[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0955621A - Array antenna - Google Patents

Array antenna

Info

Publication number
JPH0955621A
JPH0955621A JP7228525A JP22852595A JPH0955621A JP H0955621 A JPH0955621 A JP H0955621A JP 7228525 A JP7228525 A JP 7228525A JP 22852595 A JP22852595 A JP 22852595A JP H0955621 A JPH0955621 A JP H0955621A
Authority
JP
Japan
Prior art keywords
antenna
parasitic
length
array antenna
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7228525A
Other languages
Japanese (ja)
Other versions
JP3169325B2 (en
Inventor
Yuujirou Taguchi
裕二朗 田口
Tsuyoshi Chin
陳  強
Kunio Sawatani
邦男 澤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP22852595A priority Critical patent/JP3169325B2/en
Publication of JPH0955621A publication Critical patent/JPH0955621A/en
Application granted granted Critical
Publication of JP3169325B2 publication Critical patent/JP3169325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antenna to be mounted on an aircraft with a high FBR directivity radiation pattern with which a visual field of a pilot is not disturbed at a low position and spurious radiation is suppressed without the use of a complicated exciting circuit or tuning circuit. SOLUTION: This antenna is provided with a reversed-F antenna as a feeder element 1 and conductors being parasitic elements 2, 3 whose electric length is set optionally and placed onto a ground plate. The length of the parasitic elements 2, 3 differs from the length of the feeder element 1 and the feeder element 1 and the parasitic element 2, 3 being one element or over are arranged at a prescribed interval.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアレーアンテナに関
し、特に敵・味方識別(IFF)システムに使用する航
空機搭載用のアレーアンテナの構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an array antenna, and more particularly to a structure of an array antenna mounted on an aircraft used in an enemy / friend identification (IFF) system.

【0002】[0002]

【従来の技術】波長が300mm程度の周波数で動作す
る敵・味方識別(IFF)システムにおいて、アンテナ
は主に戦闘機の機首外面に取り付けられており、物理的
には、空気抵抗の低減並びにパイロットの視界の確保の
観点から、高さの低いアンテナが要求される。また電気
的には、パイロットに対する不要放射を抑制する観点か
ら、前後比(FRONT−TO−BACK RATI
O、以下FBRと記す)の高い指向性放射パターンが要
求される。さらに、IFFシステムでは送受信周波数と
して1030MHz及び1090MHzが使用されるの
で、アンテナの周波数特性は比帯域5.7%以上が必要
となる。
2. Description of the Related Art In an enemy-friend / friend identification (IFF) system operating at a frequency of about 300 mm, an antenna is mainly attached to the outer surface of the nose of a fighter, and physically reduces the air resistance. From the viewpoint of securing the field of view of the pilot, an antenna with a low height is required. Further, electrically, from the viewpoint of suppressing unnecessary radiation to the pilot, the front-back ratio (FRONT-TO-BACK RATE
O, hereinafter referred to as FBR) is required to have a high directional radiation pattern. Furthermore, since 1030 MHz and 1090 MHz are used as transmission / reception frequencies in the IFF system, the frequency characteristic of the antenna requires a specific bandwidth of 5.7% or more.

【0003】従来、上記各要求を満足するものとして
は、特開平3−213005号公報により開示された強
制励振アンテナがある。以下、特開平3−213005
号公報に開示された強制励振アンテナについて簡単に説
明する。図6は強制励振アンテナの構成を示した図であ
り、図において20、22、24はそれぞれ第1、第
2、第3のモノポールアンテナ、40、48は第1及び
第2の励振回路、44及び50は第1及び第2の二重同
調回路である。第1及び第3モノポールアンテナ20、
24は第1励振回路40と接続し、第2モノポールアン
テナ22は第2二重同調回路50に接続している。前記
第1励振回路40は第1二重同調回路44に接続し、さ
らに該第1二重同調回路44は第2励振回路48に接続
している。また、第2二重同調回路50は第2励振回路
48によって第1二重同調回路44に結合され、入出力
コネクタ16に接続されている。このように構成した強
制励振アンテナは、物理的要求である低姿勢性能を実現
するために、アンテナ素子としてトップロード型モノポ
ールアンテナを用い、通常のモノポールアンテナに比べ
てその寸法を半分以下に短縮している。
Conventionally, there is the forced excitation antenna disclosed in Japanese Patent Laid-Open No. 213005/1993 that satisfies the above requirements. Hereinafter, JP-A-3-213005
The forced excitation antenna disclosed in the publication will be briefly described. FIG. 6 is a diagram showing a configuration of a forced excitation antenna, in which 20, 20, 24 are first, second, and third monopole antennas, 40, 48 are first and second excitation circuits, and FIG. 44 and 50 are first and second double-tuned circuits. First and third monopole antennas 20,
24 is connected to the first excitation circuit 40, and the second monopole antenna 22 is connected to the second double tuning circuit 50. The first excitation circuit 40 is connected to a first double tuning circuit 44, which in turn is connected to a second excitation circuit 48. Further, the second double tuning circuit 50 is coupled to the first double tuning circuit 44 by the second excitation circuit 48 and connected to the input / output connector 16. The force-excited antenna configured in this way uses a top-load type monopole antenna as an antenna element in order to achieve the low-profile performance that is a physical requirement, and its size is less than half that of a normal monopole antenna. It is shortening.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うにアンテナの寸法を半分以下としたために、アンテナ
の入力インピーダンスの実数部は数オームの低抵抗特性
を呈し、したがって通常の方法では送受信機とのインピ
ーダンス整合が困難となるので、第1及び第2二重同調
回路44、50を備え、これによりインピーダンス整合
を図っている。また高FBR性能を実現するために、2
項係数エンドファイヤアレーとしているが、このために
励振分布を第1励振回路40及び第2励振回路48によ
り制御している。すなわち、上述したような従来の強制
励振アンテナでは所望の物理的及び電気的性能を実現す
るために、複雑な励振回路、同調回路(整合回路)を必
要とし、製造コストが高くなる等の問題点があった。本
発明は上述した従来のIFFシステムに使用する航空機
搭載用アンテナの問題点に鑑みなされたものであって、
複雑な励振回路や同調回路を用いることなく、低姿勢で
パイロットの視野を妨げず、且つ不要放射を抑制し、高
FBR指向性放射パターンの航空機搭載用アンテナを提
供することを目的とする。
However, since the size of the antenna is reduced to less than half as described above, the real part of the input impedance of the antenna exhibits a low resistance characteristic of several ohms. Since impedance matching becomes difficult, the first and second double tuning circuits 44 and 50 are provided to achieve impedance matching. Also, in order to achieve high FBR performance, 2
Although the term coefficient endfire array is used, the excitation distribution is controlled by the first excitation circuit 40 and the second excitation circuit 48 for this purpose. That is, the conventional forced excitation antenna as described above requires complicated excitation circuits and tuning circuits (matching circuits) in order to achieve desired physical and electrical performances, resulting in high manufacturing costs. was there. The present invention has been made in view of the problems of the above-described aircraft-mounted antenna used in the conventional IFF system,
An object of the present invention is to provide an aircraft-mounted antenna having a high FBR directional radiation pattern, which does not hinder the pilot's field of view in a low posture and suppresses unnecessary radiation without using a complicated excitation circuit or tuning circuit.

【0005】[0005]

【課題を解決する為の手段】上記目的を達成する為、本
発明に係るアレーアンテナの第一の手段は、給電素子と
しての逆Fアンテナと、無給電素子として電気的長さを
任意に設定でき、且つグランド板に設置された導体とを
備え、該無給電素子の素子長は前記給電素子の素子長と
異なっており、前記給電素子と1素子以上の前記無給電
素子とを所定間隔で配置したことを特徴とする。本発明
に係るアレーアンテナの第二の手段は、前記第一の手段
において、素子長がほぼλ/4以下の無給電素子を1素
子以上備え、該無給電素子と給電素子とを所定間隔で配
置し、前記無給電素子を導波器として動作させたことを
特徴とする。
In order to achieve the above object, the first means of the array antenna according to the present invention is an inverted F antenna as a feeding element, and an electric length is arbitrarily set as a parasitic element. And a conductor installed on the ground plate, the element length of the parasitic element is different from the element length of the feeding element, and the feeding element and one or more of the parasitic elements are arranged at predetermined intervals. It is characterized by being arranged. A second means of the array antenna according to the present invention is the first means, which comprises one or more parasitic elements each having an element length of approximately λ / 4 or less, and the parasitic elements and the feeding elements are arranged at predetermined intervals. It is characterized in that it is arranged and the parasitic element is operated as a director.

【0006】本発明に係るアレーアンテナの第三の手段
は、前記第一の手段において、素子長がほぼλ/4以上
の無給電素子を1素子以上備え、該無給電素子と給電素
子とを所定間隔で配置し、前記無給電素子を反射器とし
て動作させたことを特徴とする。本発明に係るアレーア
ンテナの第四の手段は、前記第一の手段において、素子
長がほぼλ/4以下の第一の無給電素子と、素子長がほ
ぼλ/4以上の第二の無給電素子とをそれぞれ1素子以
上ずつ備え、給電素子より前方に前記第一の無給電素子
を配置し、また給電素子より後方に前記第二の無給電素
子を配置し、前記第一の無給電素子を導波器、前記第二
の無給電素子を反射器として動作させたことを特徴とす
る。
A third means of the array antenna according to the present invention is the same as the first means, further comprising at least one parasitic element having an element length of approximately λ / 4 or more, and the parasitic element and the feeding element are provided. The parasitic elements are arranged at a predetermined interval and the parasitic element is operated as a reflector. A fourth means of the array antenna according to the present invention is the first means according to the first means, wherein a first parasitic element having an element length of approximately λ / 4 or less and a second parasitic element having an element length of approximately λ / 4 or more. One or more feeding elements are provided, the first parasitic element is arranged in front of the feeding element, and the second parasitic element is arranged in rear of the feeding element. The element is operated as a director, and the second parasitic element is operated as a reflector.

【0007】本発明に係るアレーアンテナの第五の手段
は、前記第一乃至第四の手段において、前記給電素子及
び無給電素子を、誘電体基板上にエッチング等により形
成した導体パターンを用いて構成したことを特徴とす
る。本発明に係るアレーアンテナの第六の手段は、前記
第一乃至第五の手段において、前記無給電素子として1
素子以上の逆Lアンテナを用いたことを特徴とする。
A fifth means of the array antenna according to the present invention is the same as the first to fourth means, wherein the feeding element and the parasitic element are formed on a dielectric substrate by etching or the like. It is characterized by being configured. A sixth means of the array antenna according to the present invention is the parasitic element according to any one of the first to fifth means.
It is characterized by using an inverted L antenna having more elements.

【0008】本発明に係るアレーアンテナの第七の手段
は、前記第一乃至第五の手段において、前記無給電素子
として1素子以上のモノポールアンテナを用いたことを
特徴とする。本発明に係るアレーアンテナの第八の手段
は、前記第一乃至第五の手段において、前記無給電素子
として1素子以上のT型アンテナを用いたことを特徴と
する。
A seventh means of the array antenna according to the present invention is characterized in that, in the first to fifth means, one or more monopole antennas are used as the parasitic elements. Eighth means of an array antenna according to the present invention is characterized in that, in the first to fifth means, one or more T-shaped antennas are used as the parasitic elements.

【0009】[0009]

【発明の実施の形態】以下、図面に示した実施例に基づ
いて本発明を詳細に説明する。図1は本発明の基本的な
実施例である3素子アレーアンテナの構成と形状パラメ
ータを説明するための図であり、1は逆Fアンテナ、2
及び3はそれぞれ前記逆Fアンテナ1の給電ピンHより
距離AS1或いは距離AS2づつ離れた位置に配列され
た逆Lアンテナである。なお、図において、斜線部(/
//)は機体或いはグランド板を意味している。 逆F
アンテナ1は給電ピン部H、短絡ピン部HS、頂部ワイ
ヤ部WL及びWRから構成し、給電は給電ピン部Hの下
部より行われる。また短絡ピン部HSの下部は機体或い
はグランド板に接地された状態となっている。逆Lアン
テナ2は垂直部HR、水平部WRRより構成し、垂直部
HRの下部は機体に接地されており、同様に逆Lアンテ
ナ3も垂直部HD、水平部WRDより構成し、垂直部H
Dの下部は機体に接地されている。したがって、逆Lア
ンテナ2及び3は無給電素子として配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. FIG. 1 is a diagram for explaining the configuration and shape parameters of a three-element array antenna that is a basic embodiment of the present invention, where 1 is an inverted F antenna and 2 is
Reference numerals 3 and 3 denote reverse L antennas arranged at positions separated by a distance AS1 or a distance AS2 from the feeding pin H of the reverse F antenna 1. In the figure, the shaded area (/
//) means an airframe or a ground plate. Reverse F
The antenna 1 includes a feeding pin portion H, a short-circuiting pin portion HS, and top wire portions WL and WR, and feeding is performed from the lower portion of the feeding pin portion H. The lower part of the short-circuit pin HS is grounded to the machine body or the ground plate. The inverted L antenna 2 is composed of a vertical part HR and a horizontal part WRR, and the lower part of the vertical part HR is grounded to the body. Similarly, the inverted L antenna 3 is also composed of a vertical part HD and a horizontal part WRD, and a vertical part H.
The lower part of D is grounded to the airframe. Therefore, the inverted L antennas 2 and 3 are arranged as parasitic elements.

【0010】次に、上述したアレーアンテナの動作につ
いて説明する。なお、本願発明のアレーアンテナは基本
的には八木・宇田アンテナの原理を用いている。すなわ
ち、給電素子に対し所定の距離をおいてほぼλ/4以上
若しくはλ/4以下の無給電素子を配置することによ
り、反射器或いは導波器を構成するものであり、該八木
・宇田アンテナは、従来よりテレビ受信用アンテナとし
て周知であって、一般的にはダイポールアンテナを用い
た構成であるが、上述したような逆Lアンテナ、逆Fア
ンテナを用い、八木・宇田アンテナの原理を用いたアレ
ーアンテナの構成は今までに公表されたことがないた
め、その基本動作から説明する。
Next, the operation of the above array antenna will be described. The array antenna of the present invention basically uses the principle of the Yagi-Uda antenna. That is, a reflector or a waveguide is configured by disposing a parasitic element of approximately λ / 4 or more or λ / 4 or less at a predetermined distance from the feeding element. The Yagi-Uda antenna Is conventionally known as an antenna for receiving television, and generally has a configuration using a dipole antenna. However, the principle of Yagi-Uda antenna is used by using the inverse L antenna and the inverse F antenna as described above. Since the configuration of the array antenna that has been used has not been published so far, its basic operation will be described.

【0011】まず、図1において、給電素子である逆F
アンテナ1と無給電素子である逆Lアンテナ3から構成
する2素子アレーアンテナモデルを用いて考察する。設
計周波数をIFF送受信信号の中心周波数である106
0MHzとしたとき、配列間隔AS2=70.75mm
(λ/4)、H=HS=HD=28.3mm(0.1
λ)とし、共振周波数をほぼ1060MHzに設定する
ために、WR=34mm、WL=5mmとする。このと
き、WRDの長さに対する−X方向と+X方向の利得の
モーメント法による計算値を図3に示す。ここで、ワイ
ヤ半径はra=2.1mmとし、以下、説明するデータ
は全てワイヤ半径ra=2.1mmである。
First, in FIG. 1, an inverse F which is a power feeding element is used.
A two-element array antenna model including the antenna 1 and the inverted L antenna 3 which is a parasitic element will be considered. The design frequency is 106 which is the center frequency of the IFF transmission / reception signal.
Array spacing AS2 = 70.75 mm when 0 MHz
(Λ / 4), H = HS = HD = 28.3 mm (0.1
λ), and WR = 34 mm and WL = 5 mm in order to set the resonance frequency to approximately 1060 MHz. At this time, the calculated values of the gain in the −X direction and the + X direction with respect to the WRD length by the method of moments are shown in FIG. Here, the wire radius is ra = 2.1 mm, and the data described below are all wire radius ra = 2.1 mm.

【0012】図3に示したデータから明らかなように、
逆Lアンテナ3の無給電素子長(HD+WRD)をλ/
4より短くすると+X方向に最大放射が発生し、逆に無
給電素子長をλ/4より長くすると、−X方向に最大放
射が発生する。すなわち、逆L無給電素子3の素子長を
λ/4より短くすれば導波器として動作し、一方、λ/
4より長くすれば反射器として動作する。したがって、
図1に示した3素子構成においても、無給電素子2及び
3の長さを適宜設定することにより3素子八木・宇田ア
ンテナとして動作しうることが分かる。
As is clear from the data shown in FIG.
The parasitic element length (HD + WRD) of the inverted L antenna 3 is set to λ /
When it is shorter than 4, the maximum radiation is generated in the + X direction. On the contrary, when the parasitic element length is longer than λ / 4, the maximum radiation is generated in the -X direction. That is, if the element length of the inverse L parasitic element 3 is shorter than λ / 4, it operates as a waveguide, while λ /
If it is longer than 4, it operates as a reflector. Therefore,
It can be seen that even in the three-element configuration shown in FIG. 1, it is possible to operate as a three-element Yagi-Uda antenna by appropriately setting the lengths of the parasitic elements 2 and 3.

【0013】次に、3素子アレーアンテナの具体的な例
について説明する。図2はIFFシステムに用いる航空
機搭載用アンテナの具体的な形状寸法を示した図であ
る。ここで設計周波数は1060MHz(λ/4=7
0.75mm)として、アンテナの高さを低くする目的
で、給電素子及び無給電素子を構成する垂直部材及び給
電ピンの各高さをH=HS=HR=HD=0.08λ
(22.6mm)とする。また、本発明に係るアレーア
ンテナの特徴の一つである入力インピーダンスを広帯域
にするために、形状パラメータを図2に示す如く、L=
145.08mm、AS1=48.11mm、AS2=
45.28mm、WRR=37.54mm、WL=5m
m、WR=42.5mm、WRD=51.69mmと設
定した。各素子長を波長で表すと、逆Fアンテナ(給電
素子)の素子長”H+WL+WR”は70.1mm
0.25λ(λ/4)、導波器の素子長”HR+WR
R”は60.14mm 0.21λ、反射器の素子長”
HD+WRD”は74.29mm0.26λである。こ
のように構成することにより、入力インピーダンス特性
はIFFシステム帯域(1030MHzから1090M
Hz)内でほぼ50Ω純抵抗となり、特別な同調回路等
を用いることなく、インピーダンス整合を容易に図るこ
とができる。
Next, a specific example of the three-element array antenna will be described. FIG. 2 is a diagram showing the specific shape and dimensions of the aircraft-mounted antenna used in the IFF system. Here, the design frequency is 1060 MHz (λ / 4 = 7
0.75 mm), the heights of the vertical members and the feed pins forming the feed element and the parasitic element are set to H = HS = HR = HD = 0.08λ for the purpose of reducing the height of the antenna.
(22.6 mm). Further, in order to widen the input impedance, which is one of the features of the array antenna according to the present invention, the shape parameter is L =
145.08 mm, AS1 = 48.11 mm, AS2 =
45.28 mm, WRR = 37.54 mm, WL = 5 m
m, WR = 42.5 mm and WRD = 51.69 mm. When each element length is expressed in wavelength, the element length "H + WL + WR" of the inverted F antenna (feeding element) is 70.1 mm.
0.25λ (λ / 4), director element length “HR + WR”
R "is 60.14 mm 0.21λ, reflector element length"
HD + WRD "is 74.29 mm 0.26 λ. With this configuration, the input impedance characteristics are in the IFF system band (1030 MHz to 1090 M).
(Hz), it becomes a pure resistance of about 50Ω, and impedance matching can be easily achieved without using a special tuning circuit or the like.

【0014】このときのリターンロス特性を図4に示
す。図4の縦軸はリターンロス、横軸は周波数を示し、
リターンロスが−9.5dB以下(電圧定在波比:VS
WR=2)の比帯域幅は10%であるため、IFFシス
テムの要求性能である5.7%を十分満足することがで
きる。この性能と従来のダイポールで構成した3素子八
木・宇田アンテナの性能とを比較すると、従来のアンテ
ナの比帯域幅は2〜3%であるのに対し、本発明の如く
逆F給電素子及び逆L無給電素子とを用いることにより
その帯域を3倍以上に改善することができる。また、放
射パターンの一例としてIFFシステムの送信周波数で
ある1030MHzのZX面のパターンを図5に示す。
The return loss characteristic at this time is shown in FIG. The vertical axis of FIG. 4 shows the return loss, the horizontal axis shows the frequency,
Return loss is -9.5 dB or less (voltage standing wave ratio: VS
Since the specific bandwidth of WR = 2) is 10%, the required performance of the IFF system of 5.7% can be sufficiently satisfied. Comparing this performance with the performance of a three-element Yagi-Uda antenna composed of a conventional dipole, the conventional antenna has a specific bandwidth of 2 to 3%, while the reverse F-feeding element and the reverse F-like element as in the present invention are used. The band can be improved three times or more by using the L parasitic element. Further, as an example of the radiation pattern, a pattern on the ZX plane of 1030 MHz which is the transmission frequency of the IFF system is shown in FIG.

【0015】図5の縦軸はレベル、横軸は角度を示し、
図において、角度0°は図2におけるZ方向(天頂方
向)、角度−90°は−X方向、角度+90°は+X方
向を示す。同図から明らかなように、ビーム半値角は約
100°、FBR(図5では角度−90°と+90°方
向のレベル比)は約18dBである。なお、形状パラメ
ータを変更することにより、FBRが25dB程度のも
のを得ることもできる。また、図5に示したデータは、
無限大グランド板を仮定したモーメント法による計算値
であり、実際の機体等に本発明に係るアレーアンテナを
装備した場合には、ビームピークは天頂方向に20°〜
30°チルトする。以上説明したように、本発明の如く
逆Fアンテナの給電素子と逆Lアンテナの無給電素子と
を用いたアレーアンテナでは、高さの低いアンテナであ
りながら特別な励振回路や同調回路を必要とせず、所望
の性能を得ることが可能となる。
In FIG. 5, the vertical axis represents level and the horizontal axis represents angle.
In the figure, the angle 0 ° indicates the Z direction (zenith direction) in FIG. 2, the angle −90 ° indicates the −X direction, and the angle + 90 ° indicates the + X direction. As is clear from the figure, the beam half-value angle is about 100 °, and the FBR (level ratio in the angle −90 ° and + 90 ° directions in FIG. 5) is about 18 dB. By changing the shape parameter, it is possible to obtain an FBR of about 25 dB. In addition, the data shown in FIG.
The values are calculated by the method of moments assuming an infinite ground plate, and when the array antenna according to the present invention is installed in an actual aircraft or the like, the beam peak is 20 ° to the zenith direction.
Tilt 30 °. As described above, the array antenna using the feed element of the inverted F antenna and the parasitic element of the inverted L antenna as in the present invention requires a special excitation circuit or tuning circuit even though the antenna is low in height. Instead, it is possible to obtain desired performance.

【0016】次に、本発明の他の実施例について説明す
る。上述した基本実施例では半径raのワイヤ導体を用
いてアンテナを構成したが、比誘電率εrの誘電体基板
を機体或いはグランド板に垂直に設置し、該基板の片面
上に銅箔にて図1に示した形状の導体パターンを形成し
てもよい。この場合、波長は概ねλ/ εrに短縮され
るので、上述した給電素子長及び各無給電素子長も概ね
1/ εrに短縮する必要がある。また、発泡材等の誘
電体の片面上に板状導体を接着剤等で保持し、当該板状
導体により導体パターンを形成してもよい。この場合、
εr 1であるため、給電素子長及び各無給電素子長の
短縮等は行わなくてよい。
Next, another embodiment of the present invention will be described. In the above-mentioned basic embodiment, the antenna is constructed by using the wire conductor having the radius ra, but the dielectric substrate having the relative permittivity εr is installed vertically to the machine body or the ground plate, and the copper foil is formed on one surface of the substrate. You may form the conductor pattern of the shape shown in FIG. In this case, since the wavelength is shortened to approximately λ / εr, it is necessary to shorten the lengths of the feeding element and the parasitic elements described above to approximately 1 / εr. Alternatively, a plate-shaped conductor may be held on one surface of a dielectric such as a foam material with an adhesive or the like, and a conductor pattern may be formed by the plate-shaped conductor. in this case,
Since εr 1, it is not necessary to reduce the length of the feeding element and the length of each parasitic element.

【0017】上記説明においては無給電素子として逆L
アンテナを用いた場合を例に挙げて説明したが、これに
限定されるものではない。すなわち、無給電素子はその
素子長がアレーアンテナの動作条件として重要なパラメ
ータであることは自明であり、設計上、アンテナ形状に
自由度があれば、無給電素子としてモノポールアンテナ
や逆Lアンテナの先端部を下方に折り曲げた形状のも
の、さらにはT型アンテナや上述した特開平3−213
005に記載されているようにT型アンテナの先端部を
下方に折り曲げた形状のものを用いても、上述した本願
発明に係るアレーアンテナとし動作することは明らかで
ある。さらに、無給電素子として給電素子と同一の逆F
形状を有するアンテナを用いてもよく、いずれの形状の
無給電素子を用いた場合であっても、無給電素子の長さ
は、導波器としてはほぼλ/4以下、反射器としてはほ
ぼλ/4以上が必要であることは、上述した実施例と同
じである。
In the above description, an inverted L is used as the parasitic element.
Although the case where the antenna is used has been described as an example, the present invention is not limited to this. That is, it is obvious that the element length of the parasitic element is an important parameter as an operating condition of the array antenna, and if the antenna shape has a degree of freedom in design, a monopole antenna or an inverted L antenna is used as the parasitic element. Of which the tip is bent downward, a T-shaped antenna and the above-mentioned JP-A-3-213
Even if a T-shaped antenna whose tip portion is bent downward as described in No. 005 is used, it is apparent that the antenna operates as the array antenna according to the present invention described above. Further, as a parasitic element, the same inverse F as the feeding element is used.
An antenna having a shape may be used, and no matter what shape the parasitic element is used, the length of the parasitic element is about λ / 4 or less as a director and almost as a reflector. The requirement of λ / 4 or more is the same as in the above-described embodiment.

【0018】[0018]

【発明の効果】本発明は上述した如く構成し、且つ機能
するものであるから、アンテナ高さは従来のモノポール
アンテナの約30%に低減することが可能となり、航空
機等に搭載した場合に空気抵抗を低減せしめ且つパイロ
ットの視野を妨げることがない。また、入力VSWR特
性が比帯域10%、放射指向性パターンは20dB前後
の高FBR特性を有するアンテナを特別な励振回路や同
調回路を必要とせず安価に得ることができるので、IF
Fシステム等航空機搭載アンテナとして著しい効果を有
する。
Since the present invention is constructed and functions as described above, the height of the antenna can be reduced to about 30% of that of the conventional monopole antenna. It reduces air resistance and does not interfere with the pilot's field of view. In addition, an antenna having a high FBR characteristic with an input VSWR characteristic of 10% in a relative bandwidth and a radiation directivity pattern of about 20 dB can be obtained at low cost without requiring a special excitation circuit or tuning circuit.
It has a remarkable effect as an antenna mounted on an aircraft such as an F system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本的な実施例である3素子アレーア
ンテナの構成と形状パラメータを説明するための図。
FIG. 1 is a diagram for explaining the configuration and shape parameters of a three-element array antenna that is a basic embodiment of the present invention.

【図2】IFFシステムに用いる航空機搭載用アンテナ
の具体的な形状寸法を示した図。
FIG. 2 is a diagram showing the specific shape and dimensions of an aircraft-mounted antenna used in an IFF system.

【図3】無給電素子の素子長とゲインとの関係を示す
図。
FIG. 3 is a diagram showing a relationship between element length and gain of a parasitic element.

【図4】図2に示したアンテナのリターンロスを示す
図。
FIG. 4 is a diagram showing a return loss of the antenna shown in FIG.

【図5】放射パターンの一例としてIFFシステムの送
信周波数である1030MHzのZX面のパターンを示
す図。
FIG. 5 is a diagram showing a ZX plane pattern of 1030 MHz, which is a transmission frequency of an IFF system, as an example of a radiation pattern.

【図6】従来の強制励振アンテナの構成を示す図。FIG. 6 is a diagram showing a configuration of a conventional forced excitation antenna.

【符号の説明】[Explanation of symbols]

1・・・逆Fアンテナ(給電素子)、 2、3・・・逆Lアンテナ(無給電素子) 1 ... Inverted F antenna (feeding element), 2, 3 ... Inverted L antenna (non-feeding element)

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年5月13日[Submission date] May 13, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】次に、本発明の他の実施例について説明す
る。上述した基本実施例では半径raのワイヤ導体を用
いてアンテナを構成したが、非誘電率εrの誘電体基板
を機体或いはグランド板に垂直に設置し、該基板の片面
上に銅箔にて図1に示した形状の導体パターンを形成し
てもよい。この場合、波長は概ねλ/√εr〜0.95
λに短縮されるので、上述した給電素子と無給電素子の
間隔、給電素子長及び各無給電素子長も概ね1/√εr
〜0.95に短縮する必要がある。また、発砲材等の誘
電体の片面上に板状導体を接着材等で保持し、当該板状
導体により導体パターンを形成してもよい。この場合、
εr≒1であるため、給電素子と無給電素子の間隔、、
給電素子長及び各無給電素子長の短縮等は行わなくてよ
い。
Next, another embodiment of the present invention will be described. In the above-mentioned basic embodiment, the antenna is constructed by using the wire conductor having the radius ra, but the dielectric substrate having the non-dielectric constant εr is installed vertically to the machine body or the ground plate, and the copper foil is formed on one surface of the substrate. You may form the conductor pattern of the shape shown in FIG. In this case, the wavelength is approximately λ / √εr to 0.95.
Since it is shortened to λ, the distance between the above-mentioned feeding element and the non-feeding element, the feeding element length, and each non-feeding element length are also approximately 1 / √εr.
It needs to be shortened to ~ 0.95. Alternatively, a plate-shaped conductor may be held on one surface of a dielectric material such as a foam material with an adhesive or the like, and a conductor pattern may be formed by the plate-shaped conductor. in this case,
Since εr≈1, the distance between the feed element and the parasitic element,
It is not necessary to reduce the length of the feeding element and the length of each parasitic element.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 給電素子としての逆Fアンテナと、無給
電素子として電気的長さを任意に設定でき、且つグラン
ド板に設置された導体とを備え、該無給電素子の素子長
は前記給電素子の素子長と異なっており、前記給電素子
と1素子以上の前記無給電素子とを所定間隔で配置した
ことを特徴とするアレーアンテナ。
1. An inverted-F antenna as a feeding element, and a conductor as a parasitic element whose electric length can be arbitrarily set and which is installed on a ground plate. The parasitic element has a length equal to that of the feeding element. An array antenna characterized in that the element length is different from that of the element, and the feeding element and one or more of the parasitic elements are arranged at a predetermined interval.
【請求項2】 素子長がほぼλ/4以下の無給電素子を
1素子以上備え、該無給電素子と給電素子とを所定間隔
で配置し、前記無給電素子を導波器として動作させたこ
とを特徴とする請求項1記載のアレーアンテナ。
2. A parasitic element having an element length of about λ / 4 or less is provided, and the parasitic element and the feeding element are arranged at a predetermined interval, and the parasitic element is operated as a director. The array antenna according to claim 1, wherein:
【請求項3】 素子長がほぼλ/4以上の無給電素子を
1素子以上備え、該無給電素子と給電素子とを所定間隔
で配置し、前記無給電素子を反射器として動作させたこ
とを特徴とする請求項1記載のアレーアンテナ。
3. A parasitic element having an element length of approximately λ / 4 or more is provided, and the parasitic element and the feeding element are arranged at a predetermined interval, and the parasitic element is operated as a reflector. The array antenna according to claim 1, wherein:
【請求項4】 素子長がほぼλ/4以下の第一の無給電
素子と、素子長がほぼλ/4以上の第二の無給電素子と
をそれぞれ1素子以上ずつ備え、給電素子より前方に前
記第一の無給電素子を配置し、また給電素子より後方に
前記第二の無給電素子を配置し、前記第一の無給電素子
を導波器、前記第二の無給電素子を反射器として動作さ
せたことを特徴とする請求項1記載のアレーアンテナ。
4. A first parasitic element having an element length of approximately λ / 4 or less, and one or more second parasitic elements having an element length of approximately λ / 4 or more, each of which is disposed in front of the feeding element. The first parasitic element, the second parasitic element behind the feeding element, the first parasitic element is a waveguide, and the second parasitic element is reflected. The array antenna according to claim 1, which is operated as a container.
【請求項5】 前記給電素子及び無給電素子を、誘電体
基板上にエッチング等により形成した導体パターンを用
いて構成したことを特徴とする請求項1乃至4記載のア
レーアンテナ。
5. The array antenna according to claim 1, wherein the feeding element and the parasitic element are formed by using a conductor pattern formed on a dielectric substrate by etching or the like.
【請求項6】 前記無給電素子として1素子以上の逆L
アンテナを用いたことを特徴とする請求項1乃至5記載
のアレーアンテナ。
6. One or more inverted L as the parasitic element
An array antenna according to claim 1, wherein an antenna is used.
【請求項7】 前記無給電素子として1素子以上のモノ
ポールアンテナを用いたことを特徴とする請求項1乃至
5記載のアレーアンテナ。
7. The array antenna according to claim 1, wherein one or more monopole antennas are used as the parasitic elements.
【請求項8】 前記無給電素子として1素子以上のT型
アンテナを用いたことを特徴とする請求項1乃至5記載
のアレーアンテナ。
8. The array antenna according to claim 1, wherein one or more T-shaped antennas are used as the parasitic elements.
JP22852595A 1995-08-14 1995-08-14 Array antenna Expired - Fee Related JP3169325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22852595A JP3169325B2 (en) 1995-08-14 1995-08-14 Array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22852595A JP3169325B2 (en) 1995-08-14 1995-08-14 Array antenna

Publications (2)

Publication Number Publication Date
JPH0955621A true JPH0955621A (en) 1997-02-25
JP3169325B2 JP3169325B2 (en) 2001-05-21

Family

ID=16877788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22852595A Expired - Fee Related JP3169325B2 (en) 1995-08-14 1995-08-14 Array antenna

Country Status (1)

Country Link
JP (1) JP3169325B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003503A2 (en) * 2001-06-26 2003-01-09 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
US6717551B1 (en) 2002-11-12 2004-04-06 Ethertronics, Inc. Low-profile, multi-frequency, multi-band, magnetic dipole antenna
US6744410B2 (en) 2002-05-31 2004-06-01 Ethertronics, Inc. Multi-band, low-profile, capacitively loaded antennas with integrated filters
US6859175B2 (en) 2002-12-03 2005-02-22 Ethertronics, Inc. Multiple frequency antennas with reduced space and relative assembly
JP2005509345A (en) * 2001-11-09 2005-04-07 タンティビ・コミュニケーションズ・インコーポレーテッド Dual band phased array using spatial second harmonic
US6906667B1 (en) 2002-02-14 2005-06-14 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures for very low-profile antenna applications
US6911940B2 (en) 2002-11-18 2005-06-28 Ethertronics, Inc. Multi-band reconfigurable capacitively loaded magnetic dipole
US6919857B2 (en) 2003-01-27 2005-07-19 Ethertronics, Inc. Differential mode capacitively loaded magnetic dipole antenna
US6943730B2 (en) 2002-04-25 2005-09-13 Ethertronics Inc. Low-profile, multi-frequency, multi-band, capacitively loaded magnetic dipole antenna
US7084813B2 (en) 2002-12-17 2006-08-01 Ethertronics, Inc. Antennas with reduced space and improved performance
US7123209B1 (en) 2003-02-26 2006-10-17 Ethertronics, Inc. Low-profile, multi-frequency, differential antenna structures
JP2008503941A (en) * 2004-06-17 2008-02-07 インターデイジタル テクノロジー コーポレーション Low profile smart antenna for wireless applications and related methods
JP2008283493A (en) * 2007-05-10 2008-11-20 Nozomi Hasebe Unidirectional antenna
WO2018180875A1 (en) * 2017-03-29 2018-10-04 セイコーソリューションズ株式会社 Circular polarization antenna
WO2018180877A1 (en) * 2017-03-28 2018-10-04 セイコーソリューションズ株式会社 Dual polarized wave transmission/reception antenna

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100433454C (en) * 2001-06-26 2008-11-12 艾斯特里克有限公司 Multi-frequency magnetic dipole antenna structures and methods of reusing volume of antenna
WO2003003503A3 (en) * 2001-06-26 2003-05-08 Ethertronics Inc Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
US7012568B2 (en) 2001-06-26 2006-03-14 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
WO2003003503A2 (en) * 2001-06-26 2003-01-09 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
EP1959518A3 (en) * 2001-06-26 2008-11-05 Ethertronics, Inc. Multifrequency magnetic dipole antenna and methods for re-using the volume of an antenna
JP2005509345A (en) * 2001-11-09 2005-04-07 タンティビ・コミュニケーションズ・インコーポレーテッド Dual band phased array using spatial second harmonic
US6906667B1 (en) 2002-02-14 2005-06-14 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures for very low-profile antenna applications
US6943730B2 (en) 2002-04-25 2005-09-13 Ethertronics Inc. Low-profile, multi-frequency, multi-band, capacitively loaded magnetic dipole antenna
US6744410B2 (en) 2002-05-31 2004-06-01 Ethertronics, Inc. Multi-band, low-profile, capacitively loaded antennas with integrated filters
US6717551B1 (en) 2002-11-12 2004-04-06 Ethertronics, Inc. Low-profile, multi-frequency, multi-band, magnetic dipole antenna
US6911940B2 (en) 2002-11-18 2005-06-28 Ethertronics, Inc. Multi-band reconfigurable capacitively loaded magnetic dipole
US6859175B2 (en) 2002-12-03 2005-02-22 Ethertronics, Inc. Multiple frequency antennas with reduced space and relative assembly
US7084813B2 (en) 2002-12-17 2006-08-01 Ethertronics, Inc. Antennas with reduced space and improved performance
US6919857B2 (en) 2003-01-27 2005-07-19 Ethertronics, Inc. Differential mode capacitively loaded magnetic dipole antenna
US7123209B1 (en) 2003-02-26 2006-10-17 Ethertronics, Inc. Low-profile, multi-frequency, differential antenna structures
JP2008503941A (en) * 2004-06-17 2008-02-07 インターデイジタル テクノロジー コーポレーション Low profile smart antenna for wireless applications and related methods
JP2008283493A (en) * 2007-05-10 2008-11-20 Nozomi Hasebe Unidirectional antenna
WO2018180877A1 (en) * 2017-03-28 2018-10-04 セイコーソリューションズ株式会社 Dual polarized wave transmission/reception antenna
JP2018166294A (en) * 2017-03-28 2018-10-25 学校法人智香寺学園 Antenna for transmitting and receiving both polarization waves
WO2018180875A1 (en) * 2017-03-29 2018-10-04 セイコーソリューションズ株式会社 Circular polarization antenna
JP2018170561A (en) * 2017-03-29 2018-11-01 学校法人智香寺学園 Circularly polarized antenna

Also Published As

Publication number Publication date
JP3169325B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
US10854994B2 (en) Broadband phased array antenna system with hybrid radiating elements
EP1118138B1 (en) Circularly polarized dielectric resonator antenna
US6606061B2 (en) Broadband circularly polarized patch antenna
US6842158B2 (en) Wideband low profile spiral-shaped transmission line antenna
EP2917963B1 (en) Dual polarization current loop radiator with integrated balun
EP0637094B1 (en) Antenna for mobile communication
US20050237258A1 (en) Switched multi-beam antenna
US20040090371A1 (en) Compact antenna with circular polarization
US6204825B1 (en) Hybrid printed circuit board shield and antenna
EP1246299B1 (en) M-shaped antenna
US6573874B1 (en) Antenna and radio device
JP3169325B2 (en) Array antenna
JPH1093332A (en) Dual resonance inverted-f shape antenna
JP2863727B2 (en) Single wire spiral antenna
US6483476B2 (en) One-piece Yagi-Uda antenna and process for making the same
US20040201524A1 (en) Patch antenna apparatus preferable for receiving ground wave and signal wave from low elevation angle satellite
EP1033782B1 (en) Monopole antenna
JP3469834B2 (en) Broadband array antenna
US4516127A (en) Three element low profile antenna
JPH07303005A (en) Antenna system for vehicle
US20230039277A1 (en) Antenna device
KR19980069830A (en) Log Periodic Dipole Antenna with Microstrip Feeder
JP3045536B2 (en) Array antenna for forced excitation
US5559523A (en) Layered antenna
EP0391634B1 (en) Microstrip antenna with parasitic elements

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees