[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0959269A - Production of glycydyl methacrylate - Google Patents

Production of glycydyl methacrylate

Info

Publication number
JPH0959269A
JPH0959269A JP7217560A JP21756095A JPH0959269A JP H0959269 A JPH0959269 A JP H0959269A JP 7217560 A JP7217560 A JP 7217560A JP 21756095 A JP21756095 A JP 21756095A JP H0959269 A JPH0959269 A JP H0959269A
Authority
JP
Japan
Prior art keywords
reaction
glycidyl methacrylate
catalyst
hydrogen peroxide
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7217560A
Other languages
Japanese (ja)
Inventor
Osamu Kondo
近藤  治
Takashi Konishi
隆 小西
Takashi Onozawa
隆 小野澤
Takanobu Okamoto
隆伸 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP7217560A priority Critical patent/JPH0959269A/en
Publication of JPH0959269A publication Critical patent/JPH0959269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject compound for powder coating, adhesives, curing agents in high yield by reacting allyl methacrylate with hydrogen peroxide in the presence of a solid catalyst in a solvent, separating the catalyst and washing the reaction product with water or an alkali aqueous solution and distilling the product. SOLUTION: Allyl methacrylate is reacted with dropped hydrogen peroxide at 60 deg.C in one or more kinds of solvents selected from methanol and acetone or methanol, methylethyl ketone, etc., in the presence of a solid catalyst comprising titanosilicate, etc., having MFI crystalline structure and prepared by adding tetrapropylammonium hydroxide aqueous solution to tetraethyl orthosilicate and heating these components at 210 deg.C in an autoclave and carrying out baking treatment of these components at 550 deg.C and the reactional liquid is filtered to remove a solid catalyst and the solution is washed with water or alkali aqueous solution and distilled to provide the objective glycidyl methacrylate useful as a raw material for powder coating, an adhesive, a curing agent, a modifier, etc., in a high yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉体塗料原料、接着
剤、硬化剤、改質剤等の幅広い用途を持つ重要な工業用
原料であるメタクリル酸グリシジルを塩素化合物を全く
含まずに製造する方法に関するものである。
Industrial Field of the Invention The present invention produces glycidyl methacrylate, which is an important industrial raw material having a wide range of uses such as powder coating raw materials, adhesives, curing agents, and modifiers, without containing chlorine compounds. It is about how to do it.

【0002】[0002]

【従来の技術】分子内にメタクロイル基とエポキシ基を
有するメタクリル酸グリシジルは極めて反応性に富む化
合物であり、反応性モノマーとして各種用途に用いられ
ている。メタクリル酸グリシジルは、メタクリル酸或い
はそのアルカリ金属塩とエピクロルヒドリンとの反応に
よって製造する方法が公知であるが、原料として用いる
エピクロルヒドリン或いは副生成物である塩素化合物が
製品中に残留する問題がある。この問題を回避するため
に、全く塩素源を使用しないプロセスへの変換が種々試
みられており、エピクロルヒドリンの代わりにグリシド
ールを用いる方法、或いはメタクリル酸アリルをエポキ
シ化する方法などが知られている。なかでもメタクリル
酸アリルを比較的安価な酸化剤である過酸化水素を用い
てエポキシ化する方法は、有望な方法としていくつかの
試みがなされている。
2. Description of the Related Art Glycidyl methacrylate having a methacryloyl group and an epoxy group in its molecule is a highly reactive compound and is used as a reactive monomer for various purposes. Glycidyl methacrylate is known to be produced by a reaction of methacrylic acid or an alkali metal salt thereof with epichlorohydrin, but there is a problem that epichlorohydrin used as a raw material or a chlorine compound as a by-product remains in the product. In order to avoid this problem, various attempts have been made to convert the process to a process using no chlorine source, and a method using glycidol instead of epichlorohydrin, a method of epoxidizing allyl methacrylate, etc. are known. Among them, the method of epoxidizing allyl methacrylate using hydrogen peroxide, which is a relatively inexpensive oxidizing agent, has been attempted as a promising method.

【0003】例えば、触媒として均一系触媒であるアル
カリ金属のモリブデン酸塩またはタングステン酸塩存在
下、相関移動触媒を使用してエポキシ化する方法が特開
平5−92962号公報に開示されているが、反応速度
が非常に小さいうえ、触媒の分離回収が容易でなく実用
的なレベルに到達していない。一方、反応後の分離が容
易な固体触媒を用いる方法の開発が近年盛んに行われて
いる。例えば、MFI構造を持つ酸化ケイ素−酸化チタ
ン合成ゼオライトであるチタノシリケート触媒を用いて
メタクリル酸アリルを過酸化水素でエポキシ化する方法
が特開昭61−183275号公報に開示されている。
For example, JP-A-5-92962 discloses a method of epoxidizing a phase transfer catalyst in the presence of a molybdate or tungstate of an alkali metal which is a homogeneous catalyst. In addition, the reaction rate is very low, and the separation and recovery of the catalyst is not easy, and it has not reached a practical level. On the other hand, in recent years, a method using a solid catalyst which can be easily separated after the reaction has been actively developed. For example, JP-A-61-183275 discloses a method of epoxidizing allyl methacrylate with hydrogen peroxide using a titanosilicate catalyst which is a silicon oxide-titanium oxide synthetic zeolite having an MFI structure.

【0004】[0004]

【発明が解決しようとする問題点】本発明者らは、上記
のチタノシリケート触媒を用いる方法を詳細に検討した
結果、反応自体は良好に進行し、優れた反応成績でメタ
クリル酸グリシジルを与えるものの、触媒を濾過した反
応溶液からメタクリル酸グリシジルを回収する際に、種
々の要因に基づく物理的、化学的なロスが大きく、反応
時の収率が結果的に大幅に低下してしまうという欠点を
有することが判明した。チタノシリケート触媒を用いた
過酸化水素によるエポキシ化反応においては、反応を良
好に進行させるために溶媒の存在が不可欠であり、一般
に、メタノールが反応溶媒として好適であることが知ら
れている(特公平4−5028号公報)。しかしなが
ら、メタクリル酸アリルの系では反応後の溶液は室温付
近に冷却しても均一であるため、反応溶液からメタクリ
ル酸グリシジルを取り出すためには、蒸留によって溶媒
であるメタノール、過酸化水素の希釈剤であり反応でも
生成する水を除去する必要がある。これには大きなエネ
ルギーを要しコストアップの要因となる。その上、メタ
ノールと水の分離は単蒸留では困難であり、多量の水が
廃棄されずに反応系にリサイクルされ蓄積するという問
題点を有する。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention As a result of detailed investigation of the above-mentioned method using a titanosilicate catalyst, the present inventors have found that the reaction itself proceeds well and gives glycidyl methacrylate with excellent reaction results. However, when recovering glycidyl methacrylate from the reaction solution obtained by filtering the catalyst, physical and chemical losses due to various factors are large, and the yield at the time of the reaction is significantly reduced. Was found to have. In the epoxidation reaction with hydrogen peroxide using a titanosilicate catalyst, the presence of a solvent is indispensable in order to proceed the reaction favorably, and it is generally known that methanol is suitable as a reaction solvent ( Japanese Patent Publication No. 4-5028). However, in the system of allyl methacrylate, the solution after the reaction is uniform even when cooled to around room temperature, so in order to take out glycidyl methacrylate from the reaction solution, a solvent such as methanol and a diluent for hydrogen peroxide are distilled. Therefore, it is necessary to remove water generated in the reaction. This requires a large amount of energy and causes a cost increase. Moreover, it is difficult to separate methanol and water by simple distillation, and there is a problem that a large amount of water is recycled and accumulated in the reaction system without being discarded.

【0005】さらに解決困難な問題として蒸留中に生じ
る重合の問題がある。メタクリル酸グリシジルは非常に
重合活性が高いために、通常ラジカル重合禁止剤を添加
して蒸留を行うが、本系にこのような重合禁止剤を添加
してもその効果は小さく、蒸留中に重合が進行し大量の
重合物が釜残として残るため、反応で生成したメタクリ
ル酸グリシジルのうち実際に取り出すことのできる割合
は非常に小さなものとなる。上述したように、この方法
は比較的高価なメタクリル酸アリルを原料として用いる
方法であるため、より高い収率でメタクリル酸グリシジ
ルを反応溶液から取り出すことが工業上必要不可欠であ
る。本発明の課題は、固体触媒、特にチタノシリケート
触媒を用いてメタクリル酸アリルを過酸化水素によりエ
ポキシ化しメタクリル酸グリシジルを製造する方法にお
いて、各工程における物理的、及び化学的ロスなく高い
収率でメタクリル酸グリシジルを得る方法を提供するこ
とである。
A further difficult problem to solve is the problem of polymerization that occurs during distillation. Glycidyl methacrylate has a very high polymerization activity, so a radical polymerization inhibitor is usually added for distillation, but even if such a polymerization inhibitor is added to this system, the effect is small and However, since a large amount of the polymer remains as a residue in the kettle, the ratio of glycidyl methacrylate produced in the reaction that can be actually taken out is very small. As described above, since this method uses relatively expensive allyl methacrylate as a raw material, it is industrially indispensable to take out glycidyl methacrylate from the reaction solution in a higher yield. The subject of the present invention is a solid catalyst, in particular, in a method for producing glycidyl methacrylate by epoxidizing allyl methacrylate with hydrogen peroxide using a titanosilicate catalyst, physical and physical steps in each step, and high yield without chemical loss. Is to provide a method for obtaining glycidyl methacrylate.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記の課題
の解決を図るべく鋭意検討を行った結果、反応溶媒とし
てメタノールとケトンの混合物を用いて反応を行った反
応液を、触媒を濾過し、水またはアルカリ水溶液で洗浄
後蒸留することによって、重合などの問題を生じること
なく高い収率でメタクリル酸グリシジルを回収すること
が可能であることを見いだし、本発明を完成させるに至
ったものである。以下、本発明について詳しく説明す
る。
Means for Solving the Problems As a result of intensive investigations aimed at solving the above-mentioned problems, the present inventors have found that a reaction solution obtained by carrying out a reaction using a mixture of methanol and a ketone as a reaction solvent is treated with a catalyst. It was found that it is possible to recover glycidyl methacrylate in a high yield without causing problems such as polymerization by filtering, washing with water or an aqueous alkali solution and then distilling, and completed the present invention. It is a thing. Hereinafter, the present invention will be described in detail.

【0007】本発明で用いる固体触媒としては、チタン
原子を結晶格子内に含む各種結晶性物質が用いられ、M
FI構造を持つTS−1、MEL構造を持つTS−2、
ゼオライトβ構造を持つTi−β、等を例示することが
できるが、なかでもMFI構造を持つチタノシリケート
触媒(TS−1)が最も好適に使用される。このチタノ
シリケート触媒は、公知の方法(例えば、USP4,4
10,501号公報)で調製したものを用いることがで
きる。チタノシリケート触媒の量は、触媒の活性が結晶
中に含まれるTi量によって変化するために一般的な規
定はできないが、通常、反応混合物中の濃度として、
0.1〜20重量%の範囲が適当である。より好ましく
は、0.5〜10重量%の範囲である。
As the solid catalyst used in the present invention, various crystalline substances containing titanium atoms in the crystal lattice are used.
TS-1 with FI structure, TS-2 with MEL structure,
Ti-β having a zeolite β structure and the like can be exemplified, but among them, a titanosilicate catalyst (TS-1) having an MFI structure is most preferably used. This titanosilicate catalyst is prepared by a known method (for example, USP 4,4
No. 10,501) can be used. The amount of the titanosilicate catalyst cannot be generally specified because the activity of the catalyst changes depending on the amount of Ti contained in the crystal, but usually, as the concentration in the reaction mixture,
A range of 0.1 to 20% by weight is suitable. More preferably, it is in the range of 0.5 to 10% by weight.

【0008】反応溶媒としてメタノールとケトンの混合
溶媒を用いるが、ケトンとしてはアセトン、或いはメチ
ルエチルケトンが好ましく、より好ましくはメチルエチ
ルケトンである。混合溶媒中のメタノールとケトンの混
合比率は、メタノール/ケトン重量比にして0.1:1
〜10:1の範囲とすることが好ましい。混合溶媒中の
メタノール量が多すぎると、アルカリ洗浄後の水層にメ
タクリル酸グリシジルが分配される割合が増加するた
め、混合比率のより好ましい範囲は0.2:1〜2:1
の範囲である。本発明においては、前記の範囲を守れ
ば、アルコール、ケトン以外の溶媒を添加することを妨
げない。アルコールとケトンの混合物の使用量には適当
な範囲が存在する。アルコールとケトンの混合物の量が
少なすぎると、反応混合物が反応温度においても有機層
と水層とに分離し、主に水層中で進行するメタクリル酸
グリシジルの加水分解反応によるジオール生成などの副
反応の寄与が大きくなり好ましくない。一方、アルコー
ルとケトンの混合物の量が多すぎると反応速度の低下
や、生成するメタクリル酸グリシジルの反応混合物中濃
度が低くなるために、多量の溶媒を除去するためのエネ
ルギーコストが大きくなりすぎて経済的でない。アルコ
ールとケトンの混合物の量は、不溶性である触媒を除い
た反応混合物の液相が反応温度において均一状態であ
り、有機層と水層に分離しないような量が望ましい。そ
のようなメタノールとケトンの混合物の量はメタクリル
酸アリルと過酸化水素のモル比などによっても変わり得
るが、通常、触媒を除いた反応混合物総量に対して5〜
80重量%、より好ましくは20〜50重量%の範囲か
ら選択される。
A mixed solvent of methanol and a ketone is used as a reaction solvent, and the ketone is preferably acetone or methyl ethyl ketone, more preferably methyl ethyl ketone. The mixing ratio of methanol and ketone in the mixed solvent is 0.1: 1 in terms of methanol / ketone weight ratio.
It is preferably in the range of 10: 1. If the amount of methanol in the mixed solvent is too large, the proportion of glycidyl methacrylate distributed in the aqueous layer after alkali washing increases, so a more preferable range of the mixing ratio is 0.2: 1 to 2: 1.
Range. In the present invention, as long as the above range is maintained, addition of solvents other than alcohols and ketones is not hindered. There is a suitable range for the amount of alcohol and ketone mixture used. If the amount of the mixture of alcohol and ketone is too small, the reaction mixture is separated into an organic layer and an aqueous layer even at the reaction temperature, and a secondary reaction such as diol formation due to the hydrolysis reaction of glycidyl methacrylate mainly proceeds in the aqueous layer. This is not preferable because the contribution of the reaction becomes large. On the other hand, if the amount of the mixture of alcohol and ketone is too large, the reaction rate decreases and the concentration of glycidyl methacrylate produced in the reaction mixture becomes low, and the energy cost for removing a large amount of solvent becomes too large. Not economical. The amount of the alcohol and ketone mixture is preferably such that the liquid phase of the reaction mixture excluding the insoluble catalyst is homogeneous at the reaction temperature and does not separate into the organic layer and the aqueous layer. The amount of such a mixture of methanol and ketone may vary depending on the molar ratio of allyl methacrylate and hydrogen peroxide, etc., but is usually 5 to 5 with respect to the total amount of the reaction mixture excluding the catalyst.
It is selected from the range of 80% by weight, more preferably 20 to 50% by weight.

【0009】用いる過酸化水素に特に制限はなく、30
重量%、60重量%、90重量%等の濃度の過酸化水素
水溶液を使用することができる。添加する過酸化水素の
量は、メタクリル酸アリルに対してモル比で過剰に用い
ることもできるし、メタクリル酸アリルの方を過剰に用
いることもできる。過酸化水素を過剰に用いる場合は、
反応混合物中の反応物濃度を相対的に低減できるため製
品の分離精製コストの低減のメリットがあるものの、反
応に長時間を要し、メタクリル酸グリシジルの加水分解
によるジオールの生成など副反応の寄与が大きく、プロ
セス全体でみれば多くの場合好ましくない結果を与え
る。一方、メタクリル酸アリルを過剰に用いる場合に
は、過剰のメタクリル酸アリルを後に除去回収する必要
があるものの、反応速度が大きい、副生物の生成が比較
的わずかである等の利点の他、疎水性の高いメタクリル
酸アリルが残存することによるアルカリ洗浄時の二層分
離が容易であり、且つメタクリル酸グリシジルの水層へ
の移行が抑制される等、より好ましい結果を与える。こ
れらのことを考慮すると、メタクリル酸アリル/過酸化
水素モル比の好ましい範囲は1.1〜5より好ましくは
1.5〜3である。
There is no particular limitation on the hydrogen peroxide used, and it is 30
An aqueous solution of hydrogen peroxide having a concentration such as wt%, 60 wt% or 90 wt% can be used. The amount of hydrogen peroxide to be added can be used in excess with respect to allyl methacrylate in a molar ratio, or allyl methacrylate can be used in excess. If hydrogen peroxide is used in excess,
Although the concentration of the reactants in the reaction mixture can be relatively reduced, it has the merit of reducing the cost of separating and purifying the product, but the reaction takes a long time and contributes to side reactions such as the formation of diol by the hydrolysis of glycidyl methacrylate. Is large and often gives unfavorable results in the whole process. On the other hand, when allyl methacrylate is used in excess, it is necessary to remove and collect the excess allyl methacrylate later, but in addition to the advantages such as high reaction rate and relatively small generation of by-products, hydrophobic The more preferable results are obtained such that the two-layer separation at the time of alkali cleaning due to the residual highly soluble allyl methacrylate is facilitated and the transfer of glycidyl methacrylate to the aqueous layer is suppressed. Considering these facts, the preferable range of the allyl methacrylate / hydrogen peroxide molar ratio is 1.1 to 5, more preferably 1.5 to 3.

【0010】本発明は、触媒、メタノールとケトンの混
合物並びにメタクリル酸アリルを槽型攪拌反応器等の反
応器に入れ、ここに過酸化水素を加えて反応を開始する
方式とすることが好ましい。一方、触媒、メタノールと
ケトンの混合物及び過酸化水素を槽型攪拌反応器などの
反応器に入れ、ここにメタクリル酸アリルを加えて反応
を開始する方式は副反応が無視できない程度に起こるの
で好ましくない。また、槽型攪拌反応器等の反応器に触
媒を固定し、ここにメタノールとケトンの混合物、メタ
クリル酸アリル及び過酸化水素を連続的に導入し、同時
に抜き出す方式も可能である。反応温度は、30〜12
0℃の範囲が好ましく、さらに好ましくは50〜80℃
の範囲である。反応温度は上記範囲より低いと反応速度
が遅く実用的でなく、上記範囲より高い場合は副反応の
寄与が大きくなる。メタクリル酸グリシジルを生成する
反応は発熱反応であるため、反応温度を一定の範囲に制
御するために、適当な方法で反応熱を除去することが好
ましい。
The present invention preferably employs a system in which a catalyst, a mixture of methanol and a ketone, and allyl methacrylate are placed in a reactor such as a tank-type stirring reactor and hydrogen peroxide is added to the reactor to start the reaction. On the other hand, a method in which a catalyst, a mixture of methanol and ketone, and hydrogen peroxide are placed in a reactor such as a tank-type stirring reactor and allyl methacrylate is added to start the reaction is preferable because side reactions occur to a degree that cannot be ignored. Absent. It is also possible to fix the catalyst in a reactor such as a tank-type stirring reactor and continuously introduce a mixture of methanol and ketone, allyl methacrylate and hydrogen peroxide into the reactor and simultaneously withdraw it. The reaction temperature is 30 to 12
The range of 0 ° C is preferable, and more preferably 50-80 ° C.
Range. When the reaction temperature is lower than the above range, the reaction rate is slow and not practical, and when it is higher than the above range, the contribution of side reaction becomes large. Since the reaction for producing glycidyl methacrylate is an exothermic reaction, it is preferable to remove the heat of reaction by an appropriate method in order to control the reaction temperature within a certain range.

【0011】どの時点において反応を終了させるかは蒸
留時の収率に大きな影響を持ち、プロセスの経済性を決
定する因子の一つである。過酸化水素転化率が十分でな
い時点で反応を終了させることは、残存過酸化水素は廃
棄せざるを得ないことからコストに占める過酸化水素の
割合が大きくなり望ましくない。しかしながら、過水転
化率を限りなく100%に近づけると生成したメタクリ
ル酸グリシジルの副反応の寄与が大きくなり、結果的に
蒸留時の重合をもたらし得策でないことを見いだした。
従って、好ましい反応終了時点として、限定物質である
過酸化水素の転化率が80%以上、99%以下に選ぶこ
とができる。より好ましくは90%以上98%以下であ
る。反応の終了は、反応溶液から触媒を除去すること、
或いは反応液を室温以下に冷却することによって行うこ
とができる。
The point at which the reaction is completed has a great influence on the yield during distillation and is one of the factors that determines the economic efficiency of the process. Terminating the reaction at a time when the conversion rate of hydrogen peroxide is not sufficient is not preferable because the residual hydrogen peroxide has to be discarded and the ratio of hydrogen peroxide to the cost increases. However, it has been found that when the conversion rate of perhydrogen is approached to 100% as much as possible, the contribution of the side reaction of glycidyl methacrylate formed becomes large, resulting in polymerization at the time of distillation, which is not a good measure.
Therefore, as a preferable end point of the reaction, the conversion rate of hydrogen peroxide, which is the limiting substance, can be selected to be 80% or more and 99% or less. It is more preferably 90% or more and 98% or less. The end of the reaction is to remove the catalyst from the reaction solution,
Alternatively, it can be performed by cooling the reaction solution to room temperature or lower.

【0012】濾過によって触媒を除去した反応溶液に、
水またはアルカリ水溶液を添加して洗浄を行う。アルカ
リの種類としては、生成したメタクリル酸グリシジルと
容易に反応せず、コスト的に許容されるものであれば、
その水溶液がpH値において7以上の範囲の物質から任
意に選択することができる。すなわち、水酸化ナトリウ
ム、炭酸水素ナトリウム、酢酸ナトリウム、等に代表さ
れるような物質である。水溶液中のアルカリの濃度は、
水の場合も含めて0〜10重量%の範囲である。あまり
高濃度のアルカリを用いると、メタクリル酸グリシジル
のエステル部分の加水分解などの好ましくない副反応が
生じる場合があるので注意を要する。一方、アルカリを
含まない純水の場合には、アルカリと同様の効果を持つ
ものの、同等の効果を得るためには相対的に多量の水に
よる洗浄が必要である。従って、好ましくは希薄なアル
カリ水溶液がよい。洗浄は公知の方法に従って行うこと
ができる。即ち、回分的に行うこともできるし、ミキサ
ー・セトラーのような装置で連続的に行うこともできる
し、或いは向流抽出装置を用いることも可能である。
The reaction solution from which the catalyst has been removed by filtration,
Washing is performed by adding water or an alkaline aqueous solution. As the type of alkali, if it does not easily react with the generated glycidyl methacrylate and is acceptable in terms of cost,
The aqueous solution can be arbitrarily selected from substances having a pH value of 7 or more. That is, it is a substance typified by sodium hydroxide, sodium hydrogen carbonate, sodium acetate, and the like. The concentration of alkali in the aqueous solution is
The range is 0 to 10% by weight including water. If an excessively high concentration of alkali is used, it is necessary to be careful because an undesirable side reaction such as hydrolysis of the ester portion of glycidyl methacrylate may occur. On the other hand, in the case of pure water containing no alkali, although it has the same effect as alkali, cleaning with a relatively large amount of water is necessary to obtain the same effect. Therefore, a dilute aqueous alkaline solution is preferable. Washing can be performed according to a known method. That is, it can be carried out batchwise, continuously with a device such as a mixer-settler, or it is possible to use a countercurrent extraction device.

【0013】洗浄に用いる水或いはアルカリ水溶液の量
には適当な範囲が存在する。すなわち、洗浄水量が少な
い場合には効果が小さくなり、逆に多すぎるとメタクリ
ル酸グリシジルの水層への分配が無視できなくなり、そ
の分は回収できなくなるために、蒸留時の重合抑制のメ
リットが相殺されてしまう。また、水層は廃水として廃
棄されることを考えると、可能な限り排水量を低減させ
ることが望ましい。回分的な洗浄を行う場合には、所定
量の水、或いはアルカリ水溶液を数回に分けて洗浄する
ことによって、トータルの量を減少させることも可能で
ある。また、必要洗浄水量は反応溶液組成によっても大
きく変わり、過酸水素転化率が100%に近づくほど、
蒸留での良好なメタクリル酸グリシジル回収率を得るた
めは多くの水洗量を必要とする。従って、上述したよう
な過水転化率の範囲内で反応を終了させることによっ
て、洗浄水量を低く抑えることができる。具体的な範囲
を例示すれば、濾過後の反応液に対して1〜20重量%
の水或いはアルカリ水溶液を用いて洗浄すれば十分その
効果が得られる。
There is an appropriate range for the amount of water or alkaline aqueous solution used for washing. That is, when the amount of washing water is small, the effect becomes small, and conversely when it is too large, the distribution of glycidyl methacrylate into the aqueous layer cannot be ignored, and the amount cannot be recovered, which is an advantage of suppressing polymerization during distillation. Will be offset. Also, considering that the water layer is discarded as wastewater, it is desirable to reduce the amount of drainage as much as possible. When performing batch cleaning, it is possible to reduce the total amount by cleaning a predetermined amount of water or an aqueous alkaline solution in several times. Further, the required amount of washing water greatly changes depending on the composition of the reaction solution, and as the hydrogen peroxide conversion rate approaches 100%,
A large amount of washing with water is required to obtain a good recovery rate of glycidyl methacrylate by distillation. Therefore, the amount of washing water can be suppressed to a low level by terminating the reaction within the range of the above-mentioned conversion ratio of perhydrowater. For example, 1 to 20% by weight based on the reaction solution after filtration
The effect can be sufficiently obtained by washing with water or an alkaline aqueous solution.

【0014】[0014]

【実施例】以下に本発明を実施例によって具体的に説明
するが、本発明の内容はこれらによっていかなる意味に
おいても限定されるものではない。 参考例(チタノシリケート触媒調製方法) テトラエチルオルトシリケート375gとテトラエチル
オルトチタネート10.3gを、3Lの四つ口セパラブ
ルフラスコに入れ、窒素気流下、滴下ポンプを用いて2
0重量%テトラプロピルアンモニウムヒドロキシド水溶
液648gを5.4g/分の速度で滴下した。滴下の間
中、反応液温度は20℃で一定となるように調節した。
滴下終了後もしばらく攪拌を続け、加水分解を完全に進
行させた後、反応温度を80℃に加熱し加水分解で生成
したエタノールを反応液から留去し、透明なゾルを得
た。得られたゾルに蒸留水290gを加え、溶液全体の
重量を885gとしてSUS316製の3Lオートクレ
ーブに充填率30%で充填した。オートクレーブ内の気
体を窒素で置換した後、密閉して170℃に2日間加熱
後、210℃に昇温してさらに2日間210℃に保持し
た後、室温に冷却した。白色固体を含む液を遠心分離器
を用いて3000rpmで20分間遠心分離を行い、ほ
ぼ透明な上澄み液と白色のチタノシリケート粒子とに分
離した。得られた白色チタノシリケート粒子を蒸留水で
洗浄後、乾燥し、電気炉で空気中、550℃で6時間焼
成処理を行い、91.7gのチタノシリケート触媒を得
た。得られた結晶性チタノシリケート中のSi/Ti比
を蛍光X線法により求めたところ66であった。
EXAMPLES The present invention will be described below in detail with reference to examples, but the contents of the present invention are not limited in any way by these examples. Reference Example (Method for preparing titanosilicate catalyst) Tetraethyl orthosilicate (375 g) and tetraethyl orthotitanate (10.3 g) were placed in a 3 L four-necked separable flask and placed under a nitrogen stream using a dropping pump to obtain 2
648 g of a 0 wt% tetrapropylammonium hydroxide aqueous solution was added dropwise at a rate of 5.4 g / min. During the addition, the temperature of the reaction solution was adjusted to be constant at 20 ° C.
After completion of the dropwise addition, stirring was continued for a while, and the hydrolysis was allowed to proceed completely. Then, the reaction temperature was heated to 80 ° C., and ethanol produced by the hydrolysis was distilled off from the reaction solution to obtain a transparent sol. To the obtained sol, 290 g of distilled water was added, and the total weight of the solution was 885 g, which was filled in a 3 L autoclave made of SUS316 at a filling rate of 30%. After substituting the gas in the autoclave with nitrogen, it was sealed and heated to 170 ° C. for 2 days, heated to 210 ° C., kept at 210 ° C. for another 2 days, and then cooled to room temperature. The liquid containing a white solid was centrifuged at 3000 rpm for 20 minutes using a centrifuge to separate a substantially transparent supernatant liquid and white titanosilicate particles. The white titanosilicate particles obtained were washed with distilled water, dried, and calcined in an electric furnace at 550 ° C. for 6 hours in air to obtain 91.7 g of a titanosilicate catalyst. The Si / Ti ratio in the obtained crystalline titanosilicate was 66 as determined by a fluorescent X-ray method.

【0015】実施例1 メタクリル酸アリル330g(2.62モル)とメタノ
ール50g(1.56モル)及びメチルエチルケトン5
0g(0.69モル)、さらに上の参考例で調製したチ
タノシリケート触媒12.4gを攪拌機、温度計、環流
冷却管を付したフラスコに仕込み、ついで60重量%過
酸化水素水59.4g(1.05モル、原料メタクリル
酸アリル:過酸化水素モル比=2.5:1)を反応温度
60℃で1.5時間かけて滴下した。滴下終了後さらに
10分間攪拌を続けた後、触媒を濾過し反応を終了させ
た。過酸化水素転化率は93.7%であり、濾過後の反
応溶液中のメタクリル酸アリル残存量は201.4g
(1.60モル)、生成メタクリル酸グリシジル量は1
23.8g(0.87モル)であった。この反応溶液4
62.7gに、1.0重量%の水酸化ナトリウム水溶液
18.3g(反応液の4.0重量%)を添加し、室温で
攪拌した後静置し二層に分離させた(有機層422.9
g、水層58.1g)。有機層中に含まれるメタクリル
酸アリルは198.9g、メタクリル酸グリシジルは1
22.2gであり、回収率はそれぞれ98.7%、9
9.0%であった。有機層を500mlナスフラスコに
入れ、重合禁止剤アンテージW400を0.83g(溶
液の0.2重量%)添加して減圧下で単蒸留を行った。
まず、メタノール及びメチルエチルケトンを240mm
Hg、ボトム温度65℃で留去し、次いでメタクリル酸
アリルを40mmHg、ボトム温度75℃で留去した。
メタクリル酸グリシジルを含むメタクリル酸アリルを初
留として、圧力を35mmHgから留去に伴い3mmH
gに変化させ、ボトム温度70℃で取得後、3mmH
g、蒸気温度65℃で留去したメタクリル酸グリシジル
90.8gを得た。初留中に含まれる26.1gを合わ
せて合計116.9gのメタクリル酸グリシジルが回収
された(蒸留収率96.0%)。釜残は10.0g
(2.4重量%)であり、その粘度は低く重合は認めら
れなかった。触媒濾過後の反応溶液からのメタクリル酸
アリル及びメタクリル酸グリシジルの回収率はそれぞれ
97.6%、95.0%であり、ほぼ定量的な回収が可
能であった。結果を表1及び表2に示す。
Example 1 330 g (2.62 mol) of allyl methacrylate, 50 g (1.56 mol) of methanol and 5 methyl ethyl ketone
0 g (0.69 mol), and 12.4 g of the titanosilicate catalyst prepared in the above Reference Example were charged into a flask equipped with a stirrer, a thermometer, and a reflux condenser, and then 59.4 g of 60 wt% hydrogen peroxide solution. (1.05 mol, starting material allyl methacrylate: hydrogen peroxide molar ratio = 2.5: 1) was added dropwise at a reaction temperature of 60 ° C. over 1.5 hours. After stirring was continued for another 10 minutes after the completion of the dropwise addition, the catalyst was filtered to terminate the reaction. The hydrogen peroxide conversion rate was 93.7%, and the residual amount of allyl methacrylate in the reaction solution after filtration was 201.4 g.
(1.60 mol), the amount of glycidyl methacrylate produced is 1
It was 23.8 g (0.87 mol). This reaction solution 4
To 62.7 g, 18.3 g of a 1.0 wt% sodium hydroxide aqueous solution (4.0 wt% of the reaction solution) was added, and the mixture was stirred at room temperature and then left to stand to separate into two layers (organic layer 422). .9
g, aqueous layer 58.1 g). Allyl methacrylate contained in the organic layer is 198.9 g, and glycidyl methacrylate is 1
22.2 g, and the recoveries are 98.7% and 9 respectively.
It was 9.0%. The organic layer was placed in a 500 ml round-bottomed flask, 0.83 g (0.2 wt% of the solution) of the polymerization inhibitor Antage W400 was added, and simple distillation was performed under reduced pressure.
First, add methanol and methyl ethyl ketone to 240 mm
Hg was distilled off at a bottom temperature of 65 ° C, and then allyl methacrylate was distilled off at 40 mmHg and a bottom temperature of 75 ° C.
Allyl methacrylate containing glycidyl methacrylate was used as the initial distillation, and the pressure was changed from 35 mmHg to 3 mmH by distillation.
3gH after changing to g and acquiring at bottom temperature 70 ℃
g, and 90.8 g of glycidyl methacrylate were distilled off at a steam temperature of 65 ° C. A total of 116.9 g of glycidyl methacrylate was recovered by combining 26.1 g contained in the initial distillation (distillation yield: 96.0%). The remaining pot is 10.0g
(2.4% by weight), the viscosity was low and polymerization was not observed. The recoveries of allyl methacrylate and glycidyl methacrylate from the reaction solution after catalyst filtration were 97.6% and 95.0%, respectively, and almost quantitative recovery was possible. The results are shown in Tables 1 and 2.

【0016】実施例2〜5 実施例1と同様に、表1に示すような条件で洗浄を行っ
た。有機層に0.2重量%の重合禁止剤アンテージW4
00を添加して蒸留を行った結果を表2に示した。
Examples 2 to 5 As in Example 1, cleaning was carried out under the conditions shown in Table 1. 0.2% by weight of the polymerization inhibitor Antage W4 in the organic layer
Table 2 shows the result of distillation by adding 00.

【0017】比較例1(アルカリ水洗なし) 実施例1と全く同様の操作で反応液を調製し、触媒濾過
を行い、アルカリ水溶液による洗浄を省略して蒸留を行
った。ただし、重合禁止剤としてアンテージW400を
溶液の0.2重量%添加した。メタクリル酸グリシジル
の留分取得時に重合を生じ、回収されたメタクリル酸グ
リシジルから計算した蒸留収率は37.1%と非常にわ
ずかであった。釜残の重合物は80.1gと非常に多い
ものであった。結果を表1、2に示す。
Comparative Example 1 (without washing with alkaline water) A reaction solution was prepared in the same manner as in Example 1, filtered through a catalyst, and distilled without washing with an alkaline aqueous solution. However, 0.2% by weight of Antage W400 was added as a polymerization inhibitor. Polymerization occurred when the glycidyl methacrylate fraction was obtained, and the distillation yield calculated from the recovered glycidyl methacrylate was 37.1%, which was very small. The amount of the polymer remaining in the kettle was very large at 80.1 g. The results are shown in Tables 1 and 2.

【0018】比較例2(過酸化水素転化率>99%) 過酸化水素滴下終了後さらに30分攪拌し、過酸化水素
転化率を99.4%まで上げた以外は実施例1と同様に
して反応液を調製した溶液に、実施例1と同様なアルカ
リ洗浄を行った。結果を表2に示すように、蒸留時に重
合が生じ蒸留収率が85%と低い値となった。
Comparative Example 2 (Hydrogen Peroxide Conversion> 99%) The same as Example 1 except that the hydrogen peroxide conversion was raised to 99.4% by stirring for 30 minutes after the completion of hydrogen peroxide addition. The solution in which the reaction solution was prepared was washed with alkali in the same manner as in Example 1. As shown in the results in Table 2, polymerization occurred during distillation and the distillation yield was as low as 85%.

【0019】[0019]

【表1】 [Table 1]

【表2】 [Table 2]

フロントページの続き (72)発明者 岡本 隆伸 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内Front page continuation (72) Inventor Takanobu Okamoto 22 Wadai, Tsukuba City, Ibaraki Mitsubishi Gas Chemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アリルメタクリレートを1以上の溶媒及
び固体触媒の存在下、過酸化水素と反応させてメタクリ
ル酸グリシジルを製造する方法において、反応液から触
媒を分離し、該溶液を水またはアルカリ水溶液で洗浄し
た後蒸留することにより、メタクリル酸グリシジルを回
収することを特徴とするメタクリル酸グリシジルの製造
方法。
1. A method for producing glycidyl methacrylate by reacting allyl methacrylate with hydrogen peroxide in the presence of at least one solvent and a solid catalyst, wherein the catalyst is separated from the reaction solution, and the solution is water or an aqueous alkali solution. A method for producing glycidyl methacrylate, which comprises recovering glycidyl methacrylate by washing with water and then distilling.
【請求項2】 固体触媒が、MFI結晶構造を持つチタ
ノシリケートであることを特徴とする請求項1記載のメ
タクリル酸グリシジルの製造方法。
2. The method for producing glycidyl methacrylate according to claim 1, wherein the solid catalyst is titanosilicate having an MFI crystal structure.
【請求項3】 溶媒が、メタノールとケトンの混合物で
あることを特徴とする請求項1記載のメタクリル酸グリ
シジルの製造方法。
3. The method for producing glycidyl methacrylate according to claim 1, wherein the solvent is a mixture of methanol and a ketone.
【請求項4】 溶媒が、メタノールとアセトン、あるい
はメタノールとメチルエチルケトンであることを特徴と
する請求項1記載のメタクリル酸グリシジルの製造方
法。
4. The method for producing glycidyl methacrylate according to claim 1, wherein the solvent is methanol and acetone or methanol and methyl ethyl ketone.
JP7217560A 1995-08-25 1995-08-25 Production of glycydyl methacrylate Pending JPH0959269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7217560A JPH0959269A (en) 1995-08-25 1995-08-25 Production of glycydyl methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7217560A JPH0959269A (en) 1995-08-25 1995-08-25 Production of glycydyl methacrylate

Publications (1)

Publication Number Publication Date
JPH0959269A true JPH0959269A (en) 1997-03-04

Family

ID=16706177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7217560A Pending JPH0959269A (en) 1995-08-25 1995-08-25 Production of glycydyl methacrylate

Country Status (1)

Country Link
JP (1) JPH0959269A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008041138A1 (en) 2008-08-11 2010-02-18 Evonik Röhm Gmbh Process and plant for the preparation of glycidyl (meth) acrylate
JP2011046626A (en) * 2009-08-25 2011-03-10 Nippon Shokubai Co Ltd Method for producing glycidyl acrylate
WO2013146651A1 (en) * 2012-03-27 2013-10-03 興人ホールディングス株式会社 (meth)acrylate containing cyclic ether group
WO2014148301A1 (en) * 2013-03-22 2014-09-25 三菱レイヨン株式会社 Process for producing glycidyl (meth)acrylate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008041138A1 (en) 2008-08-11 2010-02-18 Evonik Röhm Gmbh Process and plant for the preparation of glycidyl (meth) acrylate
JP2011046626A (en) * 2009-08-25 2011-03-10 Nippon Shokubai Co Ltd Method for producing glycidyl acrylate
WO2013146651A1 (en) * 2012-03-27 2013-10-03 興人ホールディングス株式会社 (meth)acrylate containing cyclic ether group
WO2014148301A1 (en) * 2013-03-22 2014-09-25 三菱レイヨン株式会社 Process for producing glycidyl (meth)acrylate
US9303003B2 (en) 2013-03-22 2016-04-05 Mitsubishi Rayon Co., Ltd. Process for producing glycidyl (meth)acrylate
JPWO2014148301A1 (en) * 2013-03-22 2017-02-16 三菱レイヨン株式会社 Method for producing glycidyl (meth) acrylate

Similar Documents

Publication Publication Date Title
US6433217B1 (en) Process for the preparation of glycidylesters of branched carboxylic acids
JP5001831B2 (en) Process for producing α-hydroxy-ω-glycidyl ether
JP3794029B2 (en) Method for producing (meth) acrylate having epoxy group
JP2967252B2 (en) Production method of glycidyl methacrylate
JPH0959269A (en) Production of glycydyl methacrylate
JPH0441449A (en) Production of cyclohexane-1,2-diol
JPH0138112B2 (en)
JPH09132571A (en) Production of glycidyl methacrylate
JPH08188575A (en) Production of glycidyl meathacrylate
JPS6219450B2 (en)
JPH09301966A (en) Production of glycidyl methacrylate
JP3885249B2 (en) Purification method of glycidyl (meth) acrylate
JP2562620B2 (en) Method for producing epoxidized (meth) acrylate compound
JP3882495B2 (en) Method for producing ethers using 3-alkyl-3-hydroxymethyloxetane as a raw material
JP3864648B2 (en) Process for producing 1,3-bis (carboxyalkyl) tetraalkyldisiloxane
SU1129208A1 (en) Process for preparing viniloxyethyl ester of glycidyl
JPS60130577A (en) Production of glycidyl ether compound
AU2006266874B2 (en) Process for producing glycidyl 2-hydroxyisobutyrate and composition containing the product
JP4656294B2 (en) Method for producing glycidyl methacrylate
JPS5839680A (en) Synthesizing method of ketal derivative from glycerol allyl ether
JPH1025285A (en) Epoxidation of olefin compound
KR101006003B1 (en) Method of manufacturing polyoxy alkylene alkenyl ether using two-phase reaction
JPS60130578A (en) Production of allyl glycidyl ether
JPH0532650A (en) Production of glycidyl ethers
JPH04312557A (en) Method of manufacturing dialkylaminopropanediol