JPH0961386A - Method for detecting photothermally displaced image and device therefor - Google Patents
Method for detecting photothermally displaced image and device thereforInfo
- Publication number
- JPH0961386A JPH0961386A JP21442495A JP21442495A JPH0961386A JP H0961386 A JPH0961386 A JP H0961386A JP 21442495 A JP21442495 A JP 21442495A JP 21442495 A JP21442495 A JP 21442495A JP H0961386 A JPH0961386 A JP H0961386A
- Authority
- JP
- Japan
- Prior art keywords
- light
- intensity
- sample
- measurement points
- photothermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2418—Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
- G01B21/08—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
- G01B21/085—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness using thermal means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/72—Investigating presence of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/34—Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
- G01N29/346—Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with amplitude characteristics, e.g. modulated signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/01—Indexing codes associated with the measuring variable
- G01N2291/012—Phase angle
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光音響法あるいは光熱
変位法を利用して、試料の表面及び内部情報を検出する
光熱変位画像検出方法及びその装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photothermal displacement image detecting method and apparatus for detecting surface and internal information of a sample by utilizing a photoacoustic method or a photothermal displacement method.
【0002】[0002]
【従来の技術】従来の光熱変位法は、図10に示すよう
に、試料2上に強度変調光1を照射し、熱波3と共に試
料表面に生じた周期的な熱膨張変位4の変化から、試料
2の内部情報を得る。熱膨張変位4の振幅と位相は、表
面及び内部の熱伝導率に応じて大きく変化する。例え
ば、半導体ウェハの結晶欠陥やダメージがある領域5で
は、正常部に比べ熱伝導率が低下するため、熱膨張振幅
が増加し、かつ、位相が遅れる。従って、強度変調光1
を走査しながら各点の熱膨張変位4を、例えば光干渉等
を用いて測定すれば、欠陥領域5を識別することができ
る。上記従来技術に関しては、例えば、文献「非破壊検
査;第36巻第10号,p.730〜p.736(昭和
62年10月)」や「アイ・イー・イー・イー1986
ウルトラ・ソニックス・シンポジウム;p.515〜5
26(1986年)(IEEE1986ULTRASO
NICS SYMPO-SIUM;p.515〜526
(1986)」において論じられている。2. Description of the Related Art In the conventional photothermal displacement method, as shown in FIG. 10, a sample 2 is irradiated with intensity-modulated light 1 and a periodical thermal expansion displacement 4 generated on a sample surface along with a heat wave 3 is detected. , Get inside information of sample 2. The amplitude and phase of the thermal expansion displacement 4 change greatly depending on the thermal conductivity of the surface and the inside. For example, in a region 5 of a semiconductor wafer having crystal defects or damage, the thermal conductivity is lower than that in a normal portion, so that the thermal expansion amplitude is increased and the phase is delayed. Therefore, intensity modulated light 1
The defect region 5 can be identified by measuring the thermal expansion displacement 4 at each point while scanning, using, for example, optical interference. Regarding the above-mentioned prior art, for example, the document “Non-destructive inspection; Vol. 36, No. 10, p. 730 to p. 736 (October 1987)” and “I-E-E-1986”.
Ultra Sonics Symposium; p. 515-5
26 (1986) (IEEE1986 ULTRASO
NICS SYMPO-SIUM; p. 515-526
(1986) ”.
【0003】[0003]
【発明が解決しようとする課題】一般に、測定対象であ
る熱膨張変位はサブナノメートルオーダ以下と非常に微
弱であり、干渉信号中で装置周辺の空気の揺らぎ、ステ
ージ振動等の雑音成分に埋もれていることが多い。干渉
信号からこのような微弱な周期成分の振幅あるいは位相
を抽出するためには、通常、ロックインアンプによる同
期検波を用いる。変調周波数が数十kHzオーダの場
合、上記オーダの微弱信号の測定には、ロックインアン
プの時定数を数百ms程度に設定する必要がある。この
時定数を考慮すると、試料の移動と測定を1点ずつ繰り
返す従来の光熱変位法では、2次元領域の測定に莫大な
時間がかかる。例えば、時定数を400msとすると、
256×256点の領域の測定時間は、実に約7.3h
となる。Generally, the thermal expansion displacement, which is the object of measurement, is very weak, on the order of sub-nanometers or less, and is buried in noise components such as air fluctuations around the device and stage vibrations in the interference signal. Often In order to extract the amplitude or phase of such a weak periodic component from the interference signal, synchronous detection by a lock-in amplifier is usually used. When the modulation frequency is on the order of several tens of kHz, it is necessary to set the time constant of the lock-in amplifier to about several hundred ms in order to measure the weak signal of the above order. Considering this time constant, it takes an enormous amount of time to measure a two-dimensional region in the conventional photothermal displacement method in which the sample movement and the measurement are repeated point by point. For example, if the time constant is 400 ms,
The measurement time of the area of 256 × 256 points is about 7.3 h.
Becomes
【0004】このため、物性評価や表層欠陥の計測に有
効とされながらも、光熱変位法は画像計測分野での実用
化が進んでいないのが現状である。感度を低下すること
なく大幅な高速化を実現することが、光熱変位法の最大
の課題である。For this reason, the photothermal displacement method has not yet been put to practical use in the field of image measurement, although it is effective for physical property evaluation and measurement of surface layer defects. Achieving a significant increase in speed without reducing sensitivity is the greatest challenge of the photothermal displacement method.
【0005】本発明の目的は、単純構成にして、試料の
表面とその近傍の内部情報が2次元的に高速に検出され
得る光熱変位画像検出方法及びその装置を提供すること
にある。It is an object of the present invention to provide a photothermal displacement image detection method and apparatus capable of two-dimensionally detecting internal information on the surface of a sample and its vicinity with a simple structure.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、変更可として設定された周波数fEで強
度変調した光を試料表面の複数の測定点に照射して、該
複数の測定点の表面に周期的な熱膨張変位を発生させ、
該複数の測定点に他の光を照射してその反射光を光周波
数がfBだけ異なる参照光と干渉させ、生じた干渉光を
各測定点に対応した複数個の光電変換素子からなる検出
器で検出し、該検出した干渉光強度信号の中から、上記
熱膨張変位に基づく干渉光強度変化を光熱変位信号とし
て上記複数の測定点ごとに検出し、該光熱変位信号より
試料の複数の測定点の表面及び内部情報を検出するもの
である。In order to achieve the above object, the present invention irradiates a plurality of measurement points on the surface of a sample with light whose intensity is modulated at a frequency f E set to be changeable, and the plurality of measurement points are irradiated. The cyclic thermal expansion displacement is generated on the surface of the measurement point of
Other light is radiated to the plurality of measurement points to cause the reflected light to interfere with the reference light whose optical frequency differs by f B , and the generated interference light is detected by a plurality of photoelectric conversion elements corresponding to the respective measurement points. Detected by the detector, from the detected interference light intensity signal, the interference light intensity change based on the thermal expansion displacement is detected as a photothermal displacement signal at each of the plurality of measurement points, and a plurality of samples of the sample are obtained from the photothermal displacement signal. It detects the surface and internal information of the measurement point.
【0007】また、上記目的を達成するために、本発明
は、強度変調した光を試料表面の複数の測定点に照射す
る方法として、強度変調した光を試料上で連続的な直線
形状を成すビームとして構成するものである。In order to achieve the above object, the present invention provides a method of irradiating a plurality of measurement points on the surface of a sample with intensity-modulated light, in which the intensity-modulated light forms a continuous linear shape on the sample. It is configured as a beam.
【0008】また、上記目的を達成するために、本発明
は、干渉光を上記検出器により積分して検出する構成と
するものである。In order to achieve the above object, the present invention has a structure in which interference light is integrated and detected by the detector.
【0009】また、上記目的を達成するために、本発明
は、干渉光強度信号が複数個の光電変換素子から時系列
的に1次元信号として出力される検出器を用いる構成と
するものである。Further, in order to achieve the above object, the present invention is configured to use a detector in which an interference light intensity signal is output as a one-dimensional signal in time series from a plurality of photoelectric conversion elements. .
【0010】また、上記目的を達成するために、本発明
は、周波数fS、fB、fEが、8p:8pu+1:8p
v−1、または8p:8pu−1:8pv+1(p、
u、v:0以外の任意整数)の一定整数比に制御された
状態で、上記検出器の各光電変換素子ごとに、1/fS
の時間周期で複数回に亘って積分検出された複数個の積
分検出データから、上記熱膨張変位に基づく干渉光強度
変化を光熱変位信号として上記複数の測定点ごとに検出
するものである。Further, in order to achieve the above object, according to the present invention, the frequencies f S , f B and f E are 8p: 8pu + 1: 8p.
v-1, or 8p: 8pu-1: 8pv + 1 (p,
u, v: an arbitrary integer other than 0) and 1 / f S for each photoelectric conversion element of the detector under the control of a constant integer ratio.
From a plurality of integrated detection data which are integrated and detected a plurality of times in the time period of, the interference light intensity change based on the thermal expansion displacement is detected as a photothermal displacement signal for each of the plurality of measurement points.
【0011】また、上記目的を達成するために、本発明
は、上記参照光を、試料上で上記強度変調した光の照射
点から、概ね熱拡散長、もしくはそれ以上離れた位置に
照射する構成とするものである。In order to achieve the above-mentioned object, the present invention irradiates the reference light at a position approximately distant by a thermal diffusion length or more from the irradiation point of the intensity-modulated light on the sample. It is what
【0012】また、上記目的を達成するために、本発明
は、強度変調周波数fEを、光熱効果もしくは光音響効
果に基づく熱拡散長が上記試料の被測定内部界面の深さ
とほぼ同じか、もしくはそれを越える長さとなるように
設定するものである。In order to achieve the above-mentioned object, the present invention provides that the intensity modulation frequency f E is set so that the thermal diffusion length based on the photothermal effect or the photoacoustic effect is almost the same as the depth of the internal interface to be measured of the sample. Alternatively, the length is set to exceed that.
【0013】また、上記目的を達成するために、本発明
は装置の構成要件として、光源と、該光源からの光を変
更可として設定された周波数fEで強度変調する強度変
調手段と、該強度変調した光を試料表面の複数の測定点
に照射して、該複数の測定点の表面に周期的な熱膨張変
位を発生させる励起手段と、上記複数の測定点に他の光
を照射してその反射光を光周波数がfBだけ異なる参照
光と干渉させる干渉光生成手段と、生じた干渉光を、試
料表面と共役の関係にあり、且つ上記各測定点に対応し
た複数個の光電変換素子から成る検出器で検出する干渉
光検出手段と、該検出した干渉光強度信号の中から、上
記熱膨張変位に基づく干渉光強度変化を光熱変位信号と
して上記複数の測定点ごとに検出し、該光熱変位信号よ
り試料の複数の測定点の表面及び内部情報を検出する情
報検出手段と、該表面及び内部情報の格納手段及び表示
手段とを具備している。In order to achieve the above object, the present invention comprises, as constituent elements of the apparatus, a light source, intensity modulating means for intensity-modulating light from the light source at a frequency f E set to be changeable, and Excitation means for irradiating a plurality of measurement points on the sample surface with intensity-modulated light to generate cyclic thermal expansion displacement on the surface of the plurality of measurement points, and irradiating the plurality of measurement points with other light. Interference light generation means for causing the reflected light to interfere with the reference light whose optical frequency differs by f B, and the generated interference light has a conjugate relationship with the sample surface and a plurality of photoelectric conversion points corresponding to the respective measurement points. Interference light detection means for detecting with a detector composed of a conversion element, and from the detected interference light intensity signal, the interference light intensity change based on the thermal expansion displacement is detected as a photothermal displacement signal at each of the plurality of measurement points. , Multiple measurements of the sample from the photothermal displacement signal It is provided with information detecting means for detecting the surface and internal information of the point, and storage means and display means for the surface and internal information.
【0014】[0014]
【作用】光熱変位画像検出装置において、変更可として
設定された周波数fEで強度変調した光を試料表面の複
数の測定点に照射することにより、複数の測定点の表面
に周期的な熱膨張変位を発生させることができると共
に、複数の測定点に他の光を照射してその反射光を光周
波数がfBだけ異なる参照光と干渉させ、生じた干渉光
を各測定点に対応した複数個の光電変換素子からなる検
出器で検出し、該検出した干渉光強度信号の中から、上
記熱膨張変位に基づく干渉光強度変化を光熱変位信号と
して上記複数の測定点ごとに検出することにより、試料
の複数の測定点の表面及び内部情報をほぼ同時に抽出す
ることが可能となり、従来方式に比べ格段に高速な光熱
変位画像の検出が可能となるものである。In the photothermal displacement image detection device, the light of which the intensity is modulated at the frequency f E set to be changeable is applied to a plurality of measurement points on the sample surface, so that the surfaces of the plurality of measurement points undergo cyclic thermal expansion. Along with being able to generate displacement, other light is applied to a plurality of measurement points to cause the reflected light to interfere with reference light whose optical frequency differs by f B , and the generated interference light corresponds to a plurality of measurement points. Detected by a detector consisting of photoelectric conversion elements, from among the detected interference light intensity signal, by detecting the interference light intensity change based on the thermal expansion displacement as a photothermal displacement signal for each of the plurality of measurement points The surface and internal information of a plurality of measurement points of the sample can be extracted almost at the same time, and the photothermal displacement image can be detected much faster than the conventional method.
【0015】また、強度変調した光を試料表面の複数の
測定点に照射する方法として、強度変調した光を試料上
で連続的な直線形状を成すビームとして構成することに
より、従来方式に比べ格段に高速な光熱変位画像の検出
が可能となるものである。Further, as a method of irradiating a plurality of measurement points on the surface of the sample with the intensity-modulated light, the intensity-modulated light is configured as a beam having a continuous linear shape on the sample, so that it is remarkably different from the conventional method. This makes it possible to detect a photothermal displacement image at high speed.
【0016】また、干渉光を上記検出器により積分して
検出する構成とすることにより、高速かつ高精度な光熱
変位画像の検出が可能となるものである。Further, the photothermal displacement image can be detected at high speed and with high accuracy by adopting a configuration in which the interference light is integrated and detected by the detector.
【0017】また、干渉光強度信号が複数個の光電変換
素子から時系列的に1次元信号として出力される検出器
を用いることにより、従来方式に比べ格段に高速な光熱
変位画像の検出が可能となるものである。Further, by using a detector in which the interference light intensity signal is outputted as a one-dimensional signal in time series from a plurality of photoelectric conversion elements, it is possible to detect a photothermal displacement image at a much higher speed than the conventional method. It will be.
【0018】また、上記目的を達成するために、本発明
は、周波数fS、fB、fEが、8p:8pu+1:8p
v−1、または8p:8pu−1:8pv+1(p、
u、v:0以外の任意整数)の一定整数比に制御された
状態で、上記検出器の各光電変換素子ごとに、1/fS
の時間周期で複数回に亘って積分検出された複数個の積
分検出データから、上記熱膨張変位に基づく干渉光強度
変化を光熱変位信号として上記複数の測定点ごとに検出
することにより、従来方式に比べ格段に高速で高感度か
つ高精度な光熱変位画像の検出が可能となるものであ
る。Further, in order to achieve the above object, according to the present invention, the frequencies f S , f B and f E are 8p: 8pu + 1: 8p.
v-1, or 8p: 8pu-1: 8pv + 1 (p,
u, v: an arbitrary integer other than 0) and 1 / f S for each photoelectric conversion element of the detector under the control of a constant integer ratio.
From a plurality of integral detection data integrated and detected a plurality of times in the time period of, by detecting the interference light intensity change based on the thermal expansion displacement as a photothermal displacement signal for each of the plurality of measurement points, the conventional method This makes it possible to detect photothermal displacement images with significantly higher speed, higher sensitivity, and higher accuracy than in.
【0019】また、参照光を、上記強度変調した光の照
射点から、概ね熱拡散長、もしくはそれ以上離れた位置
に照射することにより、従来方式に比べ格段に高速で高
感度かつ高精度な光熱変位画像の検出が可能となるもの
である。Further, by irradiating the reference light at a position approximately distant from the irradiation point of the intensity-modulated light by a thermal diffusion length or more, the speed is much higher than that of the conventional method, and the sensitivity and the accuracy are high. The photothermal displacement image can be detected.
【0020】また、強度変調周波数fEを、光熱効果も
しくは光音響効果に基づく熱拡散長が上記試料の被測定
内部界面の深さとほぼ同じか、もしくはそれを越える長
さとなるように設定することにより、試料の任意内部界
面及び任意深さの検査が可能となるものである。Further, the intensity modulation frequency f E is set so that the thermal diffusion length based on the photothermal effect or the photoacoustic effect is approximately the same as or longer than the depth of the measured internal interface of the sample. This makes it possible to inspect an arbitrary internal interface and an arbitrary depth of the sample.
【0021】[0021]
【実施例】本発明の実施例を図1〜図9に基づいて説明
する。Embodiments of the present invention will be described with reference to FIGS.
【0022】従来法における検出速度低下要因は、点走
査検出とロックインアンプ、すなわち同期検波を用いる
点にある。本発明の目的は、従来法と同等の感度を維持
したまま、大幅な高速化を実現することにある。実施例
の具体的説明の前に、高速化のための基本コンセプトと
基本原理について説明する。The factor of decreasing the detection speed in the conventional method is that point scanning detection and lock-in amplifier, that is, synchronous detection are used. An object of the present invention is to realize a significant speedup while maintaining the same sensitivity as the conventional method. Before concrete description of the embodiments, a basic concept and a basic principle for speeding up will be described.
【0023】基本コンセプトを図2に示す。まず、従来
の点走査検出法を大幅に高速化するため、試料上の複数
点を同時に励起・検出する直線状ビームを用いた並列励
起・並列光干渉法を提案する。また、この並列光干渉法
を共通光路形干渉計で実現することにより、空気の揺ら
ぎやステージ走査時の振動による干渉信号中の雑音成分
を大幅に低減させる。これにより、従来、測定中に逐一
停止させていたステージの連続走査が可能となり、更な
る速度向上が図れる。The basic concept is shown in FIG. First, in order to significantly speed up the conventional point scanning detection method, we propose a parallel pumping / parallel optical interference method using a linear beam that simultaneously pumps / detects multiple points on a sample. By implementing this parallel optical interferometry with a common optical path type interferometer, noise components in the interference signal due to air fluctuations and vibrations during stage scanning can be significantly reduced. As a result, it becomes possible to continuously scan the stage, which was conventionally stopped one by one during measurement, and the speed can be further improved.
【0024】並列光干渉法では、干渉光の検出に、測定
点に対応した複数個の受光素子で構成された1次元セン
サを用いる必要があり、検出信号をそのままロックイン
アンプに入力することはできない。そこで、ロックイン
アンプ、すなわち同期検波に代わる新たな熱膨張成分抽
出処理法、サンプリング周波数変換法を提案する。本処
理法では、共通光路形干渉計の採用による雑音成分の低
減効果を活かし、信号処理に用いるデータ数を低減する
ことにより、1点あたりの検出時間を大幅に短縮する。In the parallel optical interferometry, it is necessary to use a one-dimensional sensor composed of a plurality of light receiving elements corresponding to the measurement point for detecting the interference light, and the detection signal cannot be directly input to the lock-in amplifier. Can not. Therefore, we propose a new thermal expansion component extraction processing method and sampling frequency conversion method instead of the lock-in amplifier, that is, the synchronous detection. In this processing method, the effect of reducing the noise component due to the adoption of the common optical path type interferometer is utilized, and the number of data used for signal processing is reduced, thereby significantly reducing the detection time per point.
【0025】まず、初めに、並列励起・並列光干渉法の
原理を説明する。図1に示すように、周波数fEの強度
変調光11をダイクロイックミラー12で反射させ、試
料10の表面に直線状に集光し、連続する複数点を並列
に励起すると、直線状に周期的熱膨張変位14が生じ
る。各点での熱膨張変位14の振幅と位相は、試料表面
及び内部の熱伝導率の分布に応じて変化する。励起部1
3に、レーザ光15から複屈折素子17で分離した同じ
く直線状のプローブレーザ光18を、また、その近傍に
プローブ光18と光周波数がわずかに異なる参照光19
を、各々ビームスプリッタ16及びダイクロイックミラ
ー12を通して照射する。励起部13から反射したプロ
ーブ光には、直線状の熱膨張変位分布14が1次元の光
位相分布として重畳される。両反射光を複屈折素子17
で合成しヘテロダイン干渉させ、この光位相分布を、ヘ
テロダイン干渉光20の1次元空間分布として、1次元
CCDセンサ21で一括検出する。First, the principle of parallel excitation / parallel optical interferometry will be described. As shown in FIG. 1, when the intensity-modulated light 11 having the frequency f E is reflected by the dichroic mirror 12 and is linearly condensed on the surface of the sample 10, and a plurality of consecutive points are excited in parallel, linearly periodical light is generated. Thermal expansion displacement 14 occurs. The amplitude and phase of the thermal expansion displacement 14 at each point change according to the distribution of thermal conductivity on the sample surface and inside. Excitation unit 1
3, the same linear probe laser light 18 separated from the laser light 15 by the birefringent element 17, and the reference light 19 whose optical frequency is slightly different from that of the probe light 18 in the vicinity thereof.
Are radiated through the beam splitter 16 and the dichroic mirror 12, respectively. A linear thermal expansion displacement distribution 14 is superimposed on the probe light reflected from the excitation unit 13 as a one-dimensional optical phase distribution. Birefringent element 17 for both reflected light
And the heterodyne interference is combined, and this optical phase distribution is collectively detected by the one-dimensional CCD sensor 21 as the one-dimensional spatial distribution of the heterodyne interference light 20.
【0026】プローブ光18と参照光19がほぼ同一の
光路を通る共通光路形干渉計を採用することにより、両
光路中に生じた空気の揺らぎやステージ走査時の振動に
よる光位相差を相殺することができ、干渉信号の変動を
大幅に低減できる。これにより、ステージの連続走査が
可能となる。By adopting a common optical path type interferometer in which the probe light 18 and the reference light 19 pass through almost the same optical path, the optical phase difference due to the fluctuation of air generated in both optical paths and the vibration during the stage scanning is canceled. It is possible to significantly reduce the fluctuation of the interference signal. This enables continuous scanning of the stage.
【0027】次にサンプリング周波数変換法について説
明する。図1において、試料10表面のある1点に生じ
た熱膨張変位14の振幅をA、位相をθ、プローブ光1
8の波長をλ、その反射強度をIS、参照光19の反射
強度をIr、プローブ光18と参照光19の光周波数
差、すなわちヘテロダインビート周波数をfB、また、
試料10表面の凹凸等により生じた両光路間の位相差を
φとする。一般に、熱膨張振幅Aはサブナノメートルオ
ーダ以下であるから、例えば、λ=632.8nmとす
ると、A≪λが成立し、1次元CCDセンサ21のある
1画素に入射するヘテロダイン干渉光20の強度I
(t)は、次式で近似できる。Next, the sampling frequency conversion method will be described. In FIG. 1, the amplitude of the thermal expansion displacement 14 generated at one point on the surface of the sample 10 is A, the phase is θ, and the probe light 1
8 is λ, its reflection intensity is I S , the reflection intensity of the reference light 19 is I r , the optical frequency difference between the probe light 18 and the reference light 19, that is, the heterodyne beat frequency is f B , and
Let φ be the phase difference between both optical paths caused by the unevenness of the surface of the sample 10. In general, the thermal expansion amplitude A is on the order of sub-nanometers or less. Therefore, if λ = 632.8 nm, for example, A << λ holds and the intensity of the heterodyne interference light 20 incident on one pixel with the one-dimensional CCD sensor 21. I
(T) can be approximated by the following equation.
【0028】[0028]
【数1】 [Equation 1]
【0029】第1項は直流成分、第2項はヘテロダイン
ビート周波数fBの搬送波成分、第3項は熱膨張振幅A
及び位相θの情報をもつ周波数fB+fEの側波帯成分、
第4項は同じく振幅A及び位相θの情報をもつ周波数f
B−fEの側波帯成分である。第3項もしくは第4項が求
めるべき情報成分である。The first term is the DC component, the second term is the carrier component of the heterodyne beat frequency f B , and the third term is the thermal expansion amplitude A.
And a sideband component of frequency f B + f E having information of phase θ,
The fourth term is the frequency f which also has the information of the amplitude A and the phase θ.
It is a sideband component of B- f E. The third or fourth term is the information component to be obtained.
【0030】図3に示すように、干渉光20はCCDセ
ンサ21の蓄積効果により、一定の周期で積分変換さ
れ、ライン走査により画素列ごとに干渉信号25が出力
される。従って、出力信号をそのままロックインアンプ
に入力し、同期検波により熱膨張振幅A及び位相θを抽
出することはできない。As shown in FIG. 3, the interference light 20 is integrated and converted at a constant cycle due to the accumulation effect of the CCD sensor 21, and an interference signal 25 is output for each pixel column by line scanning. Therefore, it is impossible to directly input the output signal to the lock-in amplifier and extract the thermal expansion amplitude A and the phase θ by synchronous detection.
【0031】そこで、逆に、CCDセンサ21の蓄積効
果を利用し、蓄積周波数fSと、ビート周波数fB及び強
度変調周波数fEとの関係を、8p:8pu+1:8p
v−1、または8p:8pu−1:8pv+1(p,
u,vは0以外の任意整数)に選ぶ。例えば、p=1、
v=u=2とすると、fS:fB:fE=8:17:15
となり、i番目のライン走査における特定の1画素から
のヘテロダイン干渉信号S(i)は、センサの蓄積(積
分)効果及び1ライン走査ごとのサンプリング効果によ
って、数2で表される。Therefore, conversely, by utilizing the accumulation effect of the CCD sensor 21, the relation between the accumulation frequency f S , the beat frequency f B and the intensity modulation frequency f E is 8p: 8pu + 1: 8p.
v-1, or 8p: 8pu-1: 8pv + 1 (p,
u and v are arbitrary integers other than 0). For example, p = 1,
If v = u = 2, then f S : f B : f E = 8: 17: 15
Therefore, the heterodyne interference signal S (i) from a specific one pixel in the i-th line scan is expressed by Formula 2 by the accumulation (integration) effect of the sensor and the sampling effect for each line scan.
【0032】[0032]
【数2】 [Equation 2]
【0033】[0033]
【数3】 (Equation 3)
【0034】すなわち、図3に示すようにfB+fEはf
Sの整数倍となるため、この熱膨張成分23は、1/fS
の周期で積分及びアンダ・サンプリングされた後、直流
成分に変換され(図中、黒丸のプロット)、出力信号か
ら除去される。一方、周波数fBのビート成分22は、
同様にして、ライン走査i、すなわち1/fSの周期に
対して周波数1/8の成分に、また、fB−fEの熱膨張
成分24は、周波数1/4の成分に各々変換される。That is, as shown in FIG. 3, f B + f E is f
Since it is an integral multiple of S , this thermal expansion component 23 is 1 / f S
After being integrated and under-sampled in a period of, the signal is converted into a DC component (black plot in the figure) and removed from the output signal. On the other hand, the beat component 22 of the frequency f B is
Similarly, the line scan i, that is, the component of frequency 1/8 with respect to the period of 1 / f S , and the thermal expansion component 24 of f B -f E are converted into components of frequency 1/4, respectively. It
【0035】次に、フーリエ係数による熱膨張成分の抽
出原理について説明する。周期性信号に対する離散形の
フーリエ級数展開と、そのフーリエ係数は次式で与えら
れる。Next, the principle of extracting the thermal expansion component by the Fourier coefficient will be described. The discrete Fourier series expansion for a periodic signal and its Fourier coefficient are given by the following equation.
【0036】[0036]
【数4】 (Equation 4)
【0037】[0037]
【数5】 (Equation 5)
【0038】[0038]
【数6】 (Equation 6)
【0039】 [0039]
【数7】 (Equation 7)
【0040】[0040]
【数8】 (Equation 8)
【0041】 [0041]
【数9】 [Equation 9]
【0042】[0042]
【数10】 (Equation 10)
【0043】各式を数11及び数12に代入すれば、熱
膨張変位の振幅A及び位相θが求まる。By substituting each equation into the equations 11 and 12, the amplitude A and the phase θ of the thermal expansion displacement can be obtained.
【0044】[0044]
【数11】 [Equation 11]
【0045】[0045]
【数12】 (Equation 12)
【0046】尚、数11の分母にはプローブ光18及び
参照光19の反射強度IS、Ir(共通光路より、IS=
Ir)が含まれており、試料10表面の反射率分布の影
響を補正する形となっている。また、数12の第2項
は、ビート成分から求めた試料10表面の凹凸による位
相変化を補正する項である。以上述べたように、サンプ
リング周波数変換により、ビート成分と熱膨張成分を周
波数比が1:2となるように変換することにより、単純
な加減算処理のみで、干渉信号から熱膨張成分が精度よ
く抽出できる点が、本処理法の大きな特徴である。後述
する信号処理回路では、この特徴を活かし、CCDセン
サ21からの出力信号25の1次元メモリへの逐次書き
込み・読み出しと加減算処理を組み合せることにより、
数7〜数10に示した各フーリエ係数の導出を実時間で
実行する。In the denominator of equation 11, the reflection intensities I S and I r of the probe light 18 and the reference light 19 (from the common optical path, I S =
I r ) is included, and the influence of the reflectance distribution on the surface of the sample 10 is corrected. The second term of Expression 12 is a term for correcting the phase change due to the unevenness of the surface of the sample 10 obtained from the beat component. As described above, by converting the beat component and the thermal expansion component so that the frequency ratio becomes 1: 2 by the sampling frequency conversion, the thermal expansion component is accurately extracted from the interference signal only by simple addition and subtraction processing. The point that can be achieved is a major feature of this processing method. In the signal processing circuit to be described later, by utilizing this feature, by sequentially writing / reading the output signal 25 from the CCD sensor 21 to / from the one-dimensional memory and adding / subtracting processing,
The derivation of each Fourier coefficient shown in Expressions 7 to 10 is executed in real time.
【0047】本発明の具体的な実施例を、図4〜図9に
基づいて説明する。A specific embodiment of the present invention will be described with reference to FIGS.
【0048】図4に光熱変位画像検出装置の全体構成を
示す。本装置は、並列励起光学系60と並列干渉光学系
61から成る光学系部分と、信号入力回路55、信号処
理回路56、信号制御回路57、計算機58、ディスプ
レイ59及びステージ系54で構成される。FIG. 4 shows the overall construction of the photothermal displacement image detection device. This apparatus is composed of an optical system portion including a parallel excitation optical system 60 and a parallel interference optical system 61, a signal input circuit 55, a signal processing circuit 56, a signal control circuit 57, a computer 58, a display 59, and a stage system 54. .
【0049】励起光源には、1.5×200μmの直線
状発光領域を有する出力2W、波長799nmの高出力
半導体レーザ30を使用した。駆動電流を周波数fEの
矩形波で変調することにより、発光パターンを直接強度
変調した。As the excitation light source, a high power semiconductor laser 30 having an output of 2 W and a wavelength of 799 nm having a linear light emitting region of 1.5 × 200 μm was used. The intensity of the light emission pattern was directly modulated by modulating the drive current with a rectangular wave of frequency f E.
【0050】この発光パターンを、コリメーティングレ
ンズ31、リレーレンズ32、33、対物レンズ(倍率
20×,NA0.4)36により試料37上に結像すれ
ば、自ずから強度変調された直線状ビーム34が形成さ
れて、連続する複数点が並列に励起され、直線状の周期
的熱膨張変位が生じる。直線状ビーム34は試料37上
で約2×210μmとした。When this light emission pattern is imaged on the sample 37 by the collimating lens 31, the relay lenses 32 and 33, and the objective lens (magnification 20 ×, NA 0.4) 36, the intensity-modulated linear beam is naturally formed. 34 is formed, and a plurality of continuous points are excited in parallel to generate a linear cyclic thermal expansion displacement. The linear beam 34 was approximately 2 × 210 μm on the sample 37.
【0051】プローブ光源には、波長632.8nmの
周波数安定化He−Neレーザ39を用いた。レーザか
ら出射した直線偏光ビームを光周波数シフタ40に入射
し、光周波数がわずかに異なり、互いに直交する2つの
偏光成分41に分離する。この2周波直交偏光成分41
はビームエキスパンダ42で拡大され、ミラー43で反
射され、シリンドリカルレンズ44、ビームスプリッタ
45透過後、図5に示すように、方解石46a、46b
からなるサバール板46の複屈折特性により平行分離さ
れ、リレーレンズ47、ダイクロイックミラー35透過
後、対物レンズ36により、一方はプローブ光48とし
て励起部38に、他方は参照光49として隣接位置に、
各々直線状ビームとして照射される。As the probe light source, a frequency-stabilized He-Ne laser 39 having a wavelength of 632.8 nm was used. The linearly polarized light beam emitted from the laser is incident on the optical frequency shifter 40, and is separated into two polarized light components 41 which have slightly different optical frequencies and are orthogonal to each other. This dual frequency orthogonal polarization component 41
Is expanded by the beam expander 42, reflected by the mirror 43, transmitted through the cylindrical lens 44 and the beam splitter 45, and then, as shown in FIG. 5, calcite 46a, 46b.
Are separated in parallel by the birefringence characteristic of the Savart plate 46, and after passing through the relay lens 47 and the dichroic mirror 35, the objective lens 36 causes one of the probe light 48 to be the excitation unit 38 and the other to be the reference light 49 to be adjacent to the excitation light.
Each is irradiated as a linear beam.
【0052】両反射光はサバール板46により再合成さ
れ、ダイクロイックミラー45で反射され、結像レンズ
50透過後、偏光板51によりヘテロダイン偏光干渉
し、熱膨張変位による直線状光位相分布が、干渉光52
の1次元空間分布として1次元CCDセンサ53で一括
検出される。センサの画素数は256、画素サイズは□
13μmであり、倍率20×の対物レンズ36を用い
て、試料37上の検出視野は約166μmとした。Both reflected lights are recombined by the Savart plate 46, reflected by the dichroic mirror 45, transmitted through the imaging lens 50, and then heterodyne polarization interference is caused by the polarizing plate 51, and the linear optical phase distribution due to the thermal expansion displacement interferes. Light 52
Are collectively detected by the one-dimensional CCD sensor 53. The number of pixels of the sensor is 256, and the pixel size is □
The detection visual field on the sample 37 was set to about 166 μm by using the objective lens 36 having a magnification of 20 ×.
【0053】尚、プローブ光48と参照光49の間隔
は、例えば、測定試料がシリコンウェハの場合、変調周
波数fEを88.235kHzとして、得られる熱拡散長
18μmを越える20μmとした。The interval between the probe light 48 and the reference light 49 is set to 20 μm, which exceeds the obtained thermal diffusion length of 18 μm, when the measurement sample is a silicon wafer and the modulation frequency f E is 88.235 kHz.
【0054】図6に、信号入力回路55、信号処理回路
56、信号制御回路57の全体構成を示す。FIG. 6 shows the overall configuration of the signal input circuit 55, the signal processing circuit 56, and the signal control circuit 57.
【0055】信号入力回路55では、1次元CCDセン
サ53から出力される干渉信号を、オフセット・ゲイン
調整後(図示せず)、AD変換器70により14bit
のディジタルデータにAD変換する。In the signal input circuit 55, the interference signal output from the one-dimensional CCD sensor 53 is adjusted by offset / gain adjustment (not shown), and then the AD converter 70 outputs 14 bits.
AD conversion to digital data of.
【0056】信号処理回路56は、ALU(Arith
metic Logic Unit)71、1次元メモ
リ72、2次元メモリ73及び計算機58から成り、C
CDセンサ53からの干渉信号に対して、数7〜数10
の加減算処理を繰り返し実行し、処理結果を2次元メモ
リ73に書き込む。[0056] The signal processing circuit 56, ALU (A rith
consists metic L ogic U nit) 71,1-dimensional memory 72, dimensional memory 73 and the computer 58, C
For the interference signal from the CD sensor 53, several 7 to several 10
The addition and subtraction processing of is repeatedly executed, and the processing result is written in the two-dimensional memory 73.
【0057】すなわち、ALU71では、センサ53の
256画素に対応する1次元メモリ72からの読み出し
データxと信号入力回路55からの干渉信号yに対し、
画素単位に加算処理z=x+y、あるいは減算処理z=
x−yを実行し、演算結果zを1次元メモリ72の同一
アドレスに書き込む。以上の処理を繰り返し実行した
後、1次元メモリ72の内容を2次元メモリ73に書き
込む。このラインデータが測定領域1ライン分の加減算
処理データに対応する。以上の処理を、ステージ54を
連続走査しながら実行することにより、2次元領域にお
ける加減算処理が完了する。That is, in the ALU 71, with respect to the read data x from the one-dimensional memory 72 corresponding to the 256 pixels of the sensor 53 and the interference signal y from the signal input circuit 55,
Addition processing z = x + y or subtraction processing z = for each pixel
xy is executed and the calculation result z is written to the same address in the one-dimensional memory 72. After the above processing is repeatedly executed, the contents of the one-dimensional memory 72 are written in the two-dimensional memory 73. This line data corresponds to the addition / subtraction processing data for one line of the measurement area. By performing the above processing while continuously scanning the stage 54, the addition / subtraction processing in the two-dimensional area is completed.
【0058】信号処理回路56は5組配置し、数7〜数
10の加減算処理と直流成分を求める加算処理の計5種
類の演算処理を並列に実行する構成とした。処理終了
後、各2次元メモリ73に格納されたフーリエ係数デー
タ及び直流成分データから、計算機58により数11及
び数12に基づき、熱膨張振幅A及び位相θの2次元画
像を計算し、ディスプレイ59に表示する。The signal processing circuits 56 are arranged in five sets and are configured to execute a total of five types of arithmetic processing in parallel, that is, the addition / subtraction processing of the equations 7 to 10 and the addition processing for obtaining the DC component. After the processing is completed, a two-dimensional image of the thermal expansion amplitude A and the phase θ is calculated by the computer 58 from the Fourier coefficient data and the DC component data stored in each two-dimensional memory 73 based on the equations 11 and 12, and the display 59 is displayed. To display.
【0059】微弱な熱膨張成分の分離抽出能力は、サン
プリング周波数変換を実行するための周波数条件、すな
わち8p:8pu+1:8pv−1、または8p:8p
u−1:8pv+1(p,u,vは0以外の任意整数)
の設定精度に依存している。そこで、信号制御回路57
では、各制御信号の発生を一元化すると共に、その生成
にPLL(Phase Locked Loop)回路
を採用して、周波数及び位相の安定化を図った。並列干
渉光学系61で生成した周波数fBのヘテロダインビー
ト信号を基準信号として、信号制御回路57(PLL回
路)で蓄積時間制御信号(fS)及び励起用強度変調信
号(fE)を生成し、各々1次元CCDセンサ53及び
半導体レーザ駆動ドライバ77に送る。変調周波数fE
は、1.786〜88.235kHzの範囲で可変可能
とした。The ability to separate and extract the weak thermal expansion component is the frequency condition for executing the sampling frequency conversion, that is, 8p: 8pu + 1: 8pv-1, or 8p: 8p.
u-1: 8pv + 1 (p, u, v are arbitrary integers other than 0)
Depends on the setting accuracy of. Therefore, the signal control circuit 57
So as to centralize the generation of the control signals adopts a PLL (P hase L ocked L oop ) circuit that generates and to stabilize the frequency and phase. The signal control circuit 57 (PLL circuit) generates the accumulation time control signal (f S ) and the excitation intensity modulation signal (f E ) using the heterodyne beat signal of the frequency f B generated by the parallel interference optical system 61 as a reference signal. , Respectively to the one-dimensional CCD sensor 53 and the semiconductor laser drive driver 77. Modulation frequency f E
Is variable in the range of 1.786 to 88.235 kHz.
【0060】本実施例における実験結果を以下に示す。
尚、ビート周波数fBを100kHzとし、サンプリング
周波数変換を実行するため、励起光の変調周波数fEは
88.235kHzに、1次元CCDセンサ53の蓄積
周波数fSは47.059kHzに、また、クロック周波
数fCは14.118MHzに設定した。The experimental results in this example are shown below.
Since the beat frequency f B is set to 100 kHz and the sampling frequency conversion is executed, the modulation frequency f E of the excitation light is 88.235 kHz, the storage frequency f S of the one-dimensional CCD sensor 53 is 47.059 kHz, and the clock frequency is The frequency f C was set to 14.118 MHz.
【0061】図7に、検出時間と最小検出熱膨張振幅と
の関係を示す。均一なAlミラー試料に対する熱膨張振
幅分布の標準偏差を求め、これを雑音振幅として、S/
N≧1となる振幅値を最小検出熱膨張振幅とした。検出
可能な熱膨張振幅値は、検出時間の1/2乗に逆比例し
ているのが認められる。検出時間40μs/画素(以
下、高感度モードと呼ぶ)にて7.9pm、4μs/画
素(同、高速モード)にて26pmの最小検出熱膨張振
幅を得た。FIG. 7 shows the relationship between the detection time and the minimum detected thermal expansion amplitude. The standard deviation of the thermal expansion amplitude distribution for a uniform Al mirror sample was determined, and this was taken as the noise amplitude, and S /
The amplitude value with N ≧ 1 was defined as the minimum detected thermal expansion amplitude. It can be seen that the detectable thermal expansion amplitude value is inversely proportional to the 1/2 power of the detection time. The minimum detected thermal expansion amplitude was 7.9 pm at a detection time of 40 μs / pixel (hereinafter, referred to as high-sensitivity mode) and 26 pm at 4 μs / pixel (the same, high-speed mode).
【0062】図8に、エッチングダメージによりシリコ
ンウェハに生じた結晶欠陥密度(不純物濃度換算)と熱
膨張振幅との関係を示す。欠陥密度の増加に伴い、熱伝
導率が低下し、熱膨張振幅が増加することが判る。雑音
振幅を考慮すると、欠陥密度の変化に対する熱膨張振幅
値の変化から、高感度モードにて、約109個/cm2オ
ーダの欠陥密度まで、また、高速モードの場合、約10
10個/cm2程度の欠陥密度まで弁別可能である。FIG. 8 shows the relationship between the crystal defect density (in impurity concentration conversion) generated in the silicon wafer due to etching damage and the thermal expansion amplitude. It can be seen that as the defect density increases, the thermal conductivity decreases and the thermal expansion amplitude increases. Considering the noise amplitude, from the change of the thermal expansion amplitude value to the change of the defect density to the defect density of the order of about 10 9 defects / cm 2 in the high sensitivity mode, and about 10 in the high speed mode.
It is possible to discriminate up to a defect density of about 10 / cm 2 .
【0063】図9に、シリコンウェハの結晶欠陥分布を
画像化した例を示す。試料は、ウェハ上に部分的にAr
イオンを加速エネルギー300keV、電流密度10m
A/cm2の条件下で、1015個/cm2打ち込んで結晶
欠陥を局所形成したものを用いた。同図(b)に示すよ
うに表面反射率がほとんど変わらない欠陥領域が、同図
(a)に示す熱膨張振幅画像において、明瞭に顕在化さ
れているのが判る。これは、欠陥領域では熱伝導率が低
下しているため、表面温度が上昇し、熱膨張変位が増加
することに起因するものである。この時の検出時間は、
高速モードにて4μs/画素、1画面あたり0.26s
であり、点走査検出に基づく従来法の約1/100,0
00であった。尚、並列励起に伴う水平、垂直方向の分
解能の差はみられなかった。FIG. 9 shows an example of imaging the crystal defect distribution of a silicon wafer. The sample is partially Ar on the wafer.
Ion acceleration energy 300 keV, current density 10 m
A crystal defect was locally formed by implanting 10 15 pieces / cm 2 under the condition of A / cm 2 . In the thermal expansion amplitude image shown in FIG. 9A, it can be seen that the defect region where the surface reflectance hardly changes as shown in FIG. This is because the thermal conductivity is lowered in the defect area, so that the surface temperature is increased and the thermal expansion displacement is increased. The detection time at this time is
4μs / pixel in high-speed mode, 0.26s per screen
And about 1 / 100,0 of the conventional method based on point scanning detection
It was 00. No difference in horizontal and vertical resolution was observed with parallel excitation.
【0064】以上述べたように、本実施例によれば、従
来の光熱変位法のように、1点ずつ励起と検出を繰り返
す点走査方式でなく、直線状ビームを用いた並列励起・
並列光干渉法により、複数の測定点を同時に励起し、各
点で生じた熱膨張変位を光干渉により同時に検出するこ
とにより、試料表面及び内部の2次元情報を高速に検出
することが可能になる。As described above, according to the present embodiment, the parallel excitation / excitation using the linear beam is used instead of the point scanning method in which excitation and detection are repeated point by point as in the conventional photothermal displacement method.
Two-dimensional information on the sample surface and inside can be detected at high speed by exciting multiple measurement points at the same time by parallel optical interferometry and simultaneously detecting the thermal expansion displacement generated at each point by optical interference. Become.
【0065】また、従来のロックインアンプのような同
期検波法でなく、CCDセンサの蓄積効果を利用したサ
ンプリング周波数変換法を用いることにより、CCDセ
ンサで検出されたに干渉信号から熱膨張信号の抽出が可
能となり、並列励起・並列光干渉法と併せて、高速検出
と高感度検出を同時に達成することが可能となる。Further, by using the sampling frequency conversion method utilizing the accumulation effect of the CCD sensor instead of the synchronous detection method such as the conventional lock-in amplifier, the thermal expansion signal from the interference signal detected by the CCD sensor can be changed. Extraction becomes possible, and high-speed detection and high-sensitivity detection can be achieved at the same time, together with parallel excitation / parallel optical interferometry.
【0066】また、上記並列光干渉法を共通光路形干渉
計で構成することにより、光路のゆらぎやステージ振動
の影響が相殺でき、試料の連続走査が可能となり、大幅
な高速化と高感度化が可能になる。Further, by configuring the parallel optical interferometry with a common optical path type interferometer, the effects of fluctuations in the optical path and stage vibrations can be canceled out, and continuous scanning of the sample becomes possible, resulting in significant speedup and high sensitivity. Will be possible.
【0067】また、試料表面の反射率分布の影響を補正
した形で熱膨張振幅が、また、試料表面の凹凸分布を補
正した形で熱膨張位相が、各々得られるため、高精度、
高感度な検出が可能となる。Further, since the thermal expansion amplitude is obtained by correcting the influence of the reflectance distribution on the sample surface, and the thermal expansion phase is obtained by correcting the uneven distribution on the sample surface, high accuracy,
Highly sensitive detection is possible.
【0068】また、光熱効果もしくは光音響効果に基づ
く熱拡散長が検査対象である内部界面の深さと同じか、
もしくはそれを越える長さとなるように、励起光の強度
変調周波数を設定することにより、任意の内部界面及び
任意深さの検査が可能になる。Whether the thermal diffusion length based on the photothermal effect or the photoacoustic effect is the same as the depth of the internal interface to be inspected,
Alternatively, by setting the intensity modulation frequency of the excitation light so that the length becomes longer than that, it is possible to inspect an arbitrary internal interface and an arbitrary depth.
【0069】以上により、従来法では困難であった実用
レベルでの光熱変位法の2次元画像計測への適用が可能
となり、光熱変位法が本来有する高感度検出能力を活か
した新たな応用分野が拡がる。即ち、半導体デバイスの
結晶欠陥や、イオンドーズ量等の面内分布、電子回路基
板の配線層の剥離、面発光レーザの結晶欠陥や不純物の
面内分布等各種分野での2次元評価・計測が可能とな
る。As described above, the photothermal displacement method can be applied to the two-dimensional image measurement at a practical level, which was difficult with the conventional method, and a new application field utilizing the high-sensitivity detection capability originally possessed by the photothermal displacement method is provided. spread. That is, two-dimensional evaluation / measurement in various fields such as crystal defects of semiconductor devices, in-plane distribution of ion dose amount, peeling of wiring layer of electronic circuit board, in-plane distribution of crystal defects of surface emitting laser and impurities. It will be possible.
【0070】[0070]
【発明の効果】本発明によれば、複数の測定点を同時に
励起し、各点で生じた熱膨張変位を光干渉により同時に
検出することにより、試料表面及び内部の2次元情報を
高速に検出することが可能になるという大きな効果を有
する。According to the present invention, two-dimensional information on the sample surface and inside can be detected at high speed by simultaneously exciting a plurality of measurement points and simultaneously detecting the thermal expansion displacement generated at each point by optical interference. It has a great effect that it becomes possible to do.
【0071】また、CCDセンサの蓄積効果を利用した
サンプリング周波数変換法を用いることにより、CCD
センサで検出されたに干渉信号から熱膨張信号の抽出が
可能となり、並列励起・並列光干渉法と併せて、高速検
出と高感度検出を同時に達成することが可能となるとい
う効果を有する。Further, by using the sampling frequency conversion method utilizing the accumulation effect of the CCD sensor, the CCD
The thermal expansion signal can be extracted from the interference signal detected by the sensor, and it is possible to achieve high-speed detection and high-sensitivity detection simultaneously with the parallel excitation / parallel optical interference method.
【0072】また、上記並列光干渉法を共通光路形干渉
計で構成することにより、光路のゆらぎやステージ振動
の影響が相殺でき、試料の連続走査が可能となり、大幅
な高速化と高感度化が可能になるという効果を有す
る。。Further, by configuring the parallel optical interferometry with a common optical path type interferometer, the effects of optical path fluctuations and stage vibrations can be canceled out, and continuous scanning of the sample becomes possible, resulting in a significant increase in speed and sensitivity. Has the effect that it becomes possible. .
【0073】また、試料表面の反射率分布の影響を補正
した形で熱膨張振幅が、また、試料表面の凹凸分布を補
正した形で熱膨張位相が、各々得られるため、高精度、
高感度な検出が可能となるという効果を有する。Further, since the thermal expansion amplitude is obtained by correcting the influence of the reflectance distribution on the sample surface, and the thermal expansion phase is obtained by correcting the uneven distribution on the sample surface, high accuracy,
It has the effect of enabling highly sensitive detection.
【0074】また、光熱効果もしくは光音響効果に基づ
く熱拡散長が検査対象である内部界面の深さと同じか、
もしくはそれを越える長さとなるように、励起光の強度
変調周波数を設定することにより、任意の内部界面及び
任意深さの検査が可能になるという効果を有する。Whether the thermal diffusion length based on the photothermal effect or the photoacoustic effect is the same as the depth of the internal interface to be inspected,
Alternatively, by setting the intensity modulation frequency of the excitation light so that the length exceeds it, it is possible to inspect an arbitrary internal interface and an arbitrary depth.
【図1】本発明における並列励起・並列光干渉法の基本
原理を示す図である。FIG. 1 is a diagram showing a basic principle of parallel excitation / parallel optical interferometry in the present invention.
【図2】本発明における高速化の基本コンセプトを示す
図である。FIG. 2 is a diagram showing a basic concept of speeding up in the present invention.
【図3】本発明におけるサンプリング周波数変換法の基
本原理を示す図である。FIG. 3 is a diagram showing a basic principle of a sampling frequency conversion method according to the present invention.
【図4】本発明の実施例における光熱変位画像検出装置
の全体構成を示す斜視図である。FIG. 4 is a perspective view showing an overall configuration of a photothermal displacement image detection device according to an embodiment of the present invention.
【図5】光熱変位画像検出装置の共通光路形干渉計の構
成を示す図である。FIG. 5 is a diagram showing a configuration of a common optical path type interferometer of the photothermal displacement image detection device.
【図6】光熱変位画像検出装置の信号入力回路、信号処
理回路、信号制御回路の全体構成を示す図である。FIG. 6 is a diagram showing an overall configuration of a signal input circuit, a signal processing circuit, and a signal control circuit of the photothermal displacement image detection device.
【図7】本発明の実施例において測定された、検出時間
と最小検出熱膨張振幅との関係を示す図である。FIG. 7 is a diagram showing the relationship between the detection time and the minimum detected thermal expansion amplitude measured in the example of the present invention.
【図8】本発明の実施例において測定された、シリコン
ウェハに生じた結晶欠陥密度(不純物濃度換算)と熱膨
張振幅との関係を示す図である。FIG. 8 is a diagram showing a relationship between a crystal defect density (converted to an impurity concentration) generated in a silicon wafer and a thermal expansion amplitude measured in an example of the present invention.
【図9】本発明の実施例において測定された、シリコン
ウェハの結晶欠陥分布の画像化例を示す図である。FIG. 9 is a diagram showing an example of imaging a crystal defect distribution of a silicon wafer measured in an example of the present invention.
【図10】従来の光熱変位法の構成を示す図である。FIG. 10 is a diagram showing a configuration of a conventional photothermal displacement method.
1、11、34…強度変調光、4、14…熱膨張変位、
15、41…レーザ光、17…複屈折素子、18…プロ
ーブ光、19…参照光、20、52…干渉光、21、5
3…1次元CCDセンサ、30…半導体レーザ、36…
対物レンズ、39…He−Neレーザ、40…光周波数
シフタ、44…シリンドリカルレンズ、46…サバール
板、55…信号入力回路、56…信号処理回路、57…
信号制御回路、58…計算機、71…ALU、72…1
次元メモリ、73…2次元メモリ。1, 11, 34 ... Intensity modulated light, 4, 14 ... Thermal expansion displacement,
15, 41 ... Laser light, 17 ... Birefringent element, 18 ... Probe light, 19 ... Reference light, 20, 52 ... Interference light, 21, 5
3 ... One-dimensional CCD sensor, 30 ... Semiconductor laser, 36 ...
Objective lens, 39 ... He-Ne laser, 40 ... Optical frequency shifter, 44 ... Cylindrical lens, 46 ... Savart plate, 55 ... Signal input circuit, 56 ... Signal processing circuit, 57 ...
Signal control circuit, 58 ... Calculator, 71 ... ALU, 72 ... 1
Dimensional memory, 73 ... Two-dimensional memory.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 イラリオ 治臣 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Irario Kobayashi Haruomi, 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Stock Engineering Co., Ltd.
Claims (14)
変調した光を試料表面の複数の測定点に照射して、該複
数の測定点の表面に周期的な熱膨張変位を発生させ、該
複数の測定点に他の光を照射してその反射光を光周波数
がfBだけ異なる参照光と干渉させ、生じた干渉光を各
測定点に対応した複数個の光電変換素子からなる検出器
で検出し、該検出した干渉光強度信号の中から、上記熱
膨張変位に基づく干渉光強度変化を光熱変位信号として
上記複数の測定点ごとに検出し、該光熱変位信号より試
料の複数の測定点の表面及び内部情報を検出することを
特徴とする光熱変位画像検出方法。1. A plurality of measurement points on a sample surface are irradiated with light whose intensity is modulated at a frequency f E set to be changeable to generate cyclic thermal expansion displacements on the surfaces of the plurality of measurement points. Other light is radiated to the plurality of measurement points to cause the reflected light to interfere with the reference light whose optical frequency differs by f B , and the generated interference light is detected by a plurality of photoelectric conversion elements corresponding to the respective measurement points. Detected by the detector, from the detected interference light intensity signal, the interference light intensity change based on the thermal expansion displacement is detected as a photothermal displacement signal at each of the plurality of measurement points, and a plurality of samples of the sample are obtained from the photothermal displacement signal. A photothermal displacement image detection method characterized by detecting the surface and internal information of a measurement point.
定点に照射する方法は、該強度変調した光を試料上で連
続的な直線形状を成すビームとして構成することによっ
て実現することを特徴とするする請求項1記載の光熱変
位画像検出方法。2. The method of irradiating a plurality of measurement points on the sample surface with the intensity-modulated light is realized by forming the intensity-modulated light as a beam having a continuous linear shape on the sample. The photothermal displacement image detection method according to claim 1, which is characterized in that:
出することを特徴とする請求項1記載の光熱変位画像検
出方法。3. The photothermal displacement image detection method according to claim 1, wherein the interference light is integrated and detected by the detector.
個の光電変換素子から時系列的に1次元信号として出力
することを特徴とする請求項1記載の光熱変位画像検出
方法。4. The photothermal displacement image detection method according to claim 1, wherein the interference light intensity signal from the detector is output as a one-dimensional signal in time series from a plurality of photoelectric conversion elements.
1:8pv−1、または8p:8pu−1:8pv+1
(p、u、v:0以外の任意整数)の一定整数比に制御
された状態で、上記検出器の各光電変換素子ごとに、1
/fSの時間周期で複数回に亘って積分検出された複数
個の積分検出データから、上記熱膨張変位に基づく干渉
光強度変化を光熱変位信号として上記複数の測定点ごと
に検出することを特徴とする請求項3記載の光熱変位画
像検出方法。5. The frequencies f S , f B and f E are 8p: 8pu +.
1: 8pv-1, or 8p: 8pu-1: 8pv + 1
One (1) for each photoelectric conversion element of the detector under the control of a constant integer ratio of (p, u, v: any integer other than 0).
It is possible to detect a change in interference light intensity based on the thermal expansion displacement as a photothermal displacement signal for each of the plurality of measurement points from a plurality of integral detection data that are integrated and detected a plurality of times in a time period of / f S. The photothermal displacement image detection method according to claim 3, characterized in that
た光の照射点から、概ね熱拡散長、もしくはそれ以上離
れた位置に照射することを特徴とする請求項1記載の光
熱変位画像検出方法。6. The photothermal displacement according to claim 1, wherein the reference light is radiated on the sample at a position approximately distant from the irradiation point of the intensity-modulated light by a thermal diffusion length or more. Image detection method.
くは光音響効果に基づく熱拡散長が上記試料の被測定内
部界面の深さとほぼ同じか、もしくはそれを越える長さ
となるように設定することを特徴とする請求項1記載の
光熱変位画像検出方法。7. The intensity modulation frequency f E is set so that the thermal diffusion length based on the photothermal effect or the photoacoustic effect is substantially the same as or longer than the depth of the measured internal interface of the sample. The photothermal displacement image detection method according to claim 1, wherein
定された周波数fEで強度変調する強度変調手段と、該
強度変調した光を試料表面の複数の測定点に照射して、
該複数の測定点の表面に周期的な熱膨張変位を発生させ
る励起手段と、上記複数の測定点に他の光を照射してそ
の反射光を光周波数がfBだけ異なる参照光と干渉させ
る干渉光生成手段と、生じた干渉光を、試料表面と共役
の関係にあり、且つ上記各測定点に対応した複数個の光
電変換素子から成る検出器で検出する干渉光検出手段
と、該検出した干渉光強度信号の中から、上記熱膨張変
位に基づく干渉光強度変化を光熱変位信号として上記複
数の測定点ごとに検出し、該光熱変位信号より試料の複
数の測定点の表面及び内部情報を検出する情報検出手段
と、該表面及び内部情報の格納手段及び表示手段とを備
えたことを特徴とする光熱変位画像検出装置。8. A light source, intensity modulation means for intensity-modulating the light from the light source at a frequency f E set to be changeable, and the intensity-modulated light is applied to a plurality of measurement points on a sample surface,
Excitation means for generating periodic thermal expansion displacements on the surfaces of the plurality of measurement points, and other light irradiating the plurality of measurement points so that the reflected light interferes with the reference light whose optical frequency differs by f B. Interference light generation means, interference light detection means for detecting the generated interference light with a detector having a conjugate relationship with the sample surface and comprising a plurality of photoelectric conversion elements corresponding to the respective measurement points, and the detection From the interference light intensity signal, the interference light intensity change based on the thermal expansion displacement is detected for each of the plurality of measurement points as a photothermal displacement signal, and the surface and internal information of the plurality of measurement points of the sample from the photothermal displacement signal. A photothermal displacement image detection device, comprising: an information detection unit for detecting the above; and a storage unit and a display unit for the surface and internal information.
定点に照射する手段は、該強度変調した光を試料上で連
続的な直線形状を成すビームとして構成することによっ
て実現することを特徴とする請求項8記載の光熱変位画
像検出装置。9. The means for irradiating the plurality of measurement points on the sample surface with the intensity-modulated light is realized by configuring the intensity-modulated light as a beam having a continuous linear shape on the sample. The photothermal displacement image detection device according to claim 8.
光電変換素子で構成したことを特徴とする請求項8記載
の光熱変位画像検出装置。10. A photothermal displacement image detecting apparatus according to claim 8, wherein the detector of said interference light detecting means is constituted by a storage type photoelectric conversion element.
数個の光電変換素子から時系列的に1次元信号として出
力することを特徴とする請求項8記載の光熱変位画像検
出装置。11. The photothermal displacement image detection device according to claim 8, wherein the interference light intensity signal from the detector is output as a one-dimensional signal in a time series from a plurality of photoelectric conversion elements.
+1:8pv−1、または8p:8pu−1:8pv+
1(p、u、v:0以外の任意整数)の一定整数比に制
御された状態として発生した上、必要部位に供給する制
御信号発生手段と、上記検出器の各光電変換素子ごと
に、1/fSの時間周期で複数回に亘って積分検出され
た複数個の積分検出データから、上記熱膨張変位に基づ
く干渉光強度変化を光熱変位信号として上記複数の測定
点ごとに検出し、該光熱変位信号より試料の複数の測定
点の表面及び内部情報を検出する情報検出手段とを備え
たことを特徴とする請求項10記載の光熱変位画像検出
装置。12. The frequencies f S , f B and f E are set to 8p: 8pu.
+1: 8pv-1, or 8p: 8pu-1: 8pv +
1 (p, u, v: an arbitrary integer other than 0) is generated in a state of being controlled to a constant integer ratio, and is supplied to a necessary portion with control signal generating means, and each photoelectric conversion element of the detector, From a plurality of integral detection data integrated and detected a plurality of times at a time period of 1 / f S, the interference light intensity change based on the thermal expansion displacement is detected as a photothermal displacement signal for each of the plurality of measurement points, 11. The photothermal displacement image detection device according to claim 10, further comprising information detecting means for detecting the surface and internal information of a plurality of measurement points of the sample from the photothermal displacement signal.
射点から、概ね熱拡散長、もしくはそれ以上離れた位置
に照射することを特徴とする請求項8記載の光熱変位画
像検出装置。13. The photothermal displacement image detecting apparatus according to claim 8, wherein the reference light is irradiated at a position approximately distant from the irradiation point of the intensity-modulated light by a thermal diffusion length or more.
しくは光音響効果に基づく熱拡散長が上記試料の被測定
内部界面の深さとほぼ同じか、もしくはそれを越える長
さとなるように設定することを特徴とする請求項8記載
の光熱変位画像検出装置。14. The intensity modulation frequency f E is set so that the thermal diffusion length based on the photothermal effect or the photoacoustic effect is substantially the same as or longer than the depth of the measured internal interface of the sample. 9. The photothermal displacement image detection device according to claim 8, wherein:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21442495A JPH0961386A (en) | 1995-08-23 | 1995-08-23 | Method for detecting photothermally displaced image and device therefor |
US08/548,015 US5781294A (en) | 1991-12-24 | 1995-10-25 | Method and apparatus for detecting photoacoustic signal to detect surface and subsurface information of the specimen |
PCT/JP1996/002356 WO1997008541A1 (en) | 1995-08-23 | 1996-08-23 | Method and apparatus for detecting optical thermal displacement image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21442495A JPH0961386A (en) | 1995-08-23 | 1995-08-23 | Method for detecting photothermally displaced image and device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0961386A true JPH0961386A (en) | 1997-03-07 |
Family
ID=16655567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21442495A Pending JPH0961386A (en) | 1991-12-24 | 1995-08-23 | Method for detecting photothermally displaced image and device therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH0961386A (en) |
WO (1) | WO1997008541A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007294518A (en) * | 2006-04-21 | 2007-11-08 | Hitachi Cable Ltd | Nitride semiconductor substrate and its manufacturing method and epitaxial substrate for nitride semiconductor light-emitting device |
WO2022264362A1 (en) * | 2021-06-17 | 2022-12-22 | 株式会社島津製作所 | Defect inspection system, defect inspection device, and defect inspection method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3495069B2 (en) * | 1993-12-03 | 2004-02-09 | 株式会社日立製作所 | Photothermal displacement signal detection method and device |
-
1995
- 1995-08-23 JP JP21442495A patent/JPH0961386A/en active Pending
-
1996
- 1996-08-23 WO PCT/JP1996/002356 patent/WO1997008541A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007294518A (en) * | 2006-04-21 | 2007-11-08 | Hitachi Cable Ltd | Nitride semiconductor substrate and its manufacturing method and epitaxial substrate for nitride semiconductor light-emitting device |
WO2022264362A1 (en) * | 2021-06-17 | 2022-12-22 | 株式会社島津製作所 | Defect inspection system, defect inspection device, and defect inspection method |
Also Published As
Publication number | Publication date |
---|---|
WO1997008541A1 (en) | 1997-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5781294A (en) | Method and apparatus for detecting photoacoustic signal to detect surface and subsurface information of the specimen | |
US6753968B2 (en) | Optical storage system based on scanning interferometric near-field confocal microscopy | |
US5479259A (en) | Method and apparatus for detecting photoacoustic signal | |
US20150276864A1 (en) | Dual-phase interferometry for charge modulation mapping in ics | |
Sandoz et al. | In-plane rigid-body vibration mode characterization with a nanometer resolution by stroboscopic imaging of a microstructured pattern | |
JP3379180B2 (en) | Photoacoustic signal detection method and device | |
JPH0961386A (en) | Method for detecting photothermally displaced image and device therefor | |
JP3200902B2 (en) | Photoacoustic signal detection method and apparatus | |
US5754298A (en) | Method and apparatus for imaging semiconductor device properties | |
US7061620B2 (en) | Method and apparatus for three-dimensional object detection | |
Wickramasinghe et al. | Optical heterodyne techniques for photoacoustic and photothermal detection | |
Chang et al. | Vibration amplitude range enhancement method for a heterodyne interferometer | |
JP3254465B2 (en) | Photothermal displacement signal detection method and device | |
JP3495069B2 (en) | Photothermal displacement signal detection method and device | |
JP3264450B2 (en) | Method and apparatus for measuring electric field on photoreceptor surface | |
JP3130708B2 (en) | Sample defect evaluation method | |
US5796482A (en) | Apparatus/method for optical measuring a physical amount of a specific component contained in a substance | |
US8326558B2 (en) | Method of analyzing an integrated circuit, method of observation and their associated installations | |
Nakata et al. | A charge-coupled-device-based heterodyne technique for parallel photodisplacement imaging | |
JPH08278250A (en) | Method and apparatus for detection of photothermal signal | |
JP3454268B2 (en) | Method and apparatus for detecting surface or internal information of sample | |
Ryan et al. | Scanning heterodyne micro-interferometer for high resolution contour mapping | |
JP3353316B2 (en) | Method and apparatus for detecting surface or internal information of sample | |
JP3201046B2 (en) | Photoacoustic signal detection method and apparatus | |
JP2011080960A (en) | Semiconductor inspection device |