP2007078780A (en) | Optical article and its manufacturing method | |
EP3605155B1 (en) | Ophthalmic lens comprising a multilayered interferential coating and manufacturing method thereof | |
JPH02234103A (en) | Resin cemented type aspherical lens | |
Kogler | Selection of plastics for optical applications | |
CN220961905U (en) | Polarizing resin lens with high peel strength | |
JP2023076677A (en) | Spectacle lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060822 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070918 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071017 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111026 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121026 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121026 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131026 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131026 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131026 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |