[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0956549A - Anti-fogging mirror - Google Patents

Anti-fogging mirror

Info

Publication number
JPH0956549A
JPH0956549A JP8156404A JP15640496A JPH0956549A JP H0956549 A JPH0956549 A JP H0956549A JP 8156404 A JP8156404 A JP 8156404A JP 15640496 A JP15640496 A JP 15640496A JP H0956549 A JPH0956549 A JP H0956549A
Authority
JP
Japan
Prior art keywords
mirror
optical semiconductor
refractive index
base material
front surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8156404A
Other languages
Japanese (ja)
Inventor
Eiichi Kojima
栄一 小島
Makoto Chikuni
真 千国
Makoto Hayakawa
信 早川
Toshiya Watabe
俊也 渡部
Atsushi Kitamura
厚 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP8156404A priority Critical patent/JPH0956549A/en
Publication of JPH0956549A publication Critical patent/JPH0956549A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02T30/34

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mirrors, Picture Frames, Photograph Stands, And Related Fastening Devices (AREA)
  • Road Signs Or Road Markings (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the deterioration of mirror images, such as the double images and darkening of a mirror finished surface occurring in the presence of an optical semiconductor layer by providing the subject mirror with a base material having a light reflection surface and a front surface layer including the optical semiconductor formed on the light reflection surface of this base material and forming the mirror in such a manner that its front surface exhibits hydrophilicity in correspondence to the photoexcitation of the optical semiconductor. SOLUTION: This anti-fogging mirror used as dressing mirrors, bath room mirrors, mirrors for vehicles, road mirrors, etc., has the transparent base material having the reflection coating layer on its rear surface and the front surface layer contg. the optical semiconductor formed on the front surface of the transparent base material. The thickness of the transparent base material is set at <=0.5mm and the refractive index of front surface layer at <=2. The front surface layer is formed by incorporating titanium oxide particles and another material (low- refractive index material) in order to confine the refractive index of this layer to <=2 into the front surface layer. Silica, silicone or the mixture composed thereof is used for the low- refractive index material. The optical semiconductor particles, the titanium oxide particles and the particles of the low-refractive index material respectively having grain sizes of <=0.1μm are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は曇り止め処置の施さ
れた防曇性鏡に関する。特には、表面に光半導体層を有
し、かつこの光半導体層の存在に起因する二重像や鏡面
の暗化といった鏡像の劣化を防止するような配慮のなさ
れた防曇性鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anti-fog mirror having an anti-fog treatment. In particular, the present invention relates to an antifogging mirror which has an optical semiconductor layer on its surface and is designed so as to prevent deterioration of the mirror image such as double image and darkening of the mirror surface due to the presence of this optical semiconductor layer.

【0002】[0002]

【従来の技術】本発明者は、特願平7−182020号
において、光半導体を含む表面層を鏡上に形成して鏡表
面を超親水化し、同面に結露する水滴を水膜とすること
により曇りを無くすことを要旨とする防曇方法を提案し
た。
2. Description of the Related Art In Japanese Patent Application No. 7-182020, the inventor of the present invention forms a surface layer containing an optical semiconductor on a mirror to make the surface of the mirror superhydrophilic, and uses water droplets to form dew on the same surface. Therefore, we proposed an anti-fogging method whose main point is to eliminate fogging.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の技術に
は、次のような問題点があることが判明した。すなわ
ち、光半導体のTiO2 を鏡表面に形成すると、高い屈
折率のために表面の反射が大きく、銀鏡面からの反射像
と、二重の像を見ることになる。通常の鏡の二重像は、
ガラスを斜めから覗いた場合に、表面の反射による像と
銀鏡面で反射した像にずれが生じるために起こるもの
で、通常のガラスの場合は4%程度である。しかし高屈
折率のTiO2 の場合は数十%になるため、像のずれが
目立ってしまう。なお、二重像とは、鏡を斜めから見た
場合、酸化チタン膜表面で反射する光の像と、銀鏡面で
反射する光の像がずれて目に二重像となるものである。
However, it has been found that the above technique has the following problems. That is, when TiO 2 of an optical semiconductor is formed on the mirror surface, the reflection on the surface is large due to the high refractive index, and a double image and a reflection image from the silver mirror surface are seen. The normal mirror image is
This occurs because the image due to the reflection on the surface and the image reflected on the silver mirror surface are deviated when the glass is viewed obliquely, and it is about 4% in the case of ordinary glass. However, in the case of TiO 2 having a high refractive index, it is several tens of percent, so that the image shift becomes noticeable. The double image is a double image in the eye when the image of light reflected on the surface of the titanium oxide film and the image of light reflected on the silver mirror surface are deviated when the mirror is viewed obliquely.

【0004】屈折率n1 の物質Aから屈折率n2 の物質
Bに光が入るときに両物質の界面で反射される光の割合
である反射率Rは、 R=((n1 −n2 )/(n1 +n2 ))2 である。通常の鏡の場合は、空気(n1 =1.00)か
らガラス(n2 =1.52)に入射するので、その界面
の反射率は4%に過ぎない。一方、酸化チタン(TiO
2 )膜を有する防曇性鏡の場合、空気(n1 =1.0
0)からTiO2 (n2 =2.51)に入射する界面の
反射率は18.5%にも達する。したがって、通常の鏡
の場合は気にならない二重像が、酸化チタン膜を有する
防曇性鏡では目立ってしまうのである。
[0004] reflectance R is the ratio of light reflected at the interface of both materials when the light in the material B having a refractive index n 2 of a material A having a refractive index n 1 enters is, R = ((n 1 -n 2 ) / (n 1 + n 2 )) 2 . In the case of an ordinary mirror, since the light enters from the air (n 1 = 1.00) into the glass (n 2 = 1.52), the reflectance of the interface is only 4%. On the other hand, titanium oxide (TiO
2 ) In the case of an anti-fog mirror having a film, air (n 1 = 1.0
The reflectance of the interface incident on TiO 2 (n 2 = 2.51) from 0) reaches 18.5%. Therefore, a double image, which is not noticeable in the case of a normal mirror, is conspicuous in the antifogging mirror having the titanium oxide film.

【0005】本発明は、親水性光半導体層による曇り止
め処置の施された防曇性鏡において、この光半導体層の
存在に起因する二重像や鏡面の暗化といった鏡像の劣化
を防止するような配慮のなされた防曇性鏡を提供するこ
とを目的とする。
The present invention, in an anti-fog mirror which has been subjected to anti-fog treatment with a hydrophilic optical semiconductor layer, prevents deterioration of the mirror image such as double image and darkening of the mirror surface due to the presence of the optical semiconductor layer. It is an object of the present invention to provide an anti-fog mirror with such consideration.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明は以下の4つの解決手段を、個々に、あるい
は組み合わせて用いる。 (1)光反射面上に直接(実質的な介在層を設けること
なく)光半導体層を形成する(表面鏡)。これは、二重
像の原因となる二つの反射面の間の距離を短くするもの
である。通常の鏡ではガラスの厚さ(標準5mm)だけ、
鏡の表面とその反射面(銀鏡面)とは離れており、これ
に光の斜進角度θのサインを掛け、さらに2倍したもの
が二重像のずれとなる(5×sinθ×2)。ところ
が、光反射面上に直接光半導体層を形成すれば、二つの
反射面の間の距離は光反射面の厚さのみ(μm オーダー
以下)にできるので、人間の目で分るような二重像は生
じない。
In order to solve the above problems, the present invention uses the following four solutions individually or in combination. (1) An optical semiconductor layer is formed directly on a light reflecting surface (without providing a substantial intervening layer) (front surface mirror). This shortens the distance between the two reflecting surfaces that causes a double image. With a normal mirror, only the glass thickness (standard 5 mm),
The surface of the mirror and its reflection surface (silver mirror surface) are separated from each other, and this is multiplied by the sine of the oblique angle θ of the light, and doubled to obtain the double image shift (5 × sin θ × 2) . However, if the optical semiconductor layer is formed directly on the light-reflecting surface, the distance between the two reflecting surfaces can be set only to the thickness of the light-reflecting surface (on the order of μm or less). Double images do not occur.

【0007】(2)裏面鏡の場合は、透明基材(ガラス
等)の厚さを0.5mm以下と薄くする。(1)と同じ理
由により、二重像のずれをできるだけ小さくしてやれ
ば、見る人の違和感をできるだけ無くすことができる。
透明基材の厚さを0.5mm以下とすれば、像のずれは現
状標準の約1/10となる。
(2) In the case of a backside mirror, the thickness of the transparent substrate (glass or the like) is reduced to 0.5 mm or less. For the same reason as (1), if the shift of the double image is made as small as possible, the viewer's discomfort can be eliminated as much as possible.
If the thickness of the transparent substrate is 0.5 mm or less, the image shift becomes about 1/10 of the current standard.

【0008】(3)光半導体を含む表面層の屈折率を下
げる。例えば、低屈折率のシリカ(SiO2 、屈折率
1.48)やフッ化マグネシウム(MgF2 、屈折率
1.378)、酸化スズ(1.90)、アルミナ(1.
63)を酸化チタンに混ぜて光半導体層の屈折率を下げ
てやれば、上述の理屈で光半導体層表面での光の反射率
が下がり、二重像の一方が弱くなる。このような観点か
ら、酸化チタンとしても屈折率の高いルチル型(2.
7)よりも屈折率の低いアナターゼ型(2.5)を用い
ることが好ましい。シリカ、シリコーンは屈折率が1.
5程度と小さく、かつシリカ及びシリコン原子に結合し
た有機基の少なくとも一部を水酸基に置換したシリコー
ンを添加すると、暗所での親水維持性能も向上するの
で、防曇性にも好影響をもたらす。
(3) The refractive index of the surface layer containing an optical semiconductor is lowered. For example, low refractive index silica (SiO 2 , refractive index 1.48), magnesium fluoride (MgF 2 , refractive index 1.378), tin oxide (1.90), alumina (1.
If 63) is mixed with titanium oxide to lower the refractive index of the optical semiconductor layer, the reflectance of the light on the surface of the optical semiconductor layer decreases due to the above reason, and one of the double images becomes weak. From this point of view, rutile type (2.
It is preferable to use anatase type (2.5) having a lower refractive index than 7). Silica and silicone have a refractive index of 1.
Addition of silicone, which is as small as about 5 and in which at least a part of the organic groups bonded to silica and silicon atoms is replaced with hydroxyl groups, also improves the hydrophilicity maintaining performance in the dark place, which also has a favorable effect on the antifogging property. .

【0009】(4)表面層に含まれる光半導体や低屈折
率物質の粒子径を0.1μm 以下と小さくする。そうす
れば、粒子による光の散乱が生じにくくなるので、鏡像
が暗くなりにくい。
(4) The particle diameter of the optical semiconductor and the low refractive index substance contained in the surface layer is reduced to 0.1 μm or less. Then, light scattering by particles is less likely to occur, and thus the mirror image is less likely to be dark.

【0010】[0010]

【実施例】以下、本発明の実施例を説明する。 実施例1:シロキサン法による表面鏡 5mm厚のポリカーボネート板(基板)の表面にアルミ蒸
着によって光反射面を形成した。次に、基板の表面を平
滑化するため、予めシリコーン層で被覆した。このた
め、日本合成ゴム(東京)の塗料用組成物“グラスカ”
のA液(シリカゾル)とB液(トリメトキシメチルシラ
ン)を、重量の比が3になるように混合し、この混合液
を基板に塗布し、150℃の温度で硬化させ、膜厚3μ
m のシリコーンのベースコートで被覆された複数の基板
を得た。
Embodiments of the present invention will be described below. Example 1: Surface mirror by siloxane method A light reflecting surface was formed on a surface of a polycarbonate plate (substrate) having a thickness of 5 mm by aluminum vapor deposition. Next, in order to smooth the surface of the substrate, it was previously coated with a silicone layer. For this reason, the coating composition “GLASCA” of Japan Synthetic Rubber (Tokyo)
Solution A (silica sol) and solution B (trimethoxymethylsilane) are mixed in a weight ratio of 3, and the mixed solution is applied to a substrate and cured at a temperature of 150 ° C. to a film thickness of 3 μm.
Multiple substrates coated with a m 2 silicone base coat were obtained.

【0011】次に、光触媒を含有する高分子塗料により
基板を被覆した。塗料の塗膜形成要素が光触媒の光酸化
作用によって劣化するのを防止するため、塗膜形成要素
としてシリコーンを選んだ。より詳しくは、アナターゼ
型チタニアゾル(日産化学、TA−15)56重量部と
上記“グラスカ”のA液(シリカゾル)33重量部を混
合し、エタノールで希釈後、さらに“グラスカ”の上記
B液11重量部を添加し、チタニア含有塗料用組成物を
調整した。この塗料用組成物を基板の表面に塗布し、1
50℃の温度で硬化させ、アナターゼ型チタニア粒子が
シリコーン塗膜中に分散されたトップコートを形成し
た。
Next, the substrate was coated with a polymer coating containing a photocatalyst. Silicone was selected as the film-forming element in order to prevent the film-forming elements of the paint from deteriorating due to the photooxidative action of the photocatalyst. More specifically, 56 parts by weight of anatase-type titania sol (Nissan Chemical Co., Ltd., TA-15) and 33 parts by weight of A liquid (silica sol) of the above "grasca" are mixed and diluted with ethanol, and then B liquid 11 of "grasca". A part by weight was added to prepare a titania-containing coating composition. Apply this coating composition to the surface of the substrate and
It was cured at a temperature of 50 ° C. to form a top coat in which anatase-type titania particles were dispersed in a silicone coating film.

【0012】実施例2:アルコキシド法による裏面鏡 0.5mm厚のソーダライムガラス板(基板)を準備し
た。次に、エタノールの溶媒86重量部に、テトラエト
キシシランSi(OC25)4 (和光純薬、大阪)6重
量部と純水6重量部とテトラエトキシシランの加水分解
抑制剤として36%塩酸2重量部を加えて混合し、シリ
カコーティング溶液を調整した。混合により溶液は発熱
するので、混合液を約1時間放置冷却した。この溶液を
フローコーティング法により基板の表面に塗布し、80
℃の温度で乾燥させた。乾燥に伴い、テトラエトキシシ
ランは加水分解を受けてまずシラノールSi(OH)4
なり、続いてシラノールの脱水縮重合により無定形シリ
カの薄膜が基板の表面に形成された。
Example 2: Backside mirror by alkoxide method A 0.5 mm thick soda lime glass plate (substrate) was prepared. Next, in 86 parts by weight of an ethanol solvent, 6 parts by weight of tetraethoxysilane Si (OC 2 H 5 ) 4 (Wako Pure Chemical Industries, Osaka), 6 parts by weight of pure water, and 36% as a hydrolysis inhibitor of tetraethoxysilane. 2 parts by weight of hydrochloric acid was added and mixed to prepare a silica coating solution. Since the solution generated heat by mixing, the mixed solution was left to cool for about 1 hour. This solution is applied to the surface of the substrate by the flow coating method,
Dried at a temperature of ° C. Upon drying, tetraethoxysilane was first hydrolyzed to silanol Si (OH) 4 , and then a thin film of amorphous silica was formed on the surface of the substrate by dehydration polycondensation of silanol.

【0013】次に、テトラエトキシチタンTi(OC2
5)4 (Merck) 1重量部とエタノール9重量部との混合
物に加水分解抑制剤として36%塩酸を0.1重量部添
加してチタニアコーティング溶液を調整し、この溶液を
基板の表面に乾燥空気中でフローコーティング法により
塗布した。塗布量はチタニアに換算して45μg/cm2
した。テトラエトキシチタンの加水分解速度は極めて早
いので、塗布の段階でテトラエトキシチタンの一部は加
水分解され、水酸化チタンTi(OH)4が生成し始め
た。
Next, tetraethoxy titanium Ti (OC 2
A titania coating solution was prepared by adding 0.1 part by weight of 36% hydrochloric acid as a hydrolysis inhibitor to a mixture of 1 part by weight of H 5 ) 4 (Merck) and 9 parts by weight of ethanol, and applying this solution to the surface of the substrate. It was applied by a flow coating method in dry air. The coating amount was 45 μg / cm 2 in terms of titania. Since the hydrolysis rate of tetraethoxytitanium is extremely fast, a part of tetraethoxytitanium was hydrolyzed at the coating stage, and titanium hydroxide Ti (OH) 4 began to be produced.

【0014】次に、この基板を1〜10分間約150℃
の温度に保持することにより、テトラエトキシチタンの
加水分解を完了させるとともに、生成した水酸化チタン
を脱水縮重合に付し、無定形チタニアを生成させた。こ
うして、無定形シリカの上に無定形チタニアがコーティ
ングされたガラス板を得た。
Next, this substrate is heated at about 150 ° C. for 1 to 10 minutes.
By maintaining the temperature at 1, the hydrolysis of tetraethoxytitanium was completed, and the produced titanium hydroxide was subjected to dehydration polycondensation to produce amorphous titania. Thus, a glass plate in which amorphous titania was coated on amorphous silica was obtained.

【0015】この試料を500℃の温度で焼成して、無
定形チタニアをアナターゼ型チタニアに変換させた。無
定形チタニアコーティングの下層には無定形シリカのコ
ーティングが施されているので、焼成の最中にガラス板
中のナトリウムのようなアルカリ網目修飾イオンがガラ
ス基材からチタニアコーティング中に拡散していないと
考えられる。次に、このガラス板の裏面に銀鏡反応によ
り銀の反射コーティングを形成して鏡を製作した。
This sample was calcined at a temperature of 500 ° C. to convert the amorphous titania into anatase type titania. The amorphous silica coating underlies the amorphous titania coating, so that alkali network modifying ions such as sodium in the glass plate do not diffuse from the glass substrate into the titania coating during firing. it is conceivable that. Next, a silver reflective coating was formed on the back surface of this glass plate by a silver mirror reaction to manufacture a mirror.

【0016】実施例3:TEOS法による裏面鏡 日本板硝子製の鏡(MFL3)(ガラス厚5mm)の表面
に実施例2と同様の方法で無定形シリカの薄膜を形成し
た。
Example 3: Backside mirror by TEOS method An amorphous silica thin film was formed on the surface of a mirror (MFL3) (glass thickness: 5 mm) made of Nippon Sheet Glass by the same method as in Example 2.

【0017】次に、テトラエトキシシラン0.69g
(和光純薬)とアナターゼ型チタニアゾル1.07g
(日産化学、TA−15、平均粒径0.01μm 、Ti
2 濃度15%)とがTiO2 :SiO2 =20:80
(重量比)となるように混合した。そして、エタノール
29.88gと純水0.36gを混合し、コーティング
溶液を調整した。このコーティング溶液をフローコーテ
ィング法により鏡の表面に塗布した。この鏡を約20分
間約150℃の温度に保持することにより、テトラエト
キシシランを加水分解と脱水縮重合に付し、アナターゼ
型チタニア粒子が無定形シリカのバインダーで結着され
たコーティングを鏡の表面に形成した。
Next, 0.69 g of tetraethoxysilane
(Wako Pure Chemicals) and anatase titania sol 1.07g
(NISSAN CHEMICAL, TA-15, average particle size 0.01 μm, Ti
O 2 concentration 15%) means that TiO 2 : SiO 2 = 20: 80
(Weight ratio) was mixed. Then, 29.88 g of ethanol and 0.36 g of pure water were mixed to prepare a coating solution. This coating solution was applied to the mirror surface by the flow coating method. By holding this mirror at a temperature of about 150 ° C. for about 20 minutes, tetraethoxysilane is subjected to hydrolysis and dehydration polycondensation, and a coating in which anatase-type titania particles are bound with an amorphous silica binder is applied to the mirror. Formed on the surface.

【0018】この鏡を数日間暗所に放置した後、BLB
蛍光灯を用いて0.5mW/cm2の照度で約1時間紫外線を
照射した。この鏡の表面の水との接触角を接触角測定器
で測定したところ、接触角の読みは0°であった。光半
導体層の屈折率は1.69であった。
After leaving this mirror in the dark for several days, the BLB
It was irradiated with ultraviolet rays using a fluorescent lamp at an illuminance of 0.5 mW / cm 2 for about 1 hour. When the contact angle of the surface of this mirror with water was measured with a contact angle measuring device, the contact angle reading was 0 °. The refractive index of the optical semiconductor layer was 1.69.

【0019】実施例4:実施例2と同じ方法で、無定形
シリカ薄膜を形成する。次にテトラエトキシチタン1重
量部とエタノール9重量部との混合液に加水分解抑制剤
として36%HClを0.1重量部添加し、チタニア溶
液とした。さらにシリカ溶液としては、日産化学製メタ
ノールシリカゾル(SiO2 濃度30%)を16.7重
量部とエタノール83.3重量部を混合し、SiO2
度5wt%とするシリカ溶液を調整した。これらチタニア
溶液5gとシリカ溶液0.21gをエタノール23gに
混合し、コーティング溶液を調整した後、フローコート
法により塗布した。次に実施例2と同様に150℃、5
00℃の熱処理と銀鏡反応を経て、アナターゼ型TiO
2 にシリカ粒子が分散されたコーティングの施された鏡
を得た。
Example 4 An amorphous silica thin film is formed in the same manner as in Example 2. Next, 0.1 part by weight of 36% HCl as a hydrolysis inhibitor was added to a mixed solution of 1 part by weight of tetraethoxy titanium and 9 parts by weight of ethanol to prepare a titania solution. Further, as a silica solution, 16.7 parts by weight of Nissan Chemical Industries methanol silica sol (SiO 2 concentration 30%) and 83.3 parts by weight of ethanol were mixed to prepare a silica solution having a SiO 2 concentration of 5 wt%. 5 g of these titania solution and 0.21 g of silica solution were mixed with 23 g of ethanol to prepare a coating solution, which was then applied by a flow coating method. Next, in the same manner as in Example 2, 150 ° C., 5
After heat treatment at 00 ℃ and silver mirror reaction, anatase type TiO 2
A coated mirror having silica particles dispersed in 2 was obtained.

【0020】この鏡を数日間暗所に放置した後、BLB
蛍光灯を用いて0.5mW/cm2の照度で約1時間紫外線を
照射した。この鏡の表面の水との接触角を接触角測定器
で測定したところ、接触角の読みは0°であった。光半
導体層の屈折率は1.69であった。
After leaving this mirror in the dark for several days, the BLB
It was irradiated with ultraviolet rays using a fluorescent lamp at an illuminance of 0.5 mW / cm 2 for about 1 hour. When the contact angle of the surface of this mirror with water was measured with a contact angle measuring device, the contact angle reading was 0 °. The refractive index of the optical semiconductor layer was 1.69.

【0021】実施例5:実施例2と同じ方法で0.5mm
厚のガラス基板上に無定形シリカ薄膜を形成した。次い
で、その上にTiO2 ターゲットを用い、酸素雰囲気中
でスパッタリング法により無定形TiO2 からなる膜厚
50μm の薄膜を形成した。この段階で水との接触角を
測定すると47°であった。その後紫外線照度0.15
mW/cm2のBLBランプを2日照射したが依然42°であ
った。また、この段階で呼気法による曇りの有無を調べ
ると明らかに曇りが生じた。次にこの試料を400℃、
450℃、500℃で熱処理し、無定形TiO2 を結晶
化させアナターゼ型とした。これらの試料について1日
暗所に放置後、紫外線照度0.15mW/cm2のBLBラン
プを2日照射した。その後水との接触角を測定したとこ
ろ、それぞれ400℃焼成品では4.6°、450℃焼
成品では4.5°、500℃の焼成品では4.1°とな
った。また呼気法による曇りの有無の測定の結果、曇り
は速やかにかき消え残留しなかった。さらに、ガラスの
厚さの影響により二重像も認められなかった。
Example 5: 0.5 mm by the same method as in Example 2
An amorphous silica thin film was formed on a thick glass substrate. Then, a TiO 2 target was used to form a thin film of amorphous TiO 2 having a film thickness of 50 μm by a sputtering method in an oxygen atmosphere. The contact angle with water measured at this stage was 47 °. Then the ultraviolet illuminance 0.15
Irradiation with a mW / cm 2 BLB lamp for 2 days was still 42 °. In addition, at this stage, when the presence or absence of fogging by the exhalation method was examined, it was apparently fogging. Next, this sample is 400 ℃,
The amorphous TiO 2 was crystallized into anatase type by heat treatment at 450 ° C and 500 ° C. After leaving these samples in the dark for 1 day, they were irradiated with a BLB lamp having an ultraviolet illuminance of 0.15 mW / cm 2 for 2 days. When the contact angle with water was then measured, it was 4.6 ° for the 400 ° C. calcined product, 4.5 ° for the 450 ° C. calcined product, and 4.1 ° for the 500 ° C. calcined product. Further, as a result of measuring the presence or absence of fogging by the exhalation method, the fogging was quickly scratched off and did not remain. Furthermore, no double image was observed due to the influence of the glass thickness.

【0022】比較例:5mm厚のソーダライムガラス板の
ガラス表面と裏面に、実施例2と同じ方法でそれぞれ光
半導体層及び銀の反射コーティングを形成した。
Comparative Example: An optical semiconductor layer and a silver reflective coating were formed on the front and back surfaces of a soda-lime glass plate having a thickness of 5 mm in the same manner as in Example 2, respectively.

【0023】性能試験:防曇性については、上記実施例
1、2、3、4、5及び比較例ともに優れていた。二重
像については、比較例は非常に目立った。実施例2につ
いては、二重像があったが、あまり目立たなかった。実
施例1、3、4及び5については、二重像がほとんど観
察されず、きわめて良好な鏡像が得られた。
Performance test : The antifogging property was excellent in all of Examples 1, 2, 3, 4, 5 and Comparative Example. For the double image, the comparative example was very noticeable. Regarding Example 2, there was a double image, but it was not very noticeable. For Examples 1, 3, 4, and 5, almost no double image was observed, and very good mirror images were obtained.

【0024】[0024]

【発明の効果】以上の説明から明らかなように、本発明
の防曇性鏡は、表面に光半導体層を有するが、この光半
導体層の存在に起因する二重像や鏡面の暗化といった鏡
像の劣化なく、良好な鏡像が得られる。
As is clear from the above description, the antifogging mirror of the present invention has an optical semiconductor layer on its surface. However, due to the presence of this optical semiconductor layer, a double image or darkening of the mirror surface occurs. A good mirror image can be obtained without deterioration of the mirror image.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B32B 27/18 B32B 27/18 Z C03C 17/30 C03C 17/30 Z E01F 9/00 E01F 9/00 G02B 5/08 G02B 5/08 F // B60S 1/60 B60S 1/60 E (72)発明者 早川 信 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 渡部 俊也 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 北村 厚 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B32B 27/18 B32B 27/18 Z C03C 17/30 C03C 17/30 Z E01F 9/00 E01F 9 / 00 G02B 5/08 G02B 5/08 F // B60S 1/60 B60S 1/60 E (72) Inventor Shin Hayakawa 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka Prefecture Totoki Equipment Co., Ltd. (72 ) Inventor Toshiya Watanabe 2-1, 1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture Totoki Equipment Co., Ltd. (72) Atsushi Kitamura 2-1-1, Nakajima, Kokurakita-ku, Kitakyushu, Kitakyushu, Fukuoka Prefecture In the company

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 光反射面を有する基材と、この基材の光
反射面に形成された光半導体を含む表面層と、を備え;
該光半導体の光励起に対応して表面が親水性を示すこと
を特徴とする防曇性鏡。
1. A base material having a light-reflecting surface, and a surface layer containing an optical semiconductor formed on the light-reflecting surface of the base material.
An antifogging mirror characterized in that the surface thereof exhibits hydrophilicity in response to photoexcitation of the optical semiconductor.
【請求項2】 裏面に反射コート層を有する透明基材
と、この透明基材の表面に形成された光半導体を含む表
面層と、を備え、 該光半導体の光励起に対応して表面が親水性を示す防曇
性鏡であって;上記透明基材の厚さが0.5mm以下であ
ることを特徴とする防曇性鏡。
2. A transparent base material having a reflective coating layer on the back surface, and a surface layer containing an optical semiconductor formed on the surface of the transparent base material, wherein the surface is hydrophilic in response to photoexcitation of the optical semiconductor. An anti-fogging mirror showing the property; wherein the transparent substrate has a thickness of 0.5 mm or less.
【請求項3】 裏面に反射コート層を有する透明基材
と、この透明基材の表面に形成された光半導体を含む表
面層と、を備え、 該光半導体の光励起に対応して表面が親水性を示す防曇
性鏡であって;上記表面層の屈折率が2以下であること
を特徴とする防曇性鏡。
3. A transparent base material having a reflective coating layer on the back surface, and a surface layer containing an optical semiconductor formed on the surface of the transparent base material, wherein the surface is hydrophilic in response to photoexcitation of the optical semiconductor. An antifogging mirror having the property of having a refractive index of 2 or less in the surface layer.
【請求項4】 上記表面層が、酸化チタン粒子及び該層
の屈折率を2以下とするための他の物質(低屈折率物
質)を含む請求項3記載の防曇性鏡。
4. The antifogging mirror according to claim 3, wherein the surface layer contains titanium oxide particles and another substance (low-refractive index substance) for making the refractive index of the layer 2 or less.
【請求項5】 上記低屈折率物質が、シリカ、シリコー
ン又はこれらの混合物である請求項4記載の防曇性鏡。
5. The anti-fogging mirror according to claim 4, wherein the low refractive index substance is silica, silicone, or a mixture thereof.
【請求項6】 上記酸化チタン粒子がアナターゼ型であ
る請求項4又は5記載の防曇性鏡。
6. The antifogging mirror according to claim 4, wherein the titanium oxide particles are of anatase type.
【請求項7】 上記表面層が光半導体粒子を含み、その
光半導体粒子の粒子径が0.1μm 以下である請求項1
〜6いずれか1項記載の防曇性鏡。
7. The surface layer contains optical semiconductor particles, and the particle diameter of the optical semiconductor particles is 0.1 μm or less.
6. The antifogging mirror according to any one of 6 to 6.
【請求項8】 上記酸化チタン粒子及び低屈折率物質の
粒子の粒径が0.1μm 以下である請求項4又は5記載
の防曇性鏡。
8. The anti-fogging mirror according to claim 4, wherein the titanium oxide particles and the particles of the low refractive index substance have a particle size of 0.1 μm or less.
【請求項9】 上記鏡が化粧鏡、浴室用鏡、車両用鏡、
反射鏡又は道路鏡のいずれかである請求項1〜8いずれ
か1項記載の防曇性鏡。
9. The mirror is a makeup mirror, a bathroom mirror, a vehicle mirror,
The antifogging mirror according to claim 1, which is either a reflecting mirror or a road mirror.
JP8156404A 1995-06-14 1996-05-29 Anti-fogging mirror Pending JPH0956549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8156404A JPH0956549A (en) 1995-06-14 1996-05-29 Anti-fogging mirror

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18202095 1995-06-14
JP7-182020 1995-12-22
JP8156404A JPH0956549A (en) 1995-06-14 1996-05-29 Anti-fogging mirror

Publications (1)

Publication Number Publication Date
JPH0956549A true JPH0956549A (en) 1997-03-04

Family

ID=26484172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8156404A Pending JPH0956549A (en) 1995-06-14 1996-05-29 Anti-fogging mirror

Country Status (1)

Country Link
JP (1) JPH0956549A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230105A (en) * 1995-12-22 1997-09-05 Toto Ltd Antifogging method and facility applied with the method
JPH1068091A (en) * 1996-08-26 1998-03-10 Central Glass Co Ltd Hydrophilic coating film and its production
JPH1168134A (en) * 1997-08-08 1999-03-09 Bridgestone Corp Solar battery module
EP1396479A1 (en) * 2002-09-03 2004-03-10 The Procter & Gamble Company Fluid dispenser with anti-fogging mirror
EP1396478A1 (en) * 2002-09-03 2004-03-10 The Procter & Gamble Company Fluid dispenser with anti-fogging mirror
CN107584750A (en) * 2017-08-16 2018-01-16 柳州申通汽车科技有限公司 A kind of heat pressing process of auto sound diaphragm
CN109005317A (en) * 2017-06-06 2018-12-14 罗伯特·博世有限公司 Housing for a camera and manufacturing method
CN109020046A (en) * 2018-06-05 2018-12-18 广东南豆科技有限公司 A kind of intelligent wash bowl with wastewater treatment equipment
CN110269304A (en) * 2018-03-15 2019-09-24 杭州海康威视数字技术股份有限公司 Safety cap, wearing state detection method and device, computer readable storage medium
CN110658405A (en) * 2019-10-09 2020-01-07 广东美的制冷设备有限公司 Air conditioner line loss detection method and device, air conditioner and storage medium
CN110935047A (en) * 2018-09-21 2020-03-31 宁波方太厨具有限公司 Disinfection method for improving ultraviolet utilization rate
CN111021284A (en) * 2019-12-16 2020-04-17 荆门欧曼凯机电设备有限公司 Traffic jam early warning guardrail utilizing airflow for power generation
CN111060997A (en) * 2020-01-19 2020-04-24 西安交通大学 Method for manufacturing multistage fly-eye lens
CN111306923A (en) * 2020-04-07 2020-06-19 李宁 Dry fruit circulating hot air drying equipment
CN111632195A (en) * 2020-05-25 2020-09-08 北京航空航天大学 Medical implant for improving cell osteogenesis performance and preparation method thereof
CN111889472A (en) * 2020-08-19 2020-11-06 安徽荣程玻璃制品有限公司 Vacuum toughened glass and preparation method thereof
JP2020536996A (en) * 2017-10-04 2020-12-17 エムシーエス・インダストリーズ・インコーポレイテッド Anti-fog coating and application method
CN112126348A (en) * 2020-09-29 2020-12-25 广东思泉新材料股份有限公司 Modified nano waterproof coating, waterproof membrane and preparation method
CN113554618A (en) * 2021-07-22 2021-10-26 上海工程技术大学 Railway track state monitoring method and device based on infrared image

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230105A (en) * 1995-12-22 1997-09-05 Toto Ltd Antifogging method and facility applied with the method
JPH1068091A (en) * 1996-08-26 1998-03-10 Central Glass Co Ltd Hydrophilic coating film and its production
JPH1168134A (en) * 1997-08-08 1999-03-09 Bridgestone Corp Solar battery module
EP1396478A1 (en) * 2002-09-03 2004-03-10 The Procter & Gamble Company Fluid dispenser with anti-fogging mirror
EP1396479A1 (en) * 2002-09-03 2004-03-10 The Procter & Gamble Company Fluid dispenser with anti-fogging mirror
WO2004022498A1 (en) * 2002-09-03 2004-03-18 The Procter & Gamble Company Fluid dispenser with anti-fogging mirror
CN109005317A (en) * 2017-06-06 2018-12-14 罗伯特·博世有限公司 Housing for a camera and manufacturing method
CN109005317B (en) * 2017-06-06 2021-05-04 罗伯特·博世有限公司 Housing for a camera and method of manufacture
CN107584750A (en) * 2017-08-16 2018-01-16 柳州申通汽车科技有限公司 A kind of heat pressing process of auto sound diaphragm
US11673827B2 (en) 2017-10-04 2023-06-13 Mcs Industries, Inc. Anti-fogging coating and application process
JP2020536996A (en) * 2017-10-04 2020-12-17 エムシーエス・インダストリーズ・インコーポレイテッド Anti-fog coating and application method
CN110269304A (en) * 2018-03-15 2019-09-24 杭州海康威视数字技术股份有限公司 Safety cap, wearing state detection method and device, computer readable storage medium
CN110269304B (en) * 2018-03-15 2022-03-08 杭州海康威视数字技术股份有限公司 Safety helmet, wearing state detection method and device, and computer-readable storage medium
CN109020046A (en) * 2018-06-05 2018-12-18 广东南豆科技有限公司 A kind of intelligent wash bowl with wastewater treatment equipment
CN110935047A (en) * 2018-09-21 2020-03-31 宁波方太厨具有限公司 Disinfection method for improving ultraviolet utilization rate
CN110658405A (en) * 2019-10-09 2020-01-07 广东美的制冷设备有限公司 Air conditioner line loss detection method and device, air conditioner and storage medium
CN110658405B (en) * 2019-10-09 2021-09-28 广东美的制冷设备有限公司 Air conditioner line loss detection method and device, air conditioner and storage medium
CN111021284A (en) * 2019-12-16 2020-04-17 荆门欧曼凯机电设备有限公司 Traffic jam early warning guardrail utilizing airflow for power generation
CN111060997B (en) * 2020-01-19 2021-05-07 西安交通大学 Method for manufacturing multistage fly-eye lens
CN111060997A (en) * 2020-01-19 2020-04-24 西安交通大学 Method for manufacturing multistage fly-eye lens
CN111306923A (en) * 2020-04-07 2020-06-19 李宁 Dry fruit circulating hot air drying equipment
CN111632195A (en) * 2020-05-25 2020-09-08 北京航空航天大学 Medical implant for improving cell osteogenesis performance and preparation method thereof
CN111889472A (en) * 2020-08-19 2020-11-06 安徽荣程玻璃制品有限公司 Vacuum toughened glass and preparation method thereof
CN111889472B (en) * 2020-08-19 2022-08-16 安徽荣程玻璃制品有限公司 Preparation method of vacuum toughened glass
CN112126348A (en) * 2020-09-29 2020-12-25 广东思泉新材料股份有限公司 Modified nano waterproof coating, waterproof membrane and preparation method
CN113554618A (en) * 2021-07-22 2021-10-26 上海工程技术大学 Railway track state monitoring method and device based on infrared image
CN113554618B (en) * 2021-07-22 2022-03-01 上海工程技术大学 Railway track state monitoring method and device based on infrared image

Similar Documents

Publication Publication Date Title
JPH0956549A (en) Anti-fogging mirror
EP1304366B1 (en) Use of a photocatalytically rendered superhydrophilic surface with antifogging properties
US6921578B2 (en) Low-reflection glass article
JP5849970B2 (en) Article having a low-reflection film
US7771103B2 (en) Optical diffuser with IR and/or UV blocking coating
JP4527272B2 (en) Low reflection glass article
CA2628751C (en) Optical diffuser with uv blocking coating
JP2000508439A (en) Optical element, display device including the optical element, and method of manufacturing the optical element
JPH11228183A (en) Hydrophilic base material and its production
EP1132448A2 (en) Article with antifogging film and process for producing same
JP7117165B2 (en) SUBSTRATE WITH ANTIGLARE FILM, IMAGE DISPLAY DEVICE, AND DIGITAL SIGNAGE
EP1969398A1 (en) Optical diffuser having frit based coating with inorganic light diffusing pigments with variable particle size therein
US20170291392A1 (en) Article having low reflection film
JP4629656B2 (en) Rear projection type and / or projection type screen
JP2000239047A (en) Hydrophilic photocatalytic member
JP2000192021A (en) Hydrophilic, antifogging and antistaining substrate and its preparation
JP2000177381A (en) Low reflecting windshield for vehicle
WO2011090156A1 (en) Anti-fog article
JPH0959042A (en) Transparent base material having anti-mist coating
JPH10140046A (en) Method for making surface hydrophilic photocatalytically, composite material having photocatalytically formed hydrophilic surface and coating composition forming hydrophilic film on the surface of base material
JPH09227157A (en) Non-fogging film-forming base material, non-fogging film using the same and its production
JPH0959041A (en) Anticlouding coating composition containing photocatalyst
JP6736049B2 (en) Glass composite, transparent screen including the same, and image projection system including the same
JP3788532B2 (en) Antifogging film and method for producing the same
JPH0781977A (en) Anti-reflection coating and production thereof