[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0961351A - Moisture content detecting device, moisture content measuring method, and its device - Google Patents

Moisture content detecting device, moisture content measuring method, and its device

Info

Publication number
JPH0961351A
JPH0961351A JP550696A JP550696A JPH0961351A JP H0961351 A JPH0961351 A JP H0961351A JP 550696 A JP550696 A JP 550696A JP 550696 A JP550696 A JP 550696A JP H0961351 A JPH0961351 A JP H0961351A
Authority
JP
Japan
Prior art keywords
light
moisture content
light emitting
light receiving
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP550696A
Other languages
Japanese (ja)
Other versions
JP3423518B2 (en
Inventor
Hiroshi Hanzawa
博 半沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP00550696A priority Critical patent/JP3423518B2/en
Publication of JPH0961351A publication Critical patent/JPH0961351A/en
Application granted granted Critical
Publication of JP3423518B2 publication Critical patent/JP3423518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a moisture content detecting device capable of being miniaturized at a low cost and stably detecting the moisture content of a detection object in no n-contact state even when the environment is changed. SOLUTION: A detection object 12 is irradiated with light from multiple light-emitting sections 2, 3 having different light wavelengths in order, and the reflected light from the detection object 12 is received by a light reception section 4. Multiple reception signals are sent to a controller 8 from the light reception section 4 based on the sequential light-emitting actions of multiple light-emitting sections 2, 3, and the moisture content of the detection object 12 is judged based on the value set in advance via the comparison of multiple reception signals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は検知対象の含水分
を検知する含水分検知装置・測定対象の含水分を測定す
る含水分測定方法および、この方法を実施するための含
水分測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moisture content detection device for detecting moisture content of a detection target, a moisture content measurement method for measuring moisture content of a measurement target, and a moisture content measurement device for carrying out this method.

【0002】[0002]

【従来の技術】水は多くの物に含まれており、「含水
分」即ち「含まれる水分量」により物の物理的・化学的
性質が変化したりするので、製品の品質管理や種々の工
程管理等において、含水分検出や含水分測定が必要にな
ることが多い。
2. Description of the Related Art Water is contained in many things, and the physical and chemical properties of the material change depending on the "moisture content", that is, the "content of water content". In process control and the like, it is often necessary to detect and measure water content.

【0003】例えば、複写機やプリンタ、ファクシミリ
等の静電写真方式の画像形成装置においてトナー画像を
転写される転写紙は、その含水分により電気抵抗が変化
するので、良好なトナー画像転写を行なうには、その含
水分が適当な領域に維持される必要がある。転写紙の含
水分としては4〜8%が好適であり、10%以上になる
とトナー像の転写・分離の効率低下や、給紙ミス、定着
装置でのシワ発生やトナー像未定着の原因となる。また
転写紙の含水分が2%以下では、転写に伴い転写紙に付
与される電荷が、導電性の部材との間で放電してトナー
画像に乱れを生じる原因となる。
For example, a transfer paper on which a toner image is transferred in an electrophotographic image forming apparatus such as a copying machine, a printer or a facsimile changes its electric resistance due to its water content, so that a good toner image transfer is performed. The water content must be maintained in an appropriate area. The moisture content of the transfer paper is preferably 4 to 8%, and if it is 10% or more, the efficiency of transfer / separation of the toner image may decrease, a paper feed error may occur, wrinkles may occur in the fixing device, or the toner image may not be fixed. Become. Further, when the water content of the transfer paper is 2% or less, the electric charge applied to the transfer paper during the transfer is discharged between the transfer paper and the conductive member, which causes disturbance in the toner image.

【0004】従来、含水分検知装置としては「検知対象
に光を照射する発光部と、検知対象からの反射光を受光
する受光部と、発光部側と受光部側とのどちらかに設け
られたフィルタとからなる検知装置をペアで設け、各検
知装置のフィルタが異なる波長の光を通すように構成し
たもの」や「検知対象に光を照射する発光部と、検知対
象からの反射光を受光する受光部と、発光部と受光部と
の間に挿入されるフィルタとを有し、波長の異なる光に
よる計測毎にフィルタを交換するように構成したもの」
がある。
[0004] Conventionally, a moisture content detecting device is "provided with a light emitting section for irradiating a detection target with light, a light receiving section for receiving reflected light from the detection target, and either the light emitting section side or the light receiving section side. A pair of detectors consisting of a filter and the filters of the detectors are configured to pass light of different wavelengths "or" a light emitting unit that irradiates the detection target with light and a reflected light from the detection target. It has a light receiving part that receives light and a filter that is inserted between the light emitting part and the light receiving part, and the filter is replaced every time measurement is performed with light of different wavelengths. "
There is.

【0005】しかしフィルタを計測毎に交換する含水分
検知装置は、フィルタ交換のために計測に時間がかかり
やすい。検知装置をペアで設けた含水分検知装置は、検
知装置の部品がペアで必要になり、部品数の増加により
コスト高となるとともに、装置の小型化に不向きであ
る。
However, the moisture content detecting device, in which the filter is replaced every time the measurement is performed, tends to take a long time for the measurement because the filter is replaced. The moisture-containing detection device in which the detection devices are provided in pairs requires parts of the detection devices in pairs, which increases cost due to an increase in the number of parts and is not suitable for downsizing of the device.

【0006】含水分を測定する方法としては、水に吸収
されやすい波長の赤外光と、水に吸収されにくい波長の
赤外光とを被検物に順次照射して、各赤外光の反射強度
から含水分を検出する方法があり、この方法を実施する
装置も知られている(特開昭55−29726号公報、
特開平3−115838号公報、特開平3−23114
0号公報)。
As a method of measuring the water content, infrared light having a wavelength that is easily absorbed by water and infrared light having a wavelength that is difficult to be absorbed by water are sequentially irradiated to the test object, and each infrared light There is a method of detecting the water content from the reflection intensity, and an apparatus for carrying out this method is also known (JP-A-55-29726,
JP-A-3-115838, JP-A-3-23114
No. 0).

【0007】特開昭55ー29726号公報は「2つの
異なる吸収波長と比較波長の組を用いて粉体の含水分を
測定し、この両測定結果から予め求めておいた式より実
含水分を求める水分測定方法」を開示しており、特開平
3ー115838号公報は、1つの赤外線吸収波長と2
つの赤外線比較波長を用いる含水分測定において「2つ
の赤外線比較波長の何れをも、赤外線吸収波長より短波
長側もしくは長波長側にとり、該2つの赤外線比較波長
によって得られる信号を外挿することにより、赤外線吸
収波長の信号に含まれる対象物質の水分以外の要因に起
因した信号成分を補正することにより含水分を正確に測
定する水分測定方法」を開示している。
Japanese Unexamined Patent Publication No. 55-29726 discloses that "the moisture content of a powder is measured using two different absorption wavelengths and a pair of comparison wavelengths, and the actual moisture content is calculated from a formula previously obtained from these measurement results. The method for determining the water content is disclosed in Japanese Patent Application Laid-Open No. 3-115838.
In the moisture content measurement using one infrared comparison wavelength, “either of the two infrared comparison wavelengths is set to a shorter wavelength side or a longer wavelength side than the infrared absorption wavelength, and the signal obtained by the two infrared comparison wavelengths is extrapolated. , A moisture measuring method for accurately measuring moisture content by correcting a signal component caused by factors other than moisture of a target substance included in a signal of an infrared absorption wavelength.

【0008】上記各公報開示の含水分測定方法は、測定
対象に照射する波長の異なる赤外光を得るのに、共通の
光源からの光を「複数のフィルターを有するターレット
式のセクタ」を回転させて波長分離することによって行
なっており、装置内に可動部を含むため装置全体が大型
化しやすく、測定の高速化も困難である。
In the moisture content measuring method disclosed in each of the above publications, in order to obtain infrared light having different wavelengths for irradiating an object to be measured, light from a common light source is rotated in a "turret type sector having a plurality of filters". This is performed by separating the wavelengths, and since the apparatus includes a movable part, the size of the entire apparatus tends to increase, and it is difficult to increase the measurement speed.

【0009】また測定を開始するに先立って「0点校正
等の準備的な操作」が必要であり、測定の能率が悪い。
さらに不可視の赤外光が使用されるため、被検物のどの
部分に光照射されているのかを目視で確認できず、測定
の作業性が悪い。
Further, "preparatory operation such as zero-point calibration" is required before starting the measurement, and the measurement efficiency is poor.
Further, since invisible infrared light is used, it is not possible to visually confirm which part of the test object is irradiated with light, and the workability of measurement is poor.

【0010】[0010]

【発明が解決しようとする課題】この発明は上述した事
情に鑑み、含水分検知装置において、小型化・低コスト
化を可能ならしめ、検知対象の含水分を非接触で、また
環境変化があっても安定して検知することを課題とする
(請求項1〜3)。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, the present invention makes it possible to reduce the size and cost of a moisture content detection device, to contact the moisture content to be detected without changing the environment. However, it is an object to perform stable detection (claims 1 to 3).

【0011】この発明の別の課題は、簡易・迅速に精度
の良い含水分を測定できる近赤外光による含水分測定方
法の実現にある(請求項4)。
Another object of the present invention is to realize a method for measuring water content by near infrared light, which can easily and quickly measure water content with high accuracy (claim 4).

【0012】この発明の他の課題は、簡易・迅速に精度
の良い含水分を測定できる近赤外光による含水分測定装
置の実現にある(請求項5〜10)。
Another object of the present invention is to realize a moisture content measuring apparatus using near infrared light capable of measuring moisture content easily and quickly with high accuracy (claims 5 to 10).

【0013】[0013]

【課題を解決するための手段】請求項1記載の含水分検
知装置は「検知対象に順次に光を照射する、発光波長の
異なる複数の発光部と、検知対象からの反射光を受光す
る受光部とを有する含水分検知装置」であって、以下の
点を特徴とする。
According to a first aspect of the present invention, there is provided a moisture-containing detector, comprising: "a plurality of light emitting portions having different emission wavelengths for sequentially irradiating a detection target with light, and a light receiving device for receiving reflected light from the detection target. And a moisture-containing detector ”, which is characterized by the following points.

【0014】即ち「複数の発光部の順次発光動作に基づ
いて受光部から複数の受光信号を取り込み、この複数の
受光信号の比較から予め設定された値をもとに検知対象
の含水分を判断する制御部を備えた」ことである。
That is, "a plurality of light receiving signals are fetched from the light receiving portion based on the sequential light emitting operation of the plurality of light emitting portions, and the moisture content to be detected is determined based on a preset value by comparing the plurality of light receiving signals. It is equipped with a control unit that

【0015】即ち、請求項1記載の発明においては、発
光波長の異なる複数の発光部が検知対象に順次に光を照
射し、受光部が検知対象からの反射光を受光する。制御
部は、複数の発光部の順次発光動作に基づいて受光部か
ら複数の受光信号を取り込み、この複数の受光信号の比
較から予め設定された値をもとに検知対象の含水分を判
断する。
That is, according to the first aspect of the present invention, the plurality of light emitting units having different emission wavelengths sequentially irradiate the detection target with light, and the light receiving unit receives the reflected light from the detection target. The control unit takes in a plurality of light receiving signals from the light receiving unit based on the sequential light emitting operation of the plurality of light emitting units, and judges the moisture content of the detection target based on a preset value by comparing the plurality of light receiving signals. .

【0016】「予め設定された値」は、受光信号の比較
と含水分との関係を与える情報や、検知対象における含
水分の適値範囲等に関連した情報である。
The "preset value" is information that gives a relationship between comparison of received light signals and moisture content, and information relating to an appropriate value range of moisture content in a detection target.

【0017】請求項2記載の含水分検知装置は、複数の
発光部と、受光部とを有する。
A moisture content detecting device according to a second aspect has a plurality of light emitting portions and a light receiving portion.

【0018】「複数の発光部」は、発光波長が互いに異
なり、検知対象に順次に光を照射するためのものであっ
て「受光部の分光感度の長波長側の1.45μmに分光
発光強度のピークを持つ発光部」と「受光部の分光感度
の短波長側に分光発光強度のピークを持つ発光部」とを
有する。
The "plurality of light emitting portions" have different emission wavelengths, and are for sequentially irradiating the detection target with light. "Spectral emission intensity is 1.45 .mu.m on the long wavelength side of the spectral sensitivity of the light receiving portion." And a “light emitting portion having a peak of spectral emission intensity on the short wavelength side of the spectral sensitivity of the light receiving portion”.

【0019】「受光部」は、検知対象からの反射光を受
光する。
The "light receiving section" receives the reflected light from the detection target.

【0020】「複数の発光部における各発光部」と受光
部とは所定の角度で配置され、複数の発光部および受光
部の出力、即ち「各発光部の発光強度および受光部の受
光出力」は外部入力により設定可能である。
"Each light emitting portion of the plurality of light emitting portions" and the light receiving portion are arranged at a predetermined angle, and the outputs of the plurality of light emitting portions and the light receiving portion, that is, "emission intensity of each light emitting portion and light receiving output of the light receiving portion". Can be set by external input.

【0021】即ち、請求項2記載の発明においては、発
光波長の異なる複数の発光部は、受光部の分光感度の長
波長側の1.45μmに分光発光強度のピークを持つ発
光部と、受光部の分光感度の短波長側、例えば0.80
μm以下に分光発光強度のピークを持つ発光部とを有
し、検知対象に順次に光を照射する。受光部と複数の発
光部とは「所定の角度」で配置されていて受光部が検知
対象からの反射光を受光し、複数の発光部及び受光部の
出力は外部入力により設定可能である。
That is, in the second aspect of the present invention, the plurality of light emitting portions having different emission wavelengths include a light emitting portion having a peak of spectral emission intensity at 1.45 μm on the long wavelength side of the spectral sensitivity of the light receiving portion, and a light receiving portion. Wavelength side of the spectral sensitivity of the part, for example 0.80
It has a light emitting portion having a peak of spectral emission intensity at μm or less, and sequentially irradiates the detection target with light. The light receiving unit and the plurality of light emitting units are arranged at a “predetermined angle”, the light receiving unit receives the reflected light from the detection target, and the outputs of the plurality of light emitting units and the light receiving units can be set by an external input.

【0022】請求項3記載の含水分検知装置は、発光部
と、受光部と、制御部とを有する。
A moisture content detector according to a third aspect of the present invention has a light emitting section, a light receiving section, and a control section.

【0023】「発光部」は、検知対象に光を照射する。The "light emitting section" irradiates the object to be detected with light.

【0024】「受光部」は、検知対象からの反射光を受
光する。
The "light receiving section" receives the reflected light from the detection target.

【0025】「制御部」は、発光部の発光動作に基づい
て受光部から受光信号を取り込んで記憶手段により記憶
し、この記憶手段で記憶した受光信号から予め設定され
た値をもとに検知対象の含水分を判断する。
The "control unit" takes in the light receiving signal from the light receiving unit based on the light emitting operation of the light emitting unit, stores it in the storage unit, and detects it based on a preset value from the light receiving signal stored in the storage unit. Determine the water content of the subject.

【0026】即ち請求項3記載の発明においては、発光
部が検知対象に光を照射し、受光部が検知対象からの反
射光を受光する。制御部は、発光部の発光動作に基づい
て受光部から受光信号を取り込んで記憶手段により記憶
し、記憶手段で記憶した受光信号から予め設定された値
をもとに検知対象の含水分を判断する。
That is, according to the third aspect of the invention, the light emitting unit irradiates the detection target with light, and the light receiving unit receives the reflected light from the detection target. The control unit takes in a light reception signal from the light receiving unit based on the light emitting operation of the light emitting unit and stores it in the storage unit, and determines the moisture content of the detection target based on the preset value from the light reception signal stored in the storage unit. To do.

【0027】請求項4記載の含水分測定方法は「水によ
る吸収度が互いに異なる波長もしくは波長域の2種以上
の近赤外光を、測定対象に対して順次照射し、測定対象
による反射光を受光手段により検出信号化し、測定対象
中の含水分に関するデータとして含水分測定を行う方
法」であり、以下の点を特徴とする。
The method for measuring water content according to claim 4 is that "the two or more kinds of near-infrared light having different wavelengths or wavelength ranges having different absorptions from water are sequentially irradiated to the measurement target, and the reflected light from the measurement target is measured. Is detected by the light receiving means, and the water content is measured as data regarding the water content in the measurement object. ”And is characterized by the following points.

【0028】k(≧2)個の発光源が用いられ、これら
k個の発光源は、一つ一つが「決まった波長もしくは波
長領域の近赤外光」を放射する。これらk個の発光源か
ら放射されるk種の近赤外光は、互いに水による「吸収
度」が異なる。
K (≧ 2) light emitting sources are used, and each of the k light emitting sources emits “near infrared light having a predetermined wavelength or wavelength range”. The k kinds of near-infrared light emitted from these k light emitting sources have different "absorption" by water.

【0029】k個の発光源から、それぞれの放射する近
赤外光が測定対象に照射され、測定対象による各反射光
は透過性の集光光学系により「単一の受光手段」に集光
される。受光手段の出力は間欠的に取り込まれ、k個の
発光源は受光手段の出力の取り込みに同期して順次発光
される。
Near-infrared light emitted from each of the k light-emitting sources is applied to a measurement object, and each reflected light from the measurement object is condensed on a "single light receiving means" by a transmissive condensing optical system. To be done. The output of the light receiving means is intermittently taken in, and the k light emitting sources emit light sequentially in synchronization with the taking in of the output of the light receiving means.

【0030】このようにして、受光手段の検出信号とし
て、何れの発光源も発光していない状態のときの検出信
号:PD0と、第j(1≦j≦k)番目の発光源が発光
しているときの検出信号:PDjとによる(1+k)個
の検出信号が、所定のn(≧2)回繰り返して発生さ
れ、その結果得られるn・(1+k)個の検出信号をデ
ータとするデータ処理により測定対象における含水分が
検出される。
In this way, as the detection signal of the light receiving means, the detection signal: PD 0 when none of the light emitting sources emit light and the jth (1≤j≤k) th light emitting source emits light. (1 + k) detection signals generated by PD j and PD j are generated repeatedly by a predetermined n (≧ 2) times, and the resulting n · (1 + k) detection signals are used as data. The water content in the measurement target is detected by the data processing.

【0031】請求項5記載の含水分測定装置は上記請求
項4記載の方法を実施するための装置であって、k個の
発光源と、単一の受光手段と、集光光学系と、制御処理
手段および表示手段を有する。
A moisture content measuring apparatus according to a fifth aspect is an apparatus for performing the method according to the fourth aspect, and comprises k light emitting sources, a single light receiving means, and a condensing optical system. It has a control processing means and a display means.

【0032】「k個の発光源」は、一つ一つが、決まっ
た波長もしくは波長領域の近赤外光を放射し、k個の発
光源から放射されるk種の近赤外光は互いに水による
「吸収度」が異なる。そしてこれらk個の発光源は、各
発光源からの近赤外光が測定対象に照射されるように配
備される。
Each of the "k light emitting sources" emits near-infrared light having a predetermined wavelength or wavelength range, and the k kinds of near-infrared light emitted from the k light emitting sources are mutually emitted. "Absorption" by water is different. The k light emitting sources are arranged so that the near infrared light from each light emitting source is applied to the measurement target.

【0033】「単一の受光手段」は、k種の赤外光の、
測定対象による反射光を共通に受光するための手段であ
る。
The "single light receiving means" is for k kinds of infrared light,
It is a means for commonly receiving the reflected light from the measurement object.

【0034】「集光光学系」は、透過性であって、測定
対象による各反射光を受光手段に集光させる。
The "collecting optical system" is transparent and collects each reflected light from the object to be measured on the light receiving means.

【0035】「制御処理手段」は、受光手段の検出信号
として、何れの発光源も発光していない状態のときの検
出信号:PD0と、第j(1≦j≦k)番目の発光源が
発光しているときの検出信号:PDjとによる(1+
k)個の検出信号を、所定のn(≧2)回繰り返して発
生させるように、受光手段の出力を間欠的に取り込み制
御しつつ、k個の発光源を受光手段の出力の取り込みに
同期して順次発光制御し、得られるn・(1+k)個の
検出信号をデータとするデータ処理を行ない、測定対象
における含水分を検出する。
The "control processing means" detects, as the detection signal of the light receiving means, the detection signal when no light emitting source emits light: PD 0 and the jth (1≤j≤k) light emitting source. Detection signal when is emitting light: PD j and (1+
The output of the light receiving means is controlled intermittently so that the k) detection signals are repeatedly generated for a predetermined n (≧ 2) times, and the k light emitting sources are synchronized with the output of the light receiving means. Then, light emission is sequentially controlled, data processing is performed using the obtained n · (1 + k) detection signals as data, and the moisture content in the measurement target is detected.

【0036】「表示手段」は、制御処理手段により検出
された含水分を表示する。
The "display means" displays the moisture content detected by the control processing means.

【0037】請求項4,5における「単一の受光手段」
は、互いに波長もしくは波長領域の異なるk種の近赤外
光を受光するのであるから、これらk種の近赤外光の全
てに感度を持つものでなければならないことは言うまで
もない。
"Single light receiving means" in claims 4 and 5
Needless to say, since K receives k types of near-infrared light having different wavelengths or wavelength regions from each other, it must have sensitivity to all of these k types of near-infrared light.

【0038】上記のように、請求項5記載の発明の含水
分測定装置においては、複数の発光源が用いられる。発
光源の数は「3以上」とすることもできるが、これを2
個とすることもできる。
As described above, in the moisture content measuring apparatus according to the fifth aspect of the invention, a plurality of light emitting sources are used. The number of light emitting sources can be "3 or more", but this is 2
It can be individual.

【0039】2個の発光源を用いる場合、これらの一方
を「1.45μmに分光発光強度のピークを持つ発光素
子」とし、他方を「1.4μm以下の近赤外領域に分光
発光強度のピークを持つ発光素子」とすることができる
(請求項6)。この請求項6記載の発明の場合、2個の
発光源を同一の樹脂ケース内に納めて「集光光学系の中
央部」に配備することができる(請求項7)。また、こ
れら請求項6または7記載の発明においては、他方の発
光源をなす発光素子、即ち「1.4μm以下の近赤外領
域に分光発光強度のピークを持つ発光素子」を「可視領
域にも分光強度を有するもの」とすることができる(請
求項8)。
When two light emitting sources are used, one of them is used as a “light emitting element having a peak of spectral emission intensity at 1.45 μm”, and the other is used as “a light emitting element having a spectral emission intensity in the near infrared region of 1.4 μm or less. A light emitting device having a peak "can be obtained (claim 6). In the case of the invention according to claim 6, the two light emitting sources can be housed in the same resin case and arranged in the "central part of the condensing optical system" (claim 7). Further, in the invention according to claim 6 or 7, the light emitting element which constitutes the other light emitting source, that is, "the light emitting element having the peak of the spectral emission intensity in the near infrared region of 1.4 μm or less" is set in the visible region. Also has a spectral intensity "(claim 8).

【0040】請求項5〜8の任意の1に記載の近赤外光
による含水分測定装置において、透過性の集光光学系と
しては「珪素系のレンズ」としても良いし(請求項
9)、あるいは「ホログラムレンズ」とすることもでき
る(請求項10)。
In the moisture content measuring apparatus using near infrared light according to any one of claims 5 to 8, the transparent condensing optical system may be a "silicon lens" (claim 9). Alternatively, it may be a "hologram lens" (claim 10).

【0041】上記「珪素系のレンズ」は、その形態とし
て、通常のレンズとすることもできるし「フレネルレン
ズ」とすることもできる。「ホログラムレンズ」は、k
種の波長域の近赤外光を単一の受光手段の位置に集光す
るように多重記録されたものでもよいし、レンズをk個
の領域に分け、個々の領域が所定の波長の近赤外光を単
一の受光手段位置に集光するように構成したものでもよ
い。
The above-mentioned "silicon-based lens" may be a normal lens or a "Fresnel lens" in its form. “Hologram lens” is k
It may be multiple-recorded so that near-infrared light of a certain wavelength region is condensed at the position of a single light-receiving means, or the lens is divided into k regions, and each region is near a predetermined wavelength. The infrared light may be configured to be condensed at a single light receiving unit position.

【0042】請求項4〜10の記載の含水分測定方法・
装置においては、測定対象に照射される複数種の近赤外
光は、異なる発光源を順次発光することにより、照射タ
イミングと波長とが順次ずらされる。また、測定の際に
は、何れの発光源も発光していない状態における受光手
段の出力:PD0がデータとして発生させられる。
A method for measuring water content according to any one of claims 4 to 10
In the apparatus, the plurality of types of near-infrared light with which the measurement target is irradiated are sequentially emitted from different light emission sources, so that the irradiation timing and the wavelength are sequentially shifted. Further, during the measurement, the output of the light receiving means: PD 0 in a state where no light emitting source emits light is generated as data.

【0043】[0043]

【発明の実施の形態】図1に請求項1〜3記載の発明の
実施の形態を示す。図示の形態は画像形成装置などに用
いられる含水分検知装置の例である。この含水分検知装
置1は、発光ダイオード(以下、LEDと略記する)か
らなる発光部2,3及び受光部4を有する検知装置5、
発光駆動回路6、増幅回路7、制御部8、入力部9、出
力部10及び表示部11を備え、検知位置におかれた検
知対象12の含水分を高含水分:100%から低含水
分:4%まで検知する。以下、説明の具体性のため、検
知対象12としてはトナー画像を転写されるべき「転写
紙」を想定する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the invention described in claims 1 to 3. The illustrated form is an example of a moisture content detection device used in an image forming apparatus or the like. The moisture content detection device 1 includes a detection device 5 having light emitting parts 2 and 3 and light receiving parts 4 each made of a light emitting diode (hereinafter abbreviated as an LED),
The light emission drive circuit 6, the amplification circuit 7, the control unit 8, the input unit 9, the output unit 10, and the display unit 11 are provided, and the moisture content of the detection target 12 placed at the detection position is high from 100% to low. : Detects up to 4%. Hereinafter, for the sake of concreteness of the description, the “transfer paper” to which the toner image is to be transferred is assumed as the detection target 12.

【0044】図2に示すように、LED2,3は互いに
分光発光強度が異なり、LED2は1.45μmに分光
発光強度のピークを持ち、LED3は0.80μm以
下、例えば0.72μmに分光発光強度のピークを持
つ。発光部2,3のうち比較波長帯の光を発光する発光
部は0.60〜0.80μmに分光発光強度のピークを
持つ発光部でもよい。受光部4は「InGaAs系の受
光素子」からなり、図2に示すように0.6〜1.7μ
mに「分光感度」を持つ。
As shown in FIG. 2, the LEDs 2 and 3 have different spectral emission intensities, the LED 2 has a peak of the spectral emission intensity at 1.45 μm, and the LED 3 has a spectral emission intensity at 0.80 μm or less, for example 0.72 μm. With the peak of. Of the light emitting units 2 and 3, the light emitting unit that emits light in the comparative wavelength band may be a light emitting unit having a peak of spectral emission intensity at 0.60 to 0.80 μm. The light receiving part 4 is composed of an "InGaAs-based light receiving element" and has a thickness of 0.6 to 1.7 .mu.m as shown in FIG.
It has "spectral sensitivity" in m.

【0045】図1に示すように、LED2,3は光軸
(放射光束の強度が最大となる方向)が、検知対象12
における検知面の法線に対して「略対称」となるように
配置され、受光部4は検知対象12における検知面の法
線上でLED2,3の光軸との角度が10〜40度とな
るような位置に配置される。
As shown in FIG. 1, the LEDs 2 and 3 have an optical axis (direction in which the intensity of the radiated light flux is maximum) that is to be detected 12.
Is arranged so as to be “substantially symmetric” with respect to the normal line of the detection surface at, and the light receiving unit 4 forms an angle of 10 to 40 degrees with the optical axes of the LEDs 2 and 3 on the normal line of the detection surface of the detection target 12. It is placed in such a position.

【0046】LED2,3は発光駆動回路6により交互
に駆動され、光を検知対象12に照射し、受光部4は検
知対象12からの反射光を受光する。受光部4の出力信
号は増幅回路7により増幅されて制御部8に入力され
る。
The LEDs 2 and 3 are alternately driven by the light emission drive circuit 6, irradiate the detection target 12 with light, and the light receiving section 4 receives the reflected light from the detection target 12. The output signal of the light receiving unit 4 is amplified by the amplifier circuit 7 and input to the control unit 8.

【0047】図1に示す実施の形態における「検知位置
(検知対象12が配置されている位置)」には、検知対
象12の含水分検知に先立ち「基準と成るべく予め定め
られた所定の基準含水分を持つ基準板もしくは検知物
体」が置かれ、発光駆動回路6がLED2,3を交互に
駆動するとともに、制御部8からの設定値に基づいてL
ED2,3の光量制御を行う。LED2,3からの光は
上記「基準板もしくは検知物体」に照射され、その反射
光が受光部4により受光される。
In the "detection position (position where the detection target 12 is arranged)" in the embodiment shown in FIG. 1, a "predetermined standard predetermined to be a standard prior to detection of moisture content of the detection target 12" is set. A reference plate or a sensing object having water content is placed, the light emission drive circuit 6 alternately drives the LEDs 2 and 3, and L is set based on the set value from the control unit 8.
The light amount of the EDs 2 and 3 is controlled. The light from the LEDs 2 and 3 is applied to the “reference plate or the detection object”, and the reflected light is received by the light receiving unit 4.

【0048】受光部4の出力信号は増幅回路7により増
幅されて制御部8に入力される。制御部8は、増幅回路
7の出力信号を制御部8に予め設定されている設定値
(上記「所定の基準含水分」に対応するべき増幅回路7
の出力値)とを比較しつつLED2,3の光量を可変制
御し、増幅回路7から制御部8に入力する値が上記設定
値に等しくなるようにする。
The output signal of the light receiving section 4 is amplified by the amplifier circuit 7 and input to the control section 8. The control unit 8 controls the output signal of the amplification circuit 7 to correspond to a set value (the above “predetermined reference moisture content”) preset in the control unit 8.
(The output value of 1) and the light amount of the LEDs 2 and 3 are variably controlled so that the value input from the amplifier circuit 7 to the control unit 8 becomes equal to the set value.

【0049】別の方法として、LED2,3の発光量を
一定に保ったまま、制御部8により増幅回路7の「増幅
率」を可変調整し、増幅回路7の出力信号が設定値に
等しくなるように上記増幅率を設定してもよい。
As another method, the "amplification factor" of the amplifier circuit 7 is variably adjusted by the controller 8 while keeping the light emission amounts of the LEDs 2 and 3 constant, and the output signal of the amplifier circuit 7 becomes equal to the set value. The amplification factor may be set as described above.

【0050】含水分検知は、外乱光、特に近赤外光の影
響が少ない環境において行なわれることが好ましく、外
乱光の影響を受ける恐れがある場合には、含水分検知装
置1の周囲に外形ケースなどの保護部材を配置する。
It is preferable that the moisture content detection is performed in an environment where the influence of ambient light, particularly near infrared light is small. Place a protective member such as a case.

【0051】図3は図1の実施の形態における含水分検
知の手順を示すフロー図であり、図4のフロー図は図3
のフロー図の一部を詳しく示している。図1における制
御部8は、マイクロコンピュータを用いて構成されたも
のである。図3において、電源が「オン」される(ステ
ップ21)と、制御部8が含水分検知装置の初期設定処
理を行う(ステップ22)。
FIG. 3 is a flow chart showing the procedure for detecting moisture content in the embodiment of FIG. 1, and the flow chart of FIG. 4 is shown in FIG.
3 shows a part of the flow chart of FIG. The control unit 8 in FIG. 1 is configured by using a microcomputer. In FIG. 3, when the power is turned “on” (step 21), the controller 8 carries out an initial setting process of the moisture content detection device (step 22).

【0052】制御部8は外部から入力部9を介して入力
される動作開始信号(開始電源オン信号)をチェックし
(ステップ23)、動作開始信号が入力すると発光駆動
回路6によりLED2,3を交互に発光させる(ステッ
プ24)。LED2,3からの光は検知対象12に照射
され、その反射光が受光部4により受光される。受光部
4の出力信号は増幅回路7により増幅されて制御部8に
入力する。
The control unit 8 checks the operation start signal (start power-on signal) input from the outside through the input unit 9 (step 23), and when the operation start signal is input, the light emission drive circuit 6 turns on the LEDs 2, 3. Light is emitted alternately (step 24). The light from the LEDs 2 and 3 is applied to the detection target 12, and the reflected light is received by the light receiving unit 4. The output signal of the light receiving unit 4 is amplified by the amplifier circuit 7 and input to the control unit 8.

【0053】制御部8はLED2,3の交互発光動作に
基づき、増幅回路7の出力信号(PDデータ)をサンプ
リングして読み込み、内部のメモリに格納する(ステッ
プ25)。即ち、まずLED2からの光が検知対象12
に照射され、検知対象12による反射光が受光部4によ
り受光される。受光部4の出力信号は増幅回路7により
増幅されて制御部8によりサンプリングされて読み込ま
れ、メモリに測定データ:Aとして格納される。次に、
LED3からの光が検知対象12に照射され、検知対象
12による反射光が受光部4により受光される。受光部
4の出力信号は増幅回路7により増幅され、制御部8に
よりサンプリングされて読み込まれ、メモリに測定デー
タ:Bとして格納される。
The control section 8 samples and reads the output signal (PD data) of the amplifier circuit 7 based on the alternate light emission operation of the LEDs 2 and 3 and stores it in the internal memory (step 25). That is, first, the light from the LED 2 is detected 12
The reflected light from the detection target 12 is received by the light receiving unit 4. The output signal of the light receiving unit 4 is amplified by the amplifier circuit 7, sampled and read by the control unit 8, and stored in the memory as measurement data: A. next,
The light from the LED 3 is applied to the detection target 12, and the light reflected by the detection target 12 is received by the light receiving unit 4. The output signal of the light receiving unit 4 is amplified by the amplifier circuit 7, sampled and read by the control unit 8, and stored in the memory as measurement data: B.

【0054】制御部8は「増幅回路7の出力信号の読み
込みが2回目であるか否か」をチェックし(ステップ2
6)、LED2,3の交互発光動作に対応した増幅回路
7の出力信号の2回の読み込みが終了するとデータ比較
を行う(ステップ27)。
The control unit 8 checks "whether the output signal of the amplifier circuit 7 is read for the second time" (step 2).
6) When the reading of the output signal of the amplifier circuit 7 corresponding to the alternate light emission operation of the LEDs 2 and 3 is completed twice, data comparison is performed (step 27).

【0055】図3におけるステップ27の「データ比
較」は図4に示す手順で行なわれる。即ち、制御部8
は、図4のステップ271において「メモリに格納した
測定データ:A,Bをチェック」し、測定データ:A,
Bが無い場合には表示部11に「異常表示」を行わせる
(ステップ274)。測定データA,Bがある場合に
は、制御部8は「測定データ:A,Bを比較」する(ス
テップ272)。
The "data comparison" of step 27 in FIG. 3 is performed in the procedure shown in FIG. That is, the control unit 8
"Check measurement data stored in memory: A, B" in step 271 of FIG.
If B does not exist, "abnormality display" is displayed on the display unit 11 (step 274). If there are measurement data A and B, the control unit 8 "compares the measurement data: A and B" (step 272).

【0056】制御部8のメモリには予め「測定データ:
Aと測定データ:Bとの商:A/Bと含水分との対応関
係」を定める設定値が、テーブルもしくは演算式とし
て設定されており、制御部8は上記商:A/Bと設定値
との比較もしくは演算により検知対象12の含水分を
判断し「判断結果」を上記記憶部に格納する。
In the memory of the controller 8, "measurement data:
A set value that defines "quotient of A and measured data: B: correspondence between A / B and moisture content" is set as a table or an arithmetic expression, and the control unit 8 controls the above quotient: A / B and set value. The moisture content of the detection target 12 is judged by comparison with or calculation with and the “judgment result” is stored in the storage unit.

【0057】制御部8のメモリにはまた、判定用の情報
(検知対象12である転写紙における含水分の適値領
域、例えば前述の4〜8%)が、予め設定値として設
定される。
In the memory of the control unit 8, information for judgment (appropriate value range of moisture content in the transfer paper which is the detection target 12, for example, 4 to 8% described above) is set in advance as a set value.

【0058】制御部8はステップ273でメモリに格納
した判断結果(前記商:A/Bに対応する含水分)が上
記設定値として設定された「所定の範囲(例えば、上
記4〜8%の範囲)にあるか否かを判断し、範囲内にな
いときは異常表示を行なう。異常表示が行なわれれると
き、検知対象12としての転写紙の含水分はトナー画像
の転写に好適でない。
The control unit 8 sets the predetermined value (for example, 4 to 8% above) in which the determination result (moisture content corresponding to the quotient: A / B) stored in the memory in step 273 is set as the set value. It is determined whether or not it is within the range), and if it is not within the range, an abnormal display is performed.When the abnormal display is performed, the moisture content of the transfer paper as the detection target 12 is not suitable for the transfer of the toner image.

【0059】設定値に代えて、外部から適宜に設定値
(例えば、5〜10%)を入力部9(図1参照)から
外部設定することもできる。このように外部から入力部
9を介して設定値を入力することは、検知対象12の
種類の差による反射光量の違い等により判定用の値を補
正する場合や、検知対象の任意の含水分で検知対象の状
態を判定する場合などに有効である。
Instead of the set value, a set value (for example, 5 to 10%) can be set externally from the input unit 9 (see FIG. 1). In this way, inputting the set value from the outside through the input unit 9 is performed when correcting the determination value due to the difference in the amount of reflected light due to the difference in the type of the detection target 12 or when an arbitrary moisture content in the detection target is corrected. This is effective when determining the state of the detection target with.

【0060】この場合、制御部8はメモリに格納した判
断結果から判定用の情報(設定値又は外部入力された
設定値)に基づき、検知対象12の含水分が5%以上
で10%以下であるか否か判定することで所定の範囲で
あるかどうかかを判定し、外部から入力部9を介して入
力される指示によりその判定結果を出力部10を介して
外部へ出力する。制御部8は検知対象12の含水分が所
定の範囲内でない場合にはステップ274で表示部11
に「異常表示」を行わせる。
In this case, the control unit 8 determines that the moisture content of the detection target 12 is 5% or more and 10% or less based on the determination information (setting value or setting value input from outside) from the determination result stored in the memory. Whether or not it is within a predetermined range is determined by determining whether or not there is, and the determination result is output to the outside through the output unit 10 according to an instruction input from the outside through the input unit 9. If the moisture content of the detection target 12 is not within the predetermined range, the control unit 8 displays the display unit 11 in step 274.
Causes "abnormality display" to be performed.

【0061】制御部8は、図3においてステップ27か
ら同28に進み、外部から入力部9を介して上記設定値
あるいは前述の設定値の新たな入力が有るか否かを
判断し、設定値の入力が有る場合には判定用の値を入
力された設定値に補正し、設定値の入力が有る場合
には前記設定値を「新たに入力された設定値」に補
正する(ステップ29)。
The control section 8 proceeds from step 27 to step 28 in FIG. 3 and judges whether or not there is a new input of the above-mentioned set value or the above-mentioned set value from the outside through the input section 9, and the set value is set. Is input, the judgment value is corrected to the input set value, and if the set value is input, the set value is corrected to the "newly input set value" (step 29). .

【0062】次に、制御部8は「外部から入力部9を介
して出力又は表示の指示が入力されたか否か」を判断し
(ステップ30)、出力又は表示の指示が入力された場
合にはその指示に従い上記判定結果や設定情報、設定
値などを出力部10を介して出力し、又は表示部11
に表示する(ステップ31)。
Next, the control unit 8 judges "whether an output or display instruction is input from the outside through the input unit 9" (step 30), and when the output or display instruction is input, Outputs the determination result, the setting information, the setting value, and the like through the output unit 10 according to the instruction, or the display unit 11
(Step 31).

【0063】制御部8はさらに「電源がオフされたか否
か」を判断し、電源がオフされるまで上記動作を予め設
定した動作周期で繰り返して実行し、記憶部に格納され
ている検知対象12の含水分の判断結果を最新のものに
更新する(ステップ32)。
The control unit 8 further determines "whether or not the power is turned off", and repeatedly executes the above-described operation at a preset operation cycle until the power is turned off, and the detection target stored in the storage unit is detected. The determination result of moisture content 12 is updated to the latest one (step 32).

【0064】制御部8は、発光部2,3の「光量劣化や
汚れ」あるいは受光部4の「部品の感度ばらつき」等に
よるノイズを除去するため、外部からの設定値あるい
は内部で予め設定した制御内容をもとに、上述のように
発光部2,3の光量などの調整制御を行う。
The control unit 8 removes noise due to "light intensity deterioration and dirt" of the light emitting units 2 and 3 or "variation of sensitivity of parts" of the light receiving unit 4 or the like, and is set in advance from an externally set value or internally set. Based on the control content, the adjustment control of the light amount of the light emitting units 2 and 3 is performed as described above.

【0065】上に説明した実施の形態は、画像形成装置
における用紙(転写紙)の含水分の検知に用いられて反
射率の高い用紙の含水分を検知するが、画像形成装置に
おいて現像剤や搬送ベルトなど反射率の低い物体の含水
分を検知する場合には、発光部2,3の光量及び受光部
4の出力を制御部8で取扱可能な値に調整・設定するこ
とができる。画像形成装置は、上記実施の形態における
検知結果(上記判定結果)により測定対象を制御(例え
ば「含水分に応じて転写電圧を変化させる」など)する
ことができる。
The above-described embodiment is used for detecting the moisture content of the sheet (transfer sheet) in the image forming apparatus to detect the moisture content of the sheet having high reflectance. When detecting the water content of an object having a low reflectance such as a conveyor belt, the light amounts of the light emitting units 2 and 3 and the output of the light receiving unit 4 can be adjusted and set to values that can be handled by the control unit 8. The image forming apparatus can control the measurement target (for example, “change the transfer voltage depending on the moisture content”) based on the detection result (the determination result) in the above-described embodiment.

【0066】上に説明した実施の形態は請求項1記載の
発明の実施の形態であって、検知対象12に順次に光を
照射する発光波長の異なる複数の発光部2,3と、検知
対象12からの反射光を受光する受光部4とを有する含
水分検知装置1において、複数の発光部2,3の順次発
光動作に基づいて受光部4から複数の受光信号:A,B
を取り込み、複数の受光信号:A,Bの比較から、予め
設定された値(設定値)をもとに検知対象12の含水
分を判断する制御部8を備えたので、複数の発光部2,
3に対して受光部4が1つでよく、小型化・低コスト化
が可能であり、検知対象の含水分量を非接触で直接検知
することにより正確に検知できる。なお、検知対象は電
荷を有する用紙や布などでもよい。
The above-described embodiment is an embodiment of the invention according to claim 1, and includes a plurality of light emitting portions 2 and 3 having different emission wavelengths for sequentially irradiating the detection target 12 with light, and the detection target. In the moisture-containing detector 1 having a light receiving unit 4 for receiving the reflected light from the light receiving unit 12, a plurality of light receiving signals from the light receiving unit 4 based on the sequential light emitting operation of the plurality of light emitting units 2 and 3: A, B
Since a control unit 8 for determining the moisture content of the detection target 12 based on a preset value (set value) by taking in a plurality of received light signals: A and B is provided, the plurality of light emitting units 2 ,
Only one light receiving unit 4 is required for 3, the size and cost can be reduced, and the moisture content to be detected can be accurately detected by directly detecting it without contact. It should be noted that the detection target may be paper or cloth having an electric charge.

【0067】上記実施の形態はまた請求項2記載の発明
の実施の形態でもあって、検知対象12に順次に光を照
射する発光波長の異なる複数の発光部2,3と、検知対
象12からの反射光を受光する受光部4とを備え、複数
の発光部2,3は受光部4の分光感度の長波長側の1.
45μmに分光医発光強度のピークを持つ発光部と、受
光部4の分光感度の短波長側の0.72μmに分光発光
強度のピークを持つ発光部とを有し、複数の発光部2,
3と受光部4とを所定の角度で配置するとともに、複数
の発光部2,3及び受光部4の出力を外部入力により設
定可能としたので、発光部2,3の光量及び受光部4の
出力や検知対象12の濃度・反射光量の違いなどに応じ
た情報を外部入力で補正することができ、測定ノイズ及
び誤差、測定精度、分解能の向上を図ることができ、検
知対象の含水分を環境変化があっても安定して非接触で
検知できる。
The above-described embodiment is also an embodiment of the invention according to claim 2, wherein a plurality of light emitting portions 2 and 3 having different emission wavelengths for sequentially irradiating the detection target 12 with light and the detection target 12 are provided. And a plurality of light emitting units 2 and 3 on the long wavelength side of the spectral sensitivity of the light receiving unit 4.
A plurality of light emitting units 2 having a light emitting unit having a peak of spectral emission intensity at 45 μm and a light emitting unit having a peak of spectral emission intensity at 0.72 μm on the short wavelength side of the spectral sensitivity of the light receiving unit 4.
3 and the light receiving unit 4 are arranged at a predetermined angle, and the outputs of the plurality of light emitting units 2 and 3 and the light receiving unit 4 can be set by an external input, the light amount of the light emitting units 2 and 3 and the light receiving unit 4 can be set. Information corresponding to the output and the difference in the concentration / reflected light amount of the detection target 12 can be corrected by the external input, and the measurement noise and error, the measurement accuracy, and the resolution can be improved, and the moisture content of the detection target can be improved. Stable and non-contact detection is possible even if there is a change in the environment.

【0068】上記実施の形態はまた請求項3記載の発明
の実施の形態でもあり、検知対象12に光を照射する発
光部2,3と、検知対象12からの反射光を受光する受
光部4と、発光部2,3の発光動作に基づいて受光部4
から受光信号を取り込んで記憶手段により記憶し、この
記憶手段で記憶した受光信号から予め設定された値をも
とに検知対象12の含水分を判断する制御部8とを備え
たので、検知対象の含水分を自動的に測定することが可
能になり、その測定値をもとに制御対象を制御すること
が可能となる。
The above embodiment is also an embodiment of the invention described in claim 3, and the light emitting units 2 and 3 for irradiating the detection target 12 with light and the light receiving unit 4 for receiving the reflected light from the detection target 12. And the light receiving unit 4 based on the light emitting operations of the light emitting units 2 and 3.
Since the light receiving signal is taken in from the storage unit and stored in the storage unit and the moisture content of the detection target 12 is judged based on a preset value from the light receiving signal stored in the storage unit, the detection unit is provided. It is possible to automatically measure the water content of the, and it is possible to control the controlled object based on the measured value.

【0069】図5は発明の実施の別の形態を示す。この
実施の形態は請求項3記載の発明の実施の形態である。
この形態では、上述した実施の形態において、検知装置
5が1.45μmに分光発光強度のピークを持つLED
2と、0.6〜1.7μmに分光感度を持つ受光部4と
で構成され、LED2が発光駆動回路6により駆動され
て受光部4の出力信号が増幅回路7により増幅される。
FIG. 5 shows another embodiment of the invention. This embodiment is an embodiment of the invention described in claim 3.
In this mode, in the above-described embodiment, the detection device 5 has an LED having a peak of spectral emission intensity at 1.45 μm.
2 and a light receiving unit 4 having a spectral sensitivity of 0.6 to 1.7 μm, the LED 2 is driven by the light emission drive circuit 6, and the output signal of the light receiving unit 4 is amplified by the amplification circuit 7.

【0070】制御部8は、増幅回路7からサンプリング
して読み込んだ信号を測定データAとして記憶部に格納
し、この記憶部内の測定データAから予め設定された値
をもとに検知対象12の含水分を判断する。
The control section 8 stores the signal sampled and read from the amplifier circuit 7 in the storage section as the measurement data A, and the detection target 12 of the detection object 12 is stored based on the preset value from the measurement data A in the storage section. Judge the water content.

【0071】図5の実施の形態は、検知対象12までの
検知距離及び発光部2の発光光量の変化などがなく、あ
まり高い精度を必要としない場合に有効であり、発光部
2が1つであるので部品コストの低減及び検知装置5の
小型化を図ることができる。
The embodiment of FIG. 5 is effective when there is no change in the detection distance to the detection target 12 and the amount of light emitted from the light emitting section 2 and does not require very high precision, and one light emitting section 2 is provided. Therefore, the cost of parts can be reduced and the size of the detection device 5 can be reduced.

【0072】勿論、請求項1〜3記載の発明は上記実施
の形態に限定されるものではなく、発光部を3つ以上設
けてもよいし、検知対象が用紙以外のもの、例えば布等
やトナー等であってもよい。
Of course, the invention described in claims 1 to 3 is not limited to the above-mentioned embodiment, and three or more light emitting parts may be provided, and the object to be detected is something other than paper, such as cloth or the like. It may be toner or the like.

【0073】図6は請求項5,6,7,9記載の近赤外
光による「含水分測定装置」の実施の1形態を説明する
ための図である。即ち、実施の形態を模式的に示す
(a)において、含水分測定装置1Aは測定対象13の
含水分を測定する装置であって、発光部14と発光駆動
回路37、受光素子35と増幅回路38、透過性の集光
光学系34と、制御部120、入力部9A、出力部10
Aおよび表示部11Aとを有する。測定対象13は例え
ば前記「転写紙」等である。
FIG. 6 is a view for explaining one embodiment of the “moisture content measuring device” using near infrared light according to claims 5, 6, 7 and 9. That is, in (a) schematically showing the embodiment, the water content measuring device 1A is a device for measuring the water content of the measurement target 13, and includes the light emitting section 14, the light emission drive circuit 37, the light receiving element 35, and the amplification circuit. 38, transmissive condensing optical system 34, control unit 120, input unit 9A, output unit 10
A and the display unit 11A. The measurement target 13 is, for example, the “transfer paper” or the like.

【0074】発光部14は、図6(b)に示すように2
つの発光源としてLED141,142を有する。図6
(c)に示すようにLED141は1.45μmにピー
クを持つ分光発光強度c−1を有し、LED142は、
1.4μm以下の近赤外領域にピークを持つ分光発光強
度、例えば1.3μmにピークを持つ分光発光強度c−
5あるいは0.8μm以下にピークを持つ分光発光強度
c−2を持つ(請求項6)。LED141は「InP系
のLED」であり上記分光発光強度c−1を実現してい
る。
The light emitting section 14 has two components as shown in FIG.
It has LEDs 141 and 142 as one light emitting source. Figure 6
As shown in (c), the LED 141 has a spectral emission intensity c-1 having a peak at 1.45 μm, and the LED 142 has
Spectral emission intensity having a peak in the near infrared region of 1.4 μm or less, for example, spectral emission intensity c− having a peak at 1.3 μm
It has a spectral emission intensity c-2 having a peak at 5 or 0.8 μm or less (claim 6). The LED 141 is an "InP-based LED" and realizes the above-described spectral emission intensity c-1.

【0075】図6(b)に示すように、発光部14にお
ける2つの発光素子であるLED141,142は、共
通のカソード140と共に「同一の樹脂ケース」内に納
められ、図6(a)に示すように集光光学系34の中央
部に配備され(請求項7)、駆動用のリード線32,3
3により駆動電流を通ずることにより、互いに独立して
発光させることができるようになっている。
As shown in FIG. 6B, LEDs 141 and 142, which are the two light emitting elements in the light emitting section 14, are housed in the "same resin case" together with the common cathode 140, and as shown in FIG. As shown in the drawing, it is arranged at the center of the condensing optical system 34 (claim 7), and the driving lead wires 32, 3
By passing a drive current by 3, it is possible to emit light independently of each other.

【0076】LED141を発光させると、上記「1.
45μmにピークを持つ分光発光強度」を有する近赤外
光が、図6(a)に実線で示すように測定対象13に照
射される。また、LED142を発光させると上記
「1.4μm以下の近赤外領域にピークを持つ分光発光
強度(例えば、分光発光強度c−5)」を有する近赤外
光が、図6(a)に破線で示すように測定対象13に照
射される。透過性の集光光学系4は「珪素系のレンズ」
である(請求項9)。
When the LED 141 is made to emit light, the above "1.
Near-infrared light having “spectral emission intensity having a peak at 45 μm” is applied to the measurement target 13 as indicated by the solid line in FIG. Further, when the LED 142 is caused to emit light, near-infrared light having the above-mentioned “spectral emission intensity having a peak in the near-infrared region of 1.4 μm or less (for example, spectral emission intensity c-5)” is shown in FIG. The measurement target 13 is irradiated as indicated by the broken line. The transparent condensing optical system 4 is a "silicon lens".
(Claim 9).

【0077】「受光手段」は受光素子35と増幅回路3
8により構成され、受光素子35は測定対象13による
各反射光が集光光学系34により集光される位置に配備
されている。測定対象13による2種の反射光(実線と
破線で示す)は互いに波長領域が異なるため、集光光学
系34の「色収差」により集光位置は相互に若干ずれる
が、受光素子35は、これら各反射光の集光位置の近傍
で、各反射光を共通に受光できる適宜の位置に配備され
る。
The "light receiving means" is the light receiving element 35 and the amplifier circuit 3.
The light receiving element 35 is arranged at a position where each reflected light from the measurement target 13 is condensed by the condensing optical system 34. The two types of reflected light (indicated by a solid line and a broken line) from the measurement target 13 have different wavelength regions from each other, so that the converging positions are slightly deviated from each other due to the “chromatic aberration” of the condensing optical system 34. In the vicinity of the condensing position of each reflected light, it is arranged at an appropriate position where each reflected light can be commonly received.

【0078】この実施例において、受光素子35は「I
nGaAs系」のフォトデテクタであり、図6(c)に
示すように、0.6〜1.7μmの波長領域の近赤外領
域に略均一な分光感度c−3を有する。
In this embodiment, the light receiving element 35 has the "I
As shown in FIG. 6C, the photodetector is an “nGaAs type” and has substantially uniform spectral sensitivity c-3 in the near infrared region of the wavelength region of 0.6 to 1.7 μm.

【0079】受光素子35の出力は増幅回路38により
増幅され、制御部120のA/D変換器121でデジタ
ル信号化され、I/Oポート122を介して取り込ま
れ、メモリ124のRAMにデータとして記憶される。
「受光手段の出力の取り込み」はCPU123により制
御され「間欠的」に行なわれる。
The output of the light receiving element 35 is amplified by the amplifier circuit 38, converted into a digital signal by the A / D converter 121 of the control unit 120, taken in through the I / O port 122, and stored as data in the RAM of the memory 124. Remembered.
The "capturing of the output of the light receiving means" is controlled by the CPU 123 and is performed "intermittently".

【0080】CPU123はまた、I/Oポート122
を介して発光駆動回路37により、リード線32,33
を介し、発光部における2つの発光源、即ちLED14
1,142の点滅を制御する。制御部120、発光駆動
回路37、入力部9Aおよび出力部10Aは「制御処理
手段」を構成する。
The CPU 123 also uses the I / O port 122.
The lead wires 32, 33 are driven by the light emission drive circuit 37 via
Via the two light sources in the light emitting part, that is, the LED 14
The blinking of 1,142 is controlled. The control unit 120, the light emission drive circuit 37, the input unit 9A, and the output unit 10A constitute "control processing means".

【0081】表示部11Aは「表示手段」を構成し、制
御処理手段による処理結果としての測定値を表示する。
表示手段は「ディスプレイおよび/またはプリンタ」と
して構成することができ、あるいは「音声による表示」
を行なう構成とすることもできる。
The display section 11A constitutes "display means" and displays the measured value as the processing result by the control processing means.
The display means can be configured as a "display and / or printer" or "voice display"
It is also possible to adopt a configuration for performing.

【0082】以下、図7に示す「タイムチャート」と図
8,9に示す「フロー図」を参照して、含水分測定を説
明する。図8に示すように、電源を「オン」にすると
(ステップ81)、CPU123(図6(a))は,メ
モリ124のROMに格納された「初期設定用のプログ
ラム」に従い、装置の「初期設定処理(装置各部が適正
に可動するか否かを自己探査する)」を行なう(ステッ
プ82)。所期設定処理の結果は出力部10に「測定可
能」あるいは「異常」として表示される。
The moisture content measurement will be described below with reference to the "time chart" shown in FIG. 7 and the "flow charts" shown in FIGS. As shown in FIG. 8, when the power is turned “on” (step 81), the CPU 123 (FIG. 6A) follows the “initial setting program” stored in the ROM of the memory 124 to “initialize” the device. Setting processing (self-probing whether or not each part of the apparatus moves properly) is performed (step 82). The result of the desired setting process is displayed on the output unit 10 as “measurable” or “abnormal”.

【0083】初期設定処理が終了して「測定可能」の状
態となった状態で、測定対象13をセットして入力部9
A(キーボードの実行キーや、測定ボタン等)により実
行を指令すると、図8に示すように、この信号が「開始
信号」として判定され、測定が開始される(ステップ8
3)。
When the initial setting process is completed and the state is "measurable", the measurement target 13 is set and the input unit 9
When execution is instructed by A (execution key of keyboard, measurement button, etc.), as shown in FIG. 8, this signal is determined as a "start signal" and measurement is started (step 8).
3).

【0084】図7のタイムチャートを参照すると、開始
信号による測定開始によりCPU123が「測定プログ
ラム」に従い、受光手段の出力(受光素子35の出力を
増幅回路38で増幅した信号)を取り込み、検出信号:
PD0としてメモリ124のRAMに記憶させる(図8
におけるステップ84)。
Referring to the time chart of FIG. 7, when the measurement is started by the start signal, the CPU 123 takes in the output of the light receiving means (the signal obtained by amplifying the output of the light receiving element 35 by the amplifier circuit 38) in accordance with the "measurement program", and outputs the detection signal. :
It is stored in the RAM of the memory 124 as PD 0 (see FIG. 8).
84).

【0085】CPU123は続いて受光手段の出力を間
欠的に取り込みつつ、取り込みに同期して、発光源であ
るLED141,142を順次発光させる(図8のステ
ップ85,87)。LED141が発光するときの受光
手段の出力が検出信号:PD1として、またLED14
2が発光するときの受光手段の出力が検出信号:PD2
として取り込まれる。LED142の発光タイミングに
合わせてn回信号の「1回」が発せられる。
Subsequently, the CPU 123 intermittently captures the output of the light receiving means, and sequentially makes the LEDs 141 and 142 which are the light emission sources emit light in synchronization with the capture (steps 85 and 87 in FIG. 8). The output of the light receiving means when the LED 141 emits light is used as a detection signal: PD 1
The output of the light receiving means when 2 emits light is a detection signal: PD 2
Captured as The signal “1 time” is emitted n times in synchronization with the light emission timing of the LED 142.

【0086】図8に示すように、検出信号:PD1,P
2は取り込まれると直ちに、先に取り込まれている検
出信号:PD0を減算(図8のステップ86,88:デ
ータリード/演算)される。
As shown in FIG. 8, detection signals: PD 1 , P
Immediately after D 2 is taken in, the previously taken in detection signal: PD 0 is subtracted (steps 86 and 88 in FIG. 8: data read / calculation).

【0087】このようにして演算結果:PD1=PD1
−PD0,PD2=PD2−PD0が得られ、これら演算
結果:PD1,PD2は、n回信号:「1回」ととも
に、上記RAMに記憶される。上記のプロセスが所定の
n回(例えば10回)繰り返される。
In this way, the calculation result: PD1 = PD 1
-PD 0 , PD 2 = PD 2 -PD 0 are obtained, and these operation results: PD 1 and PD 2 are stored in the RAM together with the signal n times: “1 time”. The above process is repeated a predetermined number of times (for example, 10 times).

【0088】図7において、PD信号は「受光手段の取
り込みのタイミング」を表わす信号である。また各繰返
しごとに、n回信号「2回,3回,..,n回」が順次
発生される。
In FIG. 7, the PD signal is a signal representing "timing of taking in light receiving means". Further, the signal “2 times, 3 times, ..., N times” is sequentially generated for each repetition.

【0089】n回の繰返しプロセスの1回毎に、3個の
検出信号:PD0,PD1,PD2がデータとして得ら
れ、n回の繰返しでは、これらのn倍、即ち「3n個」
のデータが得られることになる。そしてn回の繰返しの
終了とともに、メモリ124のRAMには上記3n個の
データから得られた「演算結果:PD1がn個と、演算
結果:PD2がn個」記憶されていることになる。
Three detection signals: PD 0 , PD 1 , PD 2 are obtained as data for each one of the n times of the iterative process, and n times of these, that is, “3n” are obtained in the n times of repetition.
Will be obtained. When the repetition of n times is completed, the RAM of the memory 124 stores “calculation result: n PD1 and calculation result: PD2 n” obtained from the 3n pieces of data.

【0090】そこで、図8に示すように、演算結果:P
D1,PD2をそれぞれ、演算:ΣPD1/n,ΣPD
2/nにより「平均化」し、その結果をそれぞれPD1
n,PD2nとし、これらに対し演算:PD1n/PD
2nを実行する(ステップ90)。この演算:PD1n
/PD2nの結果(以下、Xとする)は、測定対象13
における含水分の情報を含んでいる。
Then, as shown in FIG. 8, the calculation result: P
Calculate D1 and PD2 respectively: ΣPD1 / n, ΣPD
"Average" by 2 / n, and the result is PD1
n, PD2n, and calculation for these: PD1n / PD
2n is executed (step 90). This calculation: PD1n
/ PD2n result (hereinafter referred to as X) is the measurement target 13
It contains information on water content in.

【0091】制御部120のメモリ124のROMに
は、予め実験的に決定された「上記Xと含水分(%)と
の関係」が「テーブル」として記憶されており、演算結
果:Xを上記テーブルの内容と比較対照することによ
り、測定対象13における「含水分」が決定される(図
8におけるステップ91:データ比較)。
In the ROM of the memory 124 of the control unit 120, "relationship between X and moisture content (%)" which has been experimentally determined in advance is stored as a "table", and the calculation result: X is expressed as The “moisture content” in the measurement target 13 is determined by comparing and comparing with the contents of the table (step 91 in FIG. 8: data comparison).

【0092】この「データ比較」は図9(a)にフロー
図として示されている。まず検知出力であるか否かが判
定され(ステップ911)、次いで、上記X=PD1n
/PD2nとテーブル内の含水分データとの比較が行わ
れる(ステップ912)。その結果が含水分として妥当
な値(範囲内)であるか否かが判定され(ステップ91
3)、範囲内である場合には、Xに対応するテーブル内
の含水分が「%表示」で特定される。この含水分は、図
8のフロー図に示すように「表示手段」である表示部1
1A(図6(a))に表示される(図8におけるステッ
プ95)。含水分は、必要に応じて出力部10Aに出力
しても良い。
This "data comparison" is shown as a flow chart in FIG. 9 (a). First, it is judged whether or not it is a detection output (step 911), and then the above X = PD1n.
/ PD2n is compared with the moisture content data in the table (step 912). It is determined whether or not the result is an appropriate value (within range) as the water content (step 91).
3) If it is within the range, the water content in the table corresponding to X is specified by "% display". This moisture content is displayed on the display unit 1 which is "display means" as shown in the flow chart of FIG.
1A (FIG. 6 (a)) (step 95 in FIG. 8). The water content may be output to the output unit 10A as needed.

【0093】図9(a)で、検知出力で無い場合や上記
範囲内に無い場合には「異常表示」が行われる(ステッ
プ914)。この場合の「異常」としては、測定対象と
発光源との距離が適正でないために反射光を受光できな
い場合、外乱光が強くて受光素子35の受光状態が飽和
したような場合、測定中(n回繰返し中)に測定対象と
発光源の距離関係が変化して検知信号が大きく変化した
場合等が考えられる。異常表示は出力部10Aに行われ
るが、この表示を例えばブザーのような音響表示によ
り、あるいは音響表示とともに行うようにしても良い。
In FIG. 9A, if the detection output is not output or if the output is not within the above range, "abnormality display" is performed (step 914). In this case, "abnormal" means that when the reflected light cannot be received because the distance between the measurement target and the light emitting source is not appropriate, or when the ambient light is strong and the light receiving state of the light receiving element 35 is saturated, the measurement ( It is conceivable that the detection signal greatly changes due to a change in the distance relationship between the measurement target and the light emitting source (during repeating n times). Although the abnormal display is performed on the output unit 10A, this display may be performed by an acoustic display such as a buzzer or together with the acoustic display.

【0094】データ比較は上の説明では「Xと含水分と
の対応関係」を与えるテーブルに従って行われるが、図
10に示すように、含水分とXとの関係(基準となる多
数の含水分とXとの対応を実験的に設定したもの)に応
じて、回帰分析により設定された数式(例えば、図10
の直線の式)を演算式として記憶させておき、演算値:
Xが得られたら、このXを上記数式に代入し演算により
含水分を求めるようにしてもよい。測定対象が複数種あ
る場合には、測定対象の種類ごとに上記テーブルもしく
は演算式が用意される。
In the above description, the data comparison is performed according to the table which gives the "correspondence relationship between X and moisture content". As shown in FIG. 10, the relationship between moisture content and X (a large number of reference moisture content contents) is used. According to the experimentally set correspondence between X and X) (see FIG. 10 for example) set by regression analysis.
Is stored as an arithmetic expression and the calculated value:
When X is obtained, this X may be substituted into the above formula to obtain the water content by calculation. When there are a plurality of types of measurement targets, the above table or arithmetic expression is prepared for each type of measurement target.

【0095】測定対象の含水分が「4%以下または10
%以上」などの指示値に応じて、制御対象の制御を行う
ような場合もある。また測定対象の含水分を測定した結
果、データ比較における「X」と比較値(テーブル内の
データ)の比例関係に誤差が生じたと思われるような場
合(集光光学系や発光源、受光素子の汚れ等が原因で生
じることがある)もある。
The water content of the measurement object is "4% or less or 10
In some cases, the control target is controlled according to an instruction value such as "% or more". Also, as a result of measuring the water content of the measurement target, when it seems that an error occurs in the proportional relationship between “X” and the comparison value (data in the table) in the data comparison (condensing optical system, light emitting source, light receiving element May occur due to dirt, etc.).

【0096】後者のような場合には図8のステップ93
(図9(b)に詳細に示す)で、入力部からのデータ:
Xに対して回帰分散演算を実施して「比例関係の補正」
を行う(図9(b)のステップ933)。また前者の場
合には、入力部9Aから上記指示値を「外部入力」とし
て行い(図9(b)のステップ931)、例えば10≧
X≧4(データ一致)以外の場合には「異常表示」を行
う(同図のステップ934)。
In the latter case, step 93 in FIG.
Data (shown in detail in FIG. 9B) from the input section:
Regression variance calculation is performed on X to "correct proportionality"
Is performed (step 933 in FIG. 9B). In the former case, the instruction value is input from the input unit 9A as “external input” (step 931 in FIG. 9B), for example, 10 ≧
If X ≧ 4 (data coincidence) is not satisfied, "abnormality display" is performed (step 934 in the figure).

【0097】また測定対象が複数種あるときに測定対象
種を指定するのにも「外部入力」が用いられる。入力部
9Aは複数の測定データをメモリ124に記憶させる入
力にも使用でき、出力部10Aは類似データや測定対象
の環境変動による変化状態を重ね書きさせる出力手段な
どにも使用できる。
The "external input" is also used to specify the measurement target species when there are a plurality of measurement targets. The input unit 9A can be used also as an input for storing a plurality of measurement data in the memory 124, and the output unit 10A can be used as an output unit for overwriting similar data and a change state due to environmental fluctuation of a measurement target.

【0098】測定対象の含水分測定は、外乱光や、測定
対象や測定環境の温度等の影響を受けるものであり、従
来の含水分測定装置では、このような影響を考慮して測
定装置の事前調整(0点校正等)を行う必要があり、測
定の能率が悪かった。
The moisture content of the measurement target is affected by ambient light, the temperature of the measurement target and the temperature of the measurement environment, etc. In the conventional moisture content measuring device, such influence is taken into consideration in the measurement device. Preliminary adjustments (zero-point calibration, etc.) had to be performed, and the measurement efficiency was poor.

【0099】請求項4〜10記載の発明では測定の際
「測定対象を発光源により照射していない状態」におけ
る受光手段の検出信号:PD0が検出される。検出信
号:PD0には外乱光の影響や温度の影響等が情報とし
て含まれており、検出信号:PDjからPD0が差し引か
れることにより上記外乱光や温度の影響を自動的に除去
できる。従って、この発明では0点校正のような事前調
整の必要がない。
In the inventions according to claims 4 to 10, the detection signal: PD 0 of the light receiving means in the "state where the object to be measured is not illuminated by the light emitting source" is detected during the measurement. The detection signal: PD 0 contains the influence of ambient light, the influence of temperature, etc. as information, and the influence of the ambient light or temperature can be automatically removed by subtracting PD 0 from the detection signal: PD j. . Therefore, in the present invention, there is no need for pre-adjustment such as 0-point calibration.

【0100】また、検出信号は「PD0,PDj」をデー
タのグループとしてnグループが検出され、これらをデ
ータ処理して含水分測定を行うから、外乱光や測定環境
が時間的に変化しても、適正に精度の良い測定が可能に
なる。前記繰返し回数:nは、測定精度が「要求精度」
に合致するように設定される。
In addition, since n groups are detected with “PD 0 , PD j ” as data groups in the detection signal and the moisture content is measured by processing these data, the ambient light and the measurement environment change with time. However, it is possible to perform accurate and appropriate measurement. The number of repetitions: n means that the measurement accuracy is "required accuracy"
Is set to match.

【0101】また、波長の短い近赤外光を放射する発光
源が、例えば、図6(c)における破線の分光発光強度
c−4のように、分光発光強度c−2の短波長側の「可
視領域」に分光発光強度(破線部分)を持つようにする
と(請求項8)、測定の際に、可視光成分により「測定
対象の照射される部分」を目視で確認できる。
Further, a light emitting source that emits near-infrared light having a short wavelength is, for example, as shown by a broken line spectral emission intensity c-4 in FIG. 6C, on the short wavelength side of the spectral emission intensity c-2. When the "visible region" has a spectral emission intensity (broken line portion) (claim 8), the "irradiated portion of the measurement target" can be visually confirmed by the visible light component during measurement.

【0102】上記実施の形態では2つの発光部を同一の
容器に収容したが、図10(a:平面図、b:側面図)
に示す実施例のように、2つの発光素子であるLED1
41,142を別個に配備してもよい。また図6,11
において、発光部を集光光学系4の中央部に配したが、
これに限らず各発光部を適宜の位置に配して良く、例え
ば、測定対象に対して近赤外光を斜め方向から照射する
ようにしてもよい。
In the above embodiment, the two light emitting parts are housed in the same container, but FIG. 10 (a: plan view, b: side view)
LED1 which is two light emitting elements like the embodiment shown in FIG.
41 and 142 may be separately provided. 6 and 11
In the above, the light emitting portion is arranged in the central portion of the condensing optical system 4,
Not limited to this, each light emitting unit may be arranged at an appropriate position, and for example, near infrared light may be radiated to the measurement target in an oblique direction.

【0103】また、上記「可視領域」にも分光発光強度
を持つ光源に代えて、可視領域に分光発光強度をもつ第
3の光源を用いることも可能であることを付記してお
く。
It should be additionally noted that a third light source having a spectral emission intensity in the visible region can be used instead of a light source having a spectral emission intensity in the "visible region".

【0104】[0104]

【発明の効果】以上に説明したように、請求項1記載の
発明では、含水分検知装置において、装置の小型化及び
低コスト化を実現することができ、検知対象の含水分を
非接触で直接検知により正確に検知することが可能であ
る。
As described above, according to the first aspect of the present invention, in the moisture content detecting device, downsizing and cost reduction of the device can be realized, and the moisture content to be detected can be contactlessly contacted. It is possible to detect accurately by direct detection.

【0105】請求項2記載の発明では、含水分検知装置
において、発光部の光量や受光部の出力、検知対象の濃
度、反射光量の違いなどを外部入力で補正でき、測定ノ
イズや誤差、測定精度、分解能の向上を図ることがで
き、環境変化があっても非接触で安定性良く含水分を検
知できる。
According to the second aspect of the invention, in the moisture content detecting device, the light amount of the light emitting portion, the output of the light receiving portion, the density of the detection target, the difference in the reflected light amount, etc. can be corrected by the external input, and the measurement noise, the error and the measurement can be obtained. The accuracy and resolution can be improved, and the moisture content can be detected stably without contact even if the environment changes.

【0106】請求項3記載の発明では、含水分検知装置
において、検知対象の含水分を自動的に測定することが
可能であり、その測定値をもとに制御対象を制御するこ
とが可能となる。
According to the third aspect of the present invention, the moisture content detecting device can automatically measure the moisture content of the detection target, and the control target can be controlled based on the measured value. Become.

【0107】請求項4〜10記載の発明では、含水分測
定方法もしくは装置において、簡易・迅速に精度の良い
含水分測定を実現できる。また請求項8記載の含水分測
定装置は、測定部分を目視で確認できるため操作性が良
い。
According to the invention described in claims 4 to 10, in the method or apparatus for measuring water content, the water content measurement can be realized simply and quickly with high accuracy. Further, the moisture content measuring apparatus according to claim 8 has good operability because the measurement portion can be visually confirmed.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1,2,3記載の発明の実施の1形態を
示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of the invention described in claims 1, 2 and 3.

【図2】図1の形態における発光部と受光部の分光特性
を示す図である。
FIG. 2 is a diagram showing spectral characteristics of a light emitting unit and a light receiving unit in the form of FIG.

【図3】図1に示す実施の形態の動作フローを示すフロ
ー図である。
FIG. 3 is a flowchart showing an operation flow of the embodiment shown in FIG.

【図4】図3のフロー図の一部を詳細に示すフロー図で
ある。
FIG. 4 is a flowchart showing in detail a part of the flowchart of FIG.

【図5】請求項3記載の発明の実施の1形態を特徴部分
のみ示す概略図である。
FIG. 5 is a schematic diagram showing only a characteristic part of one embodiment of the invention according to claim 3;

【図6】請求項5,6,7,9記載の含水分測定装置の
実施の1形態例を説明するための図である。
FIG. 6 is a diagram for explaining one embodiment example of the moisture content measuring apparatus according to claims 5, 6, 7 and 9.

【図7】図6の形態における含水分測定のタイムチャー
トである。
FIG. 7 is a time chart of moisture content measurement in the embodiment of FIG.

【図8】図6に示す実施の形態における含水分測定の手
順を示すフロー図である。
FIG. 8 is a flowchart showing a procedure for measuring water content in the embodiment shown in FIG.

【図9】図8に示すフロー図の1部の詳細を示すフロー
図である。
9 is a flowchart showing details of a part of the flowchart shown in FIG. 8. FIG.

【図10】含水分の演算式の1例を説明するための図で
ある。
FIG. 10 is a diagram for explaining an example of an arithmetic expression of water content.

【図11】請求項5記載の発明の実施の別の形態の特徴
部分を説明するための図である。
FIG. 11 is a diagram for explaining a characteristic portion of another embodiment of the invention according to claim 5;

【符号の説明】 1 含水分測定装置 2,3 発光部 4 受光部 5 検知装置 6 発光駆動回路 7 増幅回路 8 制御部 12 検知対象[Explanation of symbols] 1 moisture content measuring device 2, 3 light emitting part 4 light receiving part 5 detection device 6 light emission drive circuit 7 amplification circuit 8 control part 12 detection target

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】検知対象に順次に光を照射する、発光波長
の異なる複数の発光部と、検知対象からの反射光を受光
する受光部とを有する含水分検知装置において、 上記複数の発光部の順次発光動作に基づいて上記受光部
から複数の受光信号を取り込み、この複数の受光信号の
比較から、予め設定された値をもとに検知対象の含水分
を判断する制御部を備えたことを特徴とする含水分検知
装置。
1. A moisture-containing detector, comprising: a plurality of light-emitting portions having different emission wavelengths for sequentially irradiating a detection target with light; and a light-receiving portion for receiving reflected light from the detection target. A plurality of light-receiving signals from the light-receiving unit based on the sequential light-emission operation, and comparing the plurality of light-receiving signals to determine a moisture content to be detected based on a preset value. A moisture content detection device characterized by:
【請求項2】検知対象に順次に光を照射する、発光波長
の異なる複数の発光部と、 検知対象からの反射光を受光する受光部とを備え、 上記複数の発光部は上記受光部の分光感度の長波長側の
1.45μmに分光発光強度のピークを持つ発光部と、
上記受光部の分光感度の短波長側に分光発光強度のピー
クを持つ発光部とを有し、 上記複数の発光部と上記受光部とを所定の角度で配置す
るとともに、上記複数の発光部及び上記受光部の出力を
外部入力により設定可能としたことを特徴とする含水分
検知装置。
2. A plurality of light emitting parts having different emission wavelengths for sequentially irradiating the detection target with light, and a light receiving part for receiving reflected light from the detection target, wherein the plurality of light emitting parts are the light receiving parts of the light receiving part. A light emitting section having a peak of spectral emission intensity at 1.45 μm on the long wavelength side of the spectral sensitivity,
The light receiving unit has a light emitting unit having a peak of spectral emission intensity on the short wavelength side of the spectral sensitivity of the light receiving unit, and the plurality of light emitting units and the light receiving unit are arranged at a predetermined angle, and the plurality of light emitting units and A moisture content detecting device characterized in that the output of the light receiving unit can be set by an external input.
【請求項3】検知対象に光を照射する発光部と、 検知対象からの反射光を受光する受光部と、 上記発光部の発光動作に基づいて上記受光部から受光信
号を取り込んで記憶手段により記憶し、この記憶手段で
記憶した受光信号から予め設定された値をもとに検知対
象の含水分を判断する制御部とを備えたことを特徴とす
る含水分検知装置。
3. A light emitting unit for irradiating a detection target with light, a light receiving unit for receiving reflected light from the detection target, and a storage unit for receiving a light receiving signal from the light receiving unit based on the light emitting operation of the light emitting unit. A moisture content detection device, comprising: a storage unit, and a control unit that determines a moisture content to be detected based on a preset value from a light reception signal stored in the storage unit.
【請求項4】水による吸収度が互いに異なる波長もしく
は波長域の2種以上の近赤外光を測定対象に対して順次
照射し、測定対象による反射光を受光手段により検出信
号化して測定対象の含水分に関するデータとして含水分
測定を行う方法であって、 k(≧2)種の近赤外光を、k個の発光源から測定対象
に照射するようにするとともに、測定対象による反射光
を透過性の集光光学系により単一の受光手段に集光させ
るようにし、 上記受光手段の出力を間欠的に取り込みつつ、上記k個
の発光源を上記取り込みに同期して順次発光させること
により、受光手段の検出信号として、何れの発光源も発
光していない状態のときの検出信号:PD0と、第j
(1≦j≦k)番目の発光源が発光しているときの検出
信号:PDjとによる(1+k)個の検出信号を、所定
のn(≧2)回繰り返して発生させ、 n・(1+k)個の検出信号をデータとするデータ処理
により、測定対象における含水分を検出することを特徴
とする近赤外光による含水分測定方法。
4. An object to be measured by sequentially irradiating the object to be measured with two or more kinds of near-infrared light having wavelengths or wavelength ranges different in absorption by water, and converting the reflected light from the object to be detected into a detection signal by a light receiving means. Is a method for measuring moisture content as data relating to moisture content, wherein k (≧ 2) types of near-infrared light are irradiated from a k number of light emission sources to a measurement target, and reflected light from the measurement target is To collect light on a single light receiving means by a transmissive light collecting optical system, and to intermittently capture the output of the light receiving means while sequentially emitting light from the k light emitting sources in synchronization with the capture. Thus, as the detection signal of the light receiving means, the detection signal when no light emission source is emitting light: PD 0 , and the j-th
Detection signal when (1 ≦ j ≦ k) th light emitting source emits light: (1 + k) detection signals by PD j are repeatedly generated for a predetermined n (≧ 2) times, and n · ( A moisture content measuring method using near-infrared light, which comprises detecting moisture content in a measurement object by data processing using 1 + k) detection signals as data.
【請求項5】水による吸収度が互いに異なる波長もしく
は波長域の2種以上の近赤外光を測定対象に対して順次
照射し、測定対象による反射光を受光手段により検出信
号化して測定対象の含水分に関するデータとして含水分
測定を行なう装置であって、 水による吸収度が互いに異なる波長もしくは波長域のk
(≧2)種の近赤外光を別個に放射して測定対象に照射
するk個の発光源と、 上記k種の赤外光の、測定対象による反射光を受光する
単一の受光手段と、 上記測定対象による各反射光を上記受光手段に集光させ
るための透過性の集光光学系と、 上記受光手段の検出信号として、いずれの発光源も発光
していない状態のときの検出信号:PD0と、第j(1
≦j≦k)番目の発光源が発光しているときの検出信
号:PDjとによる(1+k)個の検出信号を、所定の
n(≧2)回繰り返して発生させるように、上記受光手
段の出力を間欠的に取り込み制御しつつ、上記k個の発
光源を上記取り込みに同期して順次発光制御し、得られ
るn・(1+k)個の検出信号をデータとするデータ処
理を行ない、測定対象における含水分を検出する制御処
理手段と、 この制御処理手段により検出された含水分を表示する表
示手段とを有することを特徴とする近赤外光による含水
分測定装置。
5. An object to be measured by sequentially irradiating the object to be measured with two or more kinds of near-infrared light having wavelengths or wavelength ranges different in absorption by water, and converting the reflected light from the object to be detected into a detection signal by a light receiving means. Is a device for measuring moisture content as data relating to the moisture content of the
K light emitting sources that separately radiate (≧ 2) types of near-infrared light and irradiate the measurement target, and a single light receiving unit that receives reflected light of the k types of infrared light from the measurement target. And a transmissive condensing optical system for condensing each reflected light from the measurement target on the light receiving means, and detection when no light emitting source is emitting light as a detection signal of the light receiving means. Signal: PD 0 and j-th (1
The light receiving means so as to generate (1 + k) detection signals by the detection signal: PD j when the ≦ j ≦ k) th light source is emitting light: PD j While intermittently controlling the output of the above, the light emission control of the above k light emitting sources is sequentially performed in synchronization with the above capture, and the data processing is performed by using the obtained n · (1 + k) detection signals as data, and the measurement is performed. An apparatus for measuring moisture content by near-infrared light, comprising: control processing means for detecting moisture content in a target; and display means for displaying moisture content detected by this control processing means.
【請求項6】請求項5記載の含水分測定装置において、 発光源が2個であり、一方の発光源は1.45μmに分
光発光強度のピークを持つ発光素子であり、他方の発光
源は1.4μm以下の近赤外領域に分光発光強度のピー
クを持つ発光素子であることを特徴とする近赤外光によ
る含水分測定装置。
6. The moisture content measuring apparatus according to claim 5, wherein the number of light emitting sources is two, one of the light emitting sources is a light emitting element having a peak of spectral emission intensity at 1.45 μm, and the other light emitting source is An apparatus for measuring moisture content by near infrared light, which is a light emitting element having a peak of spectral emission intensity in the near infrared region of 1.4 μm or less.
【請求項7】請求項5記載の含水分測定装置において、 2個の発光源が同一の樹脂ケース内に納められ、集光光
学系の中央部に配備されることを特徴とする近赤外光に
よる含水分測定装置。
7. The near-infrared device according to claim 5, wherein the two light emitting sources are housed in the same resin case and arranged in the center of the condensing optical system. Moisture content measuring device by light.
【請求項8】請求項5または6記載の含水分測定装置に
おいて、 他方の発光源をなす発光素子は、可視領域に分光発光強
度を有することを特徴とする近赤外光による含水分測定
装置。
8. The moisture content measuring apparatus according to claim 5 or 6, wherein the light emitting element forming the other emission source has a spectral emission intensity in the visible region. .
【請求項9】請求項5または6または7または8記載の
含水分測定装置において、 透過性の集光光学系が、珪素系のレンズであることを特
徴とする近赤外光による含水分測定装置。
9. The moisture content measuring apparatus according to claim 5, 6 or 7 or 8, wherein the transparent condensing optical system is a silicon-based lens. apparatus.
【請求項10】請求項5または6または7または8記載
の含水分測定装置において、 透過性の集光光学系が、ホログラムレンズであることを
特徴とする近赤外光による含水分測定装置。
10. The moisture content measuring apparatus according to claim 5, 6 or 7 or 8, wherein the transparent condensing optical system is a hologram lens.
JP00550696A 1995-04-18 1996-01-17 Moisture content detection device / moisture content measurement method and moisture content measurement device Expired - Fee Related JP3423518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00550696A JP3423518B2 (en) 1995-04-18 1996-01-17 Moisture content detection device / moisture content measurement method and moisture content measurement device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7-92269 1995-04-18
JP9226995 1995-04-18
JP7-147634 1995-06-14
JP14763495 1995-06-14
JP00550696A JP3423518B2 (en) 1995-04-18 1996-01-17 Moisture content detection device / moisture content measurement method and moisture content measurement device

Publications (2)

Publication Number Publication Date
JPH0961351A true JPH0961351A (en) 1997-03-07
JP3423518B2 JP3423518B2 (en) 2003-07-07

Family

ID=27276779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00550696A Expired - Fee Related JP3423518B2 (en) 1995-04-18 1996-01-17 Moisture content detection device / moisture content measurement method and moisture content measurement device

Country Status (1)

Country Link
JP (1) JP3423518B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406198B2 (en) 2003-03-25 2008-07-29 Fujitsu Limited Image capture apparatus
JP2012524240A (en) * 2009-04-16 2012-10-11 イブラッカー ディットマール Device for determining the water content of a target
US8750732B2 (en) 2011-09-07 2014-06-10 Ricoh Company, Limited Moisture sensor, moisture detector, and image forming apparatus
WO2016031128A1 (en) * 2014-08-27 2016-03-03 パナソニックIpマネジメント株式会社 Substance detection sensor, substance detection method, and substance detection system
WO2018029884A1 (en) * 2016-08-10 2018-02-15 シャープ株式会社 Image formation device and determination method
US10684218B2 (en) 2017-04-11 2020-06-16 Canon Kabushiki Kaisha Moisture detecting apparatus for recording material and image forming apparatus
CN111758021A (en) * 2018-02-27 2020-10-09 松下知识产权经营株式会社 Water content detection device
CN113841040A (en) * 2019-06-20 2021-12-24 松下知识产权经营株式会社 Sensitivity adjustment plate and method for manufacturing sensor device
KR20220097693A (en) * 2020-12-30 2022-07-08 주식회사 에스에프에이 Monitoring apparatus and monitoring method for electrode

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406198B2 (en) 2003-03-25 2008-07-29 Fujitsu Limited Image capture apparatus
JP2012524240A (en) * 2009-04-16 2012-10-11 イブラッカー ディットマール Device for determining the water content of a target
US8750732B2 (en) 2011-09-07 2014-06-10 Ricoh Company, Limited Moisture sensor, moisture detector, and image forming apparatus
US9157853B2 (en) 2011-09-07 2015-10-13 Ricoh Company, Ltd. Moisture sensor, moisture detector, and image forming apparatus
US10094769B2 (en) 2014-08-27 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Substance detection sensor, substance detecting method, and substance detection system having dual light source with optical scanning
WO2016031128A1 (en) * 2014-08-27 2016-03-03 パナソニックIpマネジメント株式会社 Substance detection sensor, substance detection method, and substance detection system
JP2016048196A (en) * 2014-08-27 2016-04-07 パナソニックIpマネジメント株式会社 Substance detection sensor, substance detection method and substance detection system
CN109564154A (en) * 2016-08-10 2019-04-02 夏普株式会社 Image forming apparatus and method of discrimination
WO2018029884A1 (en) * 2016-08-10 2018-02-15 シャープ株式会社 Image formation device and determination method
JPWO2018029884A1 (en) * 2016-08-10 2019-06-06 シャープ株式会社 Image forming apparatus and determination method
US10684218B2 (en) 2017-04-11 2020-06-16 Canon Kabushiki Kaisha Moisture detecting apparatus for recording material and image forming apparatus
US11035787B2 (en) 2017-04-11 2021-06-15 Canon Kabushiki Kaisha Moisture detecting apparatus for recording material and image forming apparatus
US11415508B2 (en) 2017-04-11 2022-08-16 Canon Kabushiki Kaisha Moisture detecting apparatus for recording material and image forming apparatus
US11815453B2 (en) 2017-04-11 2023-11-14 Canon Kabushiki Kaisha Moisture detecting apparatus for recording material and image forming apparatus
CN111758021A (en) * 2018-02-27 2020-10-09 松下知识产权经营株式会社 Water content detection device
CN113841040A (en) * 2019-06-20 2021-12-24 松下知识产权经营株式会社 Sensitivity adjustment plate and method for manufacturing sensor device
CN113841040B (en) * 2019-06-20 2024-03-22 松下知识产权经营株式会社 Sensitivity adjustment plate and method for manufacturing sensor device
KR20220097693A (en) * 2020-12-30 2022-07-08 주식회사 에스에프에이 Monitoring apparatus and monitoring method for electrode

Also Published As

Publication number Publication date
JP3423518B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
EP0001178B1 (en) An optical sensing instrument
CN102841197B (en) Analytical equipment and analytical approach
US20070139720A1 (en) Paper sheet discrimination apparatus, paper sheet processing apparatus, and paper sheet discrimination method
KR20140011258A (en) Method of detection of defects and defects detection device
KR100231373B1 (en) Method and apparatus for infrared moisture measurement
JP2007535667A (en) Measuring head for spectral analysis and method for recalibration thereof
JP3423518B2 (en) Moisture content detection device / moisture content measurement method and moisture content measurement device
EP0366306B1 (en) Method for discriminating authenticity of a bill and an apparatus therefor
EP0306337B1 (en) Spectrophotometer
EP1914529B1 (en) Method for analyzing the apparent colour and the gonio reflectance of an object
JPH07229840A (en) Method and apparatus for optical measurement
TW201409016A (en) Light calibration device, biological detection calibration system and operating method thereof
JP2002098636A (en) Spectroscopic analyzer
JP6061031B2 (en) Spectroscopic analysis system and method
US20190228205A1 (en) Skinprint analysis method and apparatus
GB2062219A (en) Contactless measurement for substance concentration
JPH1096604A (en) Seam part detector for seam welded pipe
JPH1137930A (en) Absorptiometer
JPH07260680A (en) Infrared ray sensor
JPH07306139A (en) Method and instrument for measuring concentration of component, etc., of liquid sample
JP3994669B2 (en) Photodetector
JPH06229913A (en) Measuring method for content of component of grain and the like
CN114636688B (en) Model correction method, spectroscopic apparatus, computer apparatus, and storage medium
US20240071173A1 (en) Casino token counting systems, devices, and methods
JP2788370B2 (en) Densitometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees