JPH0949023A - Production of grain oriented silicon steel sheet excellent in iron loss - Google Patents
Production of grain oriented silicon steel sheet excellent in iron lossInfo
- Publication number
- JPH0949023A JPH0949023A JP7204781A JP20478195A JPH0949023A JP H0949023 A JPH0949023 A JP H0949023A JP 7204781 A JP7204781 A JP 7204781A JP 20478195 A JP20478195 A JP 20478195A JP H0949023 A JPH0949023 A JP H0949023A
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- iron loss
- hot
- steel sheet
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、トランス等の鉄心
として使用される磁気特性の優れた一方向性電磁鋼板の
製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core of a transformer or the like.
【0002】[0002]
【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが、機器の
小型化、エネルギー損失の減少のために要求される。励
磁特性を表す特性値として、磁場の強さ800A/m にお
ける磁束密度B8 がJISで規格化されて通常使用され
る。また、エネルギー損失を示す特性値としては、周波
数50Hzで1.7テスラー(T)まで磁化した時の鋼板
1kg当たりのエネルギー損失(鉄損)W17/50 もJIS
で規格化されている。2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electric equipment, and are excellent in magnetic characteristics such as excitation characteristics and iron loss characteristics. Required for reduced energy loss. As a characteristic value representing the excitation characteristic, the magnetic flux density B 8 at a magnetic field strength of 800 A / m is standardized by JIS and is normally used. As a characteristic value indicating energy loss, the energy loss (iron loss) W 17/50 per 1 kg of steel sheet when magnetized to 1.7 Tesler (T) at a frequency of 50 Hz is also JIS.
Has been standardized in.
【0003】磁束密度は鉄損の最大支配因子であり、一
般的に磁束密度が高い(大きい)ほど鉄損特性が良好に
なる。また、一般的に磁束密度が高くなると二次再結晶
粒が大きくなり、鉄損が悪化する場合がある。この場合
は、既に広く知られているように、磁区を制御すること
により、二次再結晶の粒径に拘らず鉄損を改善すること
ができる。[0003] The magnetic flux density is the largest controlling factor of iron loss. Generally, the higher (larger) the magnetic flux density, the better the iron loss characteristics. Further, in general, when the magnetic flux density becomes high, the secondary recrystallized grains become large, and the iron loss may deteriorate. In this case, as already widely known, by controlling the magnetic domain, the iron loss can be improved irrespective of the grain size of the secondary recrystallization.
【0004】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起させ、鋼板表面に{110}、圧延
方向に〈001〉軸をもったいわゆるゴス組織を有して
いる。良好な磁気特性を得るためには、磁化容易軸であ
る〈001〉を圧延方向に高度に揃えることが必要であ
る。This unidirectional electrical steel sheet has a so-called Goss structure having {110} on the surface of the steel sheet and <001> axis in the rolling direction by causing secondary recrystallization in the final finishing annealing step. In order to obtain good magnetic properties, it is necessary that <001>, which is the axis of easy magnetization, be highly aligned in the rolling direction.
【0005】このような高磁束密度一方向性電磁鋼板の
製造技術は、古くから開発され、わが国ではいわゆるイ
ンヒビターとしてMnS,AlNを用いる方法(特開昭
40−15644号公報)、MnS,MnSe,Sb等
を用いる方法(特開昭51−13469号公報)等があ
る。これらの場合は、熱延板段階でのインヒビターの完
全固溶が求められ、実際の熱間圧延時は鋼塊(スラブ)
の加熱温度を1350℃以上にすることが必要である。The technology for producing such a high magnetic flux density unidirectional electrical steel sheet has been developed for a long time, and in Japan, a method using MnS or AlN as a so-called inhibitor (Japanese Patent Laid-Open No. 40-15644), MnS, MnSe, There is a method using Sb and the like (JP-A-51-13469). In these cases, complete solid solution of the inhibitor at the hot rolled sheet stage is required, and in actual hot rolling, steel ingot (slab)
It is necessary to set the heating temperature of 1350 ° C. or higher.
【0006】この高温度の加熱には数々の不利、不便な
点がある。このため、この熱延時の鋼塊(スラブ)の加
熱温度を下げる試みが行なわれている。その一つを開示
したものとして特開昭59−56522号公報がある。
この技術の発展として多くの発明がなされ、インヒビタ
ー形成のために脱炭焼鈍から最終仕上焼鈍の昇温過程で
窒化を行なう方法(特開昭62−45285号公報、特
開昭60−179855号公報)、更にはストリップを
走行せしめる状態下での水素、窒素、アンモニアの混合
ガスを用いた窒化処理を行なう方法(特開平2−775
25号公報、特開平1−82400号公報、特開平3−
180460号公報、特開平1−317592号公報)
が開示された。There are a number of disadvantages and inconveniences in heating at this high temperature. Therefore, attempts have been made to lower the heating temperature of the steel ingot (slab) during hot rolling. JP-A-59-56522 discloses one of them.
Many inventions have been made as the development of this technology, and a method of performing nitriding in a temperature rising process from decarburization annealing to final finishing annealing for forming an inhibitor (JP-A-62-45285, JP-A-60-179855). ), And further, a method of performing a nitriding treatment using a mixed gas of hydrogen, nitrogen and ammonia under a condition in which the strip is allowed to travel (JP-A-2-775).
25, JP-A-1-82400, and JP-A-3-82400.
180460, JP-A-1-317592)
Was disclosed.
【0007】また、脱炭焼鈍時の一次再結晶完了後から
最終仕上焼鈍時の二次再結晶完了前までの途中段階での
一次再結晶粒径を制御する方法(特開平3−29442
5号公報、特開平2−96275号公報、特開平2−5
9020号公報、特開平1−82393号公報)も開示
された。更に、一方向性電磁鋼においてSn等の粒界偏
析型元素を添加させることに関しては特開平3−211
232号公報等がある。Further, a method of controlling the primary recrystallized grain size at an intermediate stage from the completion of primary recrystallization during decarburization annealing to the completion of secondary recrystallization during final annealing (Japanese Patent Laid-Open No. 29442/1993).
No. 5, JP-A-2-96275, JP-A No. 2-5
No. 9020 and Japanese Patent Application Laid-Open No. 1-82393). Further, regarding the addition of grain boundary segregation type elements such as Sn in unidirectional electrical steel, JP-A-3-211
No. 232, etc.
【0008】ところで、直近、鉄製品のための省エネル
ギーのためにスクラップの再利用が進んでいる。特に、
空缶類のスクラップについては、Sn,P,Cuの含有
量が多くなり、従来の高炉を用いた製造方法とは異なっ
た成分の鋼の製造が求められてきている。By the way, recently, recycling of scrap has been promoted in order to save energy for iron products. Especially,
Since the content of Sn, P, and Cu in the scraps of empty cans is large, it is required to manufacture steel having a different composition from the conventional manufacturing method using a blast furnace.
【0009】[0009]
【発明が解決しようとする課題】特開昭58−2341
4号公報の技術は、は鋼塊(スラブ)の加熱温度を13
50℃以上としてインヒビター成分の完全固溶を行なわ
せしめて製造される一方向性電磁鋼板の製造に関するも
のである。上述したように、このような高温でのスラブ
加熱は、数々の不利な点があった。Problems to be Solved by the Invention JP-A-58-2341
The technique disclosed in Japanese Patent No. 4 has a heating temperature of a steel ingot (slab) of 13
The present invention relates to the production of a grain-oriented electrical steel sheet produced by completely dissolving an inhibitor component at 50 ° C. or higher. As described above, such high temperature slab heating has a number of disadvantages.
【0010】また、特開平3−211232号公報の技
術においては、スラブ加熱温度は低いもののSnを0.
04%程度添加する場合、鉄損のW17/50 が0.29mm
材で0.96W/kgが限界であった。またSnの添加量
を0.15%とすると二次再結晶不良が生じていた。上
記のような問題について、本発明は、スラブ加熱温度が
比較的低い場合に、SnまたはSbの添加とCuの複合
添加により鉄損を改善させるものである。また本発明を
用いると、Sn,Cuを従来より多く含有して、磁気特
性が優れた一方向性電磁鋼板が製造できるようになるた
め極めて有用である。Further, in the technique disclosed in Japanese Patent Laid-Open No. 3-212232, although the slab heating temperature is low, Sn is less than 0.
When adding about 04%, W 17/50 of iron loss is 0.29mm
The limit was 0.96 W / kg. Further, when the added amount of Sn was 0.15%, the secondary recrystallization failure occurred. With respect to the above-mentioned problems, the present invention improves iron loss by adding Sn or Sb and adding Cu together when the slab heating temperature is relatively low. Further, the use of the present invention makes it possible to manufacture a grain-oriented electrical steel sheet having excellent magnetic characteristics by containing Sn and Cu in a larger amount than in the past, which is extremely useful.
【0011】[0011]
【課題を解決するための手段】一方向性電磁鋼板の鉄損
を改善するための方策は数々あるが、原理的には渦電
流損、履歴損の低減である。本発明では、渦電流損の
影響因子の一つである結晶粒の大きさを適正化すること
に注目した。There are various measures for improving the iron loss of the grain-oriented electrical steel sheet, but in principle, reduction of eddy current loss and hysteresis loss is performed. In the present invention, attention has been paid to optimizing the size of crystal grains, which is one of the influential factors of eddy current loss.
【0012】特開平3−211232号公報に開示され
た技術においては、Snを0.10%を超えて添加する
と、二次再結晶が不安定になると述べているが、発明者
らが鋭意検討したところ、このような普通鋼並のスラブ
加熱温度で、一方向性電磁鋼板を製造するプロセスにお
いては、Snを単独添加すると、窒化が抑制されて二次
再結晶が不安定傾向となるが、Cuを複合添加すると、
仕上焼鈍過程での窒化が抑えられても良好な二次再結晶
が可能であることを知見した。In the technique disclosed in Japanese Patent Laid-Open No. 3-212232, it is stated that the secondary recrystallization becomes unstable when Sn is added in an amount of more than 0.10%. However, in the process of producing a grain-oriented electrical steel sheet at a slab heating temperature similar to that of ordinary steel, nitriding is suppressed and secondary recrystallization tends to be unstable when Sn is added alone, When Cu is added in combination,
It has been found that good secondary recrystallization is possible even if nitriding during the finish annealing process is suppressed.
【0013】この理由は定かではないが、窒化が抑制さ
れたことによるインヒビターAlNの弱体化をCuSが
補ったためと考えられる。SnをSbに置き換えても同
様な現象が起ることが知見された。The reason for this is not clear, but it is considered that CuS compensated the weakening of the inhibitor AlN due to the suppression of nitriding. It was found that a similar phenomenon occurs even if Sn is replaced with Sb.
【0014】更に特開昭58−23414号公報に開示
された技術と同様に粒界偏析元素であるSn,Sbの効
果が表れ二次再結晶サイズが小さくなっている。このこ
とにより鉄損が著しく改善されることを見い出した。Further, similar to the technique disclosed in Japanese Patent Laid-Open No. 58-23414, the effects of Sn and Sb which are grain boundary segregation elements are exhibited, and the secondary recrystallization size is reduced. It has been found that this significantly improves iron loss.
【0015】本発明の要旨は次の通りである。 (1)重量比でC:0.025〜0.075%、Si:
2.5〜4.0%、P:0.02〜0.10%、酸可溶
性Al:0.010〜0.050%、N:0.0040
〜0.0130%、S,Seの少なくとも1種を0.0
07〜0.020%、Mn:0.05〜0.5%、Sn
+Sb:0.06〜0.20%、Cu:0.03〜0.
50%、残部がFe及び不可避不純物からなるスラブを
1280℃未満の温度で加熱し、熱延を行ない、熱延板
焼鈍を行ない、中間焼鈍を挟む一回以上の冷延を行な
い、脱炭焼鈍後ストリップを走行せしめる状態下で水
素、窒素、アンモニアの混合ガス中で窒化処理を行な
い、次いでMgOを主成分とする焼鈍分離材を塗布して
最終仕上焼鈍を施すことを特徴とする鉄損特性が優れた
一方向性電磁鋼板の製造方法。The gist of the present invention is as follows. (1) C: 0.025 to 0.075% by weight, Si:
2.5-4.0%, P: 0.02-0.10%, acid-soluble Al: 0.010-0.050%, N: 0.0040
~ 0.0130%, 0.0% of at least one of S and Se
07-0.020%, Mn: 0.05-0.5%, Sn
+ Sb: 0.06 to 0.20%, Cu: 0.03 to 0.
A slab consisting of 50% and the balance Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C., hot-rolled, hot-rolled sheet annealed, intermediate-annealed one or more cold-rolled, decarburized annealed. Iron loss characteristics characterized by performing a nitriding treatment in a mixed gas of hydrogen, nitrogen and ammonia in a state where a post strip is run, and then applying an annealing separation material containing MgO as a main component and performing final finishing annealing. Of excellent grain-oriented electrical steel sheet.
【0016】(2)重量比でC:0.025〜0.07
5%、Si:2.5〜4.0%、P:0.02〜0.1
0%、酸可溶性Al:0.010〜0.050%、N:
0.0040〜0.0130%、S,Seの少なくとも
1種を0.007〜0.020%、Mn:0.05〜
0.5%、Sn+Sb:0.06〜0.20%、Cu:
0.03〜0.50%、残部がFe及び不可避不純物か
らなるスラブを1280℃未満の温度で加熱し、熱延を
行ない、熱延板焼鈍を行なわず、中間焼鈍を挟む一回以
上の冷延を行ない、脱炭焼鈍後ストリップを走行せしめ
る状態下で水素、窒素、アンモニアの混合ガス中で窒化
処理を行ない、次いでMgOを主成分とする焼鈍分離材
を塗布して最終仕上焼鈍を施すことを特徴とする鉄損特
性が優れた一方向性電磁鋼板の製造方法。(2) C: 0.025 to 0.07 by weight ratio
5%, Si: 2.5 to 4.0%, P: 0.02 to 0.1
0%, acid-soluble Al: 0.010 to 0.050%, N:
0.0040 to 0.0130%, at least one of S and Se is 0.007 to 0.020%, Mn: 0.05 to
0.5%, Sn + Sb: 0.06 to 0.20%, Cu:
A slab containing 0.03 to 0.50% and the balance of Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C., hot rolling is performed, hot-rolled sheet annealing is not performed, and intermediate anneal is performed at least once. After decarburizing and annealing, nitriding is performed in a mixed gas of hydrogen, nitrogen, and ammonia under conditions where the strip is allowed to run, and then an annealing separator containing MgO as a main component is applied and final finishing annealing is performed. And a method for manufacturing a grain-oriented electrical steel sheet having excellent iron loss characteristics.
【0017】(3)溶鋼成分として更にCr:0.05
〜0.30%を含有させることを特徴とする(1)また
は(2)記載の方法。(3) Cr: 0.05 as a molten steel component
The method according to (1) or (2), wherein the content is 0.30%.
【0018】(4)溶鋼成分として更にNi:0.01
〜0.10%を含有させることを特徴とする(1),
(2)または(3)記載の方法。(4) Further Ni: 0.01 as a molten steel component
0.1% is contained (1),
The method according to (2) or (3).
【0019】次に本発明の限定理由について述べる。C
は、その含有量が0.025%未満になると二次再結晶
が不安定となりかつ、二次再結晶した場合でも製品の磁
束密度(B8 値)が1.80Tに満たない低いものとな
る。一方、Cの含有量が0.075%を超えて多くなり
過ぎると、脱炭焼鈍時間が長大なものとなり、生産性を
著しく損なう。Next, the reasons for limitation of the present invention will be described. C
When the content is less than 0.025%, the secondary recrystallization becomes unstable, and the magnetic flux density (B 8 value) of the product becomes low even below 1.80T even when the secondary recrystallization is performed. . On the other hand, when the content of C exceeds 0.075% and becomes too large, the decarburization annealing time becomes long and the productivity is remarkably impaired.
【0020】Siは、その含有量が2.5%未満になる
と低鉄損の製品を得難く、一方、Siの含有量が4.5
%を超えて多くなり過ぎると材料の冷間圧延時に、割
れ、破断が多発して安定した冷間圧延作業を不可能にす
る。When Si content is less than 2.5%, it is difficult to obtain a product with low iron loss, while Si content is 4.5.
If the amount is too much over%, cracks and fractures frequently occur during cold rolling of the material, making stable cold rolling work impossible.
【0021】本発明の出発材料の成分系における特徴の
一つは、Sを0.020%以下、好ましくは0.015
%以下とする点にある。従来、公知の技術、例えば特公
昭40−15644号公報或いは特公昭47−2525
0号公報に開示されている技術においては、Sは二次再
結晶を生起させるに必要な析出物の一つであるMnSの
形成元素として必須であった。One of the features of the component system of the starting material of the present invention is that S is 0.020% or less, preferably 0.015.
% Or less. Conventionally known technology, for example, Japanese Patent Publication No. 40-15644 or Japanese Patent Publication No. 47-2525.
In the technique disclosed in Japanese Patent Laid-Open No. 0, S was essential as an element for forming MnS, which is one of the precipitates necessary for causing secondary recrystallization.
【0022】前記公知技術において、Sが最も効果を発
揮する含有量範囲があり、それは熱間圧延に先立って行
なわれるスラブの加熱段階でMnSを固溶できる量とし
て規定されていた。しかしながら、インヒビターとして
(Al,Si)Nを用いる特開平3−211232号公
報では、MnSは特に必要としないため最大0.015
%、好ましくは0.010%以下としていた。In the above-mentioned known technology, there is a content range in which S is most effective, and it has been defined as the amount of MnS which can be solid-dissolved in the slab heating step performed prior to hot rolling. However, in Japanese Unexamined Patent Publication (Kokai) No. 3-212132, which uses (Al, Si) N as an inhibitor, MnS is not particularly required, and therefore 0.015 at maximum.
%, Preferably 0.010% or less.
【0023】しかし、本発明ではCuを添加してCuと
Sの化合物をインヒビターの析出核として用いるため、
ある程度のSは必要である。Sが0.020%を超える
とMnSが多く析出するため、本発明のスラブ加熱温度
が1280℃未満と低い場合は、二次再結晶が不安定と
なる。このため上限は0.020%とした。However, in the present invention, since Cu is added and the compound of Cu and S is used as the precipitation nucleus of the inhibitor,
Some S is necessary. When S exceeds 0.020%, a large amount of MnS precipitates, so when the slab heating temperature of the present invention is as low as less than 1280 ° C, secondary recrystallization becomes unstable. Therefore, the upper limit was made 0.020%.
【0024】ただし、好ましくは0.015%以下であ
る。また0.007%未満では、Cu−Sが適切に析出
せず、磁束密度(B8 )が劣るので下限は0.007%
とする。SeもSと同様である。However, it is preferably 0.015% or less. On the other hand, if it is less than 0.007%, Cu-S is not properly precipitated and the magnetic flux density (B 8 ) is inferior, so the lower limit is 0.007%.
And Se is also the same as S.
【0025】Pは、一次再結晶集合組織を改善する効果
が報告されている。低Pでは、この効果が少なく、また
製鋼コスト的にコストアップになるので下限は0.02
%とする。上限については、0.10%を超えるとPは
粒界偏析して脆性破壊を起しやすくなり、工業的な生産
が困難になる。このため上限を0.10%とする。It has been reported that P has the effect of improving the primary recrystallization texture. If the P content is low, this effect is small and the steelmaking cost is increased, so the lower limit is 0.02.
%. Regarding the upper limit, if it exceeds 0.10%, P tends to segregate at the grain boundaries to cause brittle fracture, and industrial production becomes difficult. Therefore, the upper limit is set to 0.10%.
【0026】AlはNと結合してAlNを形成するが、
本発明においては、後工程即ち一次再結晶完了後に鋼を
窒化することにより(Al,Si)Nを形成せしめるこ
とを必須としているから、フリーのAlが一定量以上必
要である。そのため、 sol.Alとして0.010〜
0.050%添加する。Al combines with N to form AlN,
In the present invention, since it is essential to form (Al, Si) N by nitriding the steel after the post-process, ie, after the completion of the primary recrystallization, a certain amount of free Al is required. Therefore, sol. 0.010 as Al
Add 0.050%.
【0027】Mnは、その含有量が少な過ぎると二次再
結晶が不安定となり、一方、多過ぎると高い磁束密度を
もつ製品を得難くなる。適正な含有量は0.050〜
0.5%である。好ましくは、0.070〜0.030
%である。If the content of Mn is too small, the secondary recrystallization becomes unstable, while if it is too large, it becomes difficult to obtain a product having a high magnetic flux density. Proper content is 0.050
0.5%. Preferably 0.070 to 0.030
%.
【0028】Nは0.0010%未満では二次再結晶粒
の発達が悪くなる。一方0.0120%を超えるとブリ
スターと呼ばれる鋼板のふくれが発生する。If N is less than 0.0010%, the development of secondary recrystallized grains becomes poor. On the other hand, if it exceeds 0.0120%, swelling of the steel sheet called blister occurs.
【0029】Sn,Sbは従来からいわれている如く、
一次再結晶集合組織において{110}〈001〉方位
粒を増加させる効果があるとともに、硫化物を均一に析
出する効果がある。従って、本発明では、Cu−S,M
n−Sの如き硫化物の析出を制御する効果が増長され
る。Sn and Sb are, as is conventionally said,
In the primary recrystallization texture, it has an effect of increasing {110} <001> oriented grains and an effect of uniformly precipitating sulfide. Therefore, in the present invention, Cu-S, M
The effect of controlling the precipitation of sulfides such as n-S is enhanced.
【0030】更に、Sn,Sbを本発明の如くかなり多
く添加すると、脱炭焼鈍時の酸化がされ難く、また一次
再結晶粒成長し難くなる傾向がある。このため、脱炭焼
鈍温度を従来の820〜840℃より20℃程度上げざ
るを得ない。このことは、一方向性電磁鋼板の一次被膜
形成を容易ならしめる方向である。Further, when Sn and Sb are added in a considerably large amount as in the present invention, there is a tendency that oxidation during decarburization annealing is difficult and primary recrystallized grain growth becomes difficult. Therefore, the decarburization annealing temperature has to be increased by about 20 ° C. from the conventional 820 to 840 ° C. This is a direction that facilitates the formation of the primary coating of the grain-oriented electrical steel sheet.
【0031】また、Sb,Sn添加により二次再結晶粒
径が小さくなるため、添加なしと比べて鉄損(特に低磁
場鉄損)が良好となる。SbとSnは原子番号が隣接し
ているためSb+Snで規定する。Further, since the secondary recrystallized grain size is reduced by adding Sb and Sn, the iron loss (particularly low magnetic field iron loss) becomes better than that without addition. Since Sb and Sn are adjacent to each other in atomic number, they are defined by Sb + Sn.
【0032】Sb+Snが0.06%未満であると、二
次再結晶粒があまり小さくならない。また、Sb+Sn
が0.20%を超えると、脱炭焼鈍後の窒化処理が困難
となり、工業生産に適していない。また後に述べるよう
に磁束密度が低下するので上限を0.20%とする。If Sb + Sn is less than 0.06%, the secondary recrystallized grains do not become so small. Also, Sb + Sn
When it exceeds 0.20%, nitriding treatment after decarburization annealing becomes difficult, which is not suitable for industrial production. Further, as will be described later, the magnetic flux density decreases, so the upper limit is made 0.20%.
【0033】Cuは、Sと結合して熱間圧延中に析出し
て、(Al,Si)Nの析出核となる。このため二次再
結晶のインヒビターが理想的に分散するようになると考
えられる。Snを添加すると、二次再結晶が不安定化す
るが、粒径は小さくなり鉄損が低くなる。しかしCuを
添加するとSnとの相互作用でSnが高くても二次再結
晶は安定化する。Cuが0.03%未満であると効果が
少ない。また0.5%を超えると、Cu−Sの析出物が
粗大化して、効果が減じる。更に、熱間圧延時に、いわ
ゆる“Cuヘゲ”という疵の発生頻度が急激に増大す
る。好ましくは、0.05〜0.10%である。Cu combines with S and precipitates during hot rolling to form (Al, Si) N precipitation nuclei. Therefore, it is considered that the secondary recrystallization inhibitor is ideally dispersed. When Sn is added, the secondary recrystallization becomes unstable, but the grain size becomes small and the iron loss becomes low. However, when Cu is added, the secondary recrystallization is stabilized by the interaction with Sn even if Sn is high. If Cu is less than 0.03%, the effect is small. On the other hand, if it exceeds 0.5%, Cu-S precipitates are coarsened and the effect is reduced. Further, during hot rolling, the frequency of occurrence of so-called "Cu hegging" defects sharply increases. Preferably, it is 0.05 to 0.10%.
【0034】Crは、フォルステライト皮膜形成に必要
な脱炭焼鈍後の酸素量を確保するために添加される。
0.05%より少ないと本発明のように(Sn+Sb)
を添加した場合酸素量が極端に少なくなる。また0.3
0%を超えると酸素量が極端に増加し、良好なフォルス
テライトが形成されなくなる。また磁束密度も低下す
る。Cr is added to secure the amount of oxygen after decarburization annealing necessary for forming a forsterite film.
If it is less than 0.05%, as in the present invention (Sn + Sb)
When added, the amount of oxygen becomes extremely small. Also 0.3
If it exceeds 0%, the amount of oxygen increases extremely, and good forsterite is not formed. Also, the magnetic flux density decreases.
【0035】Niは0.01%未満だと二次再結晶が不
安定となる。0.10%を超えても特開平5−3064
10号公報に示されているように効果はあるが、高価と
なる。このため0.10%を上限とする。CrとNiの
添加は、本発明の効果を更に向上させるものであり、コ
スト的に見合う量だけの添加で良い。If Ni is less than 0.01%, secondary recrystallization becomes unstable. Even if the content exceeds 0.10%
Although it is effective as shown in Japanese Patent Publication No. 10, it is expensive. Therefore, the upper limit is 0.10%. The addition of Cr and Ni further improves the effect of the present invention, and may be added in amounts that are commensurate with cost.
【0036】次に試験結果を述べる。Cu:0.07
%、S:0.012%、C:0.050〜0.055
%、Si:3.20〜3.30%、Al:0.026〜
0.030%、Cr:0.09〜0.20%、Ni:
0.03〜0.08%、P:0.04〜0.07%、M
n:0.09〜0.11%、N:0.0075〜0.0
085%をベースとして、Sn+Sb=0.04,0.
10,0.15,0.20,0.25%と変化させた溶
鋼を、通常の方法でスラブとし1100〜1150℃で
加熱して通常の方法で熱間圧延して500〜600℃の
間で巻き取った。この時の熱間圧延板の仕上厚みは2.
6mmであった。Next, the test results will be described. Cu: 0.07
%, S: 0.012%, C: 0.050 to 0.055
%, Si: 3.20 to 3.30%, Al: 0.026 to
0.030%, Cr: 0.09 to 0.20%, Ni:
0.03-0.08%, P: 0.04-0.07%, M
n: 0.09 to 0.11%, N: 0.0075 to 0.0
Based on 085%, Sn + Sb = 0.04,0.
Molten steel changed to 10, 0.15, 0.20, 0.25% is made into a slab by a normal method, heated at 1100 to 1150 ° C, and hot-rolled by a normal method to obtain a temperature between 500 to 600 ° C. I wound it up. The finish thickness of the hot-rolled sheet at this time is 2.
It was 6 mm.
【0037】その後1120℃で2分間の熱延板焼鈍を
行ない酸洗後、180〜220℃での最低2パスの温間
圧延を施して0.285mmに冷間圧延した。その後82
0℃,830℃,840℃の各温度でN2 :25%,H
2 :75%の雰囲気ガス中、露点65℃で150秒焼鈍
し脱炭一次再結晶及び酸化膜形成を行なった。After that, hot-rolled sheet annealing was performed at 1120 ° C. for 2 minutes, pickling, warm rolling at 180 to 220 ° C. for at least two passes, and cold rolling to 0.285 mm. Then 82
N 2 : 25%, H at each temperature of 0 ° C, 830 ° C, and 840 ° C
2 : Annealed at a dew point of 65 ° C. for 150 seconds in an atmosphere gas of 75% to perform decarburization primary recrystallization and oxide film formation.
【0038】その後ストリップ状態で窒化させその後の
窒素含有量を200〜210ppm とした。続いてMgO
を主成分とする焼鈍分離材を塗布した。続く仕上焼鈍で
15℃/時間の昇温速度で1200℃まで加熱した。After that, nitriding was performed in a strip state, and the nitrogen content thereafter was set to 200 to 210 ppm. Then MgO
An annealing separator having as a main component was applied. In the subsequent finish annealing, it was heated to 1200 ° C at a temperature rising rate of 15 ° C / hour.
【0039】この時の雰囲気ガスは、H2 :75%,N
2 :25%であった。その後1200℃で20時間、H
2 :100%で純化焼鈍をした。At this time, the atmosphere gas is H 2 : 75%, N
It was 2 : 25%. Then, at 1200 ℃ for 20 hours, H
2 : 100% pure annealing was performed.
【0040】冷却後連続ラインで形状矯正及び燐酸塩−
コロイダルシリカ系の張力コーティングを施した。この
後いわゆるエプシュタイン用の試料を切り出し、850
℃×2時間の歪取り焼鈍を行なって磁気特性を測定し
た。After cooling, shape correction and phosphate-in a continuous line
A colloidal silica-based tension coating was applied. After this, a sample for so-called Epstein was cut out and 850
Magnetic properties were measured by carrying out strain relief annealing at ℃ × 2 hours.
【0041】磁気特性は、B8 ,W13/50 ,W17/50 で
ある。図1はB8 とW17/50 、図2はB8 とW13/50 の
関係を示している。このようにSn+Sb=0.04%
であると、B8 は高くても二次再結晶がかなり大きいた
め(例えば目視直径が20〜50mm)鉄損はあまり良く
ない。The magnetic properties, B 8, W 13/50, a W 17/50. Figure 1 B 8 and W 17/50, Fig. 2 shows the relationship of B 8 and W 13/50. In this way Sn + Sb = 0.04%
Therefore, even if B 8 is high, the secondary recrystallization is considerably large (for example, the visual diameter is 20 to 50 mm), and the iron loss is not so good.
【0042】ところがSn+Sbの添加量を増加すると
二次再結晶粒は小さくなり鉄損が向上する。しかし、S
n+Sbの量が増え過ぎると(0.25%の場合)磁束
密度が低下する。この場合低磁場鉄損(W13/50 )はあ
まり劣化しないが、高磁場鉄損(W17/50 )が劣化して
いる。However, if the amount of addition of Sn + Sb is increased, the secondary recrystallized grains become smaller and the iron loss is improved. But S
If the amount of n + Sb increases too much (0.25%), the magnetic flux density decreases. In this case a low magnetic field iron loss (W 13/50) is not so much deterioration, high magnetic field core loss (W 17/50) has deteriorated.
【0043】[0043]
実施例1 次に示す成分の鋼塊を通常の方法で製造し1100〜1
150℃でスラブを加熱後、通常の熱延を示さない熱延
板厚2.3mmに仕上げた。その後1120℃×2分の熱
延板焼鈍を行ない、酸洗後180〜220℃で最低2パ
スの温間圧延を行なって0.220mmに冷間圧延した。
その後830℃で、N2 :25%,H2:75%の雰囲
気ガス中で、露点62℃で100秒の脱炭一次再結晶焼
鈍を行なった。Example 1 A steel ingot having the following components was manufactured by a usual method and 1100-1
After heating the slab at 150 ° C., it was finished to a hot-rolled sheet thickness of 2.3 mm that does not show normal hot rolling. After that, hot-rolled sheet annealing was performed at 1120 ° C. for 2 minutes, and after pickling, warm rolling was performed at 180 to 220 ° C. for a minimum of two passes and then cold rolling to 0.220 mm.
Then, decarburization primary recrystallization annealing was performed at 830 ° C. in an atmosphere gas of N 2 : 25% and H 2 : 75% at a dew point of 62 ° C. for 100 seconds.
【0044】その後、全窒素含有量を195〜210pp
m とするストリップ窒化処理を行ないMgOを主成分と
する焼鈍分離材を塗布し、仕上焼鈍を行なった。この仕
上焼鈍は10〜20℃/時間で昇温し、雰囲気は、
N2 :25%,H2 :75%であった。Then, the total nitrogen content is adjusted to 195 to 210 pp.
m, a strip nitriding treatment was performed, an annealing separator containing MgO as a main component was applied, and finish annealing was performed. In this finish annealing, the temperature is raised at 10 to 20 ° C./hour, and the atmosphere is
N 2 : 25%, H 2 : 75%.
【0045】その後1200℃で20時間、H2 :10
0%の純化焼鈍を行なった。その後、通常用いられる張
力コーティングの塗布と平滑化処理を行なった。その結
果を表1に示す。Thereafter, the temperature is set to 1200 ° C. for 20 hours, and H 2 : 10
A 0% purification annealing was performed. Thereafter, application of a commonly used tension coating and smoothing treatment were performed. Table 1 shows the results.
【0046】[0046]
【表1】 [Table 1]
【0047】実施例2 次に示す成分の鋼塊を通常の方法で製造し、1070〜
1130℃でスラブ加熱後通常の熱延を行ない、熱延板
厚2.6mmに仕上げた。その後、熱延板焼鈍を行なうこ
となく酸洗を施し、0.335mmに冷間圧延を行なっ
た。Example 2 A steel ingot having the following components was produced by a usual method, and
After heating the slab at 1130 ° C, normal hot rolling was performed to finish the hot rolled sheet thickness to 2.6 mm. Then, pickling was performed without performing hot-rolled sheet annealing, and cold rolling was performed to 0.335 mm.
【0048】その後、アルカリ洗浄で脱脂して、83
5,840,845℃のいずれかの温度でN2 :25
%,H2 :75%の雰囲気ガス中で露点65℃で150
秒の脱炭一次再結晶焼鈍を行なった。その後、全窒素含
有量が225〜235ppm となるようにストリップ窒化
処理を行ない、MgOを主成分とする焼鈍分離材を塗布
し仕上焼鈍を行なった。After that, it is degreased by alkali cleaning to obtain 83
N 2 : 25 at any of 5,840 and 845 ° C.
%, H 2 : 150% at 75% dew point in ambient gas
Second decarburization primary recrystallization annealing was performed. After that, strip nitriding treatment was performed so that the total nitrogen content was 225 to 235 ppm, and an annealing separation material containing MgO as a main component was applied and finish annealing was performed.
【0049】この仕上焼鈍は、10〜20℃/時間で昇
温し、雰囲気はN2 :30%,H2:70%であった。
その後1200℃で35時間の純化処理を行なった。冷
却後、通常用いられる燐酸系の張力コーティングの塗布
と平滑化処理を行なった。この結果を表2に示す。In this finish annealing, the temperature was raised at 10 to 20 ° C./hour, and the atmosphere was N 2 : 30% and H 2 : 70%.
After that, a purification treatment was performed at 1200 ° C. for 35 hours. After cooling, a phosphoric acid-based tension coating, which is usually used, was applied and a smoothing treatment was performed. The results are shown in Table 2.
【0050】[0050]
【表2】 [Table 2]
【0051】[0051]
【発明の効果】本発明により、普通鋼並のスラブ加熱温
度によって製造された磁気特性の良好なSnの高い方向
性電磁鋼板を得ることができる。EFFECT OF THE INVENTION According to the present invention, it is possible to obtain a grain-oriented electrical steel sheet having a high Sn content, which is manufactured at a slab heating temperature similar to that of ordinary steel and has good magnetic characteristics.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明材のB8 とW17/50 の関係を示す図表で
ある。FIG. 1 is a chart showing a relationship between B 8 and W 17/50 of a material of the present invention.
【図2】本発明材のB8 とW13/50 の関係を示す図表で
ある。FIG. 2 is a table showing the relationship between B 8 and W 13/50 of the material of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 北河 久和 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内 (72)発明者 黒木 克郎 北九州市戸畑区大字中原46−59 日鐵プラ ント設計株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hisawa Kitakawa No. 1 Tobahata-cho, Tobata-ku, Kitakyushu City, Nippon Steel Co., Ltd., Yawata Works (72) Inventor Katsuro Kuroki, Nakahara 46, Tobata-ku, Kitakyushu 59 Nittetsu Plant Design Co., Ltd.
Claims (4)
%、 Mn:0.05〜0.5%、 Sn+Sb:0.06〜0.20%、 Cu:0.03〜0.50%、 残部がFe及び不可避不純物からなるスラブを1280
℃未満の温度で加熱し、熱延を行ない、熱延板焼鈍を行
ない、中間焼鈍を挟む一回以上の冷延を行ない、脱炭焼
鈍後ストリップを走行せしめる状態下で水素、窒素、ア
ンモニアの混合ガス中で窒化処理を行ない、次いでMg
Oを主成分とする焼鈍分離材を塗布して最終仕上焼鈍を
施すことを特徴とする鉄損特性が優れた一方向性電磁鋼
板の製造方法。1. C: 0.025 to 0.075%, Si: 2.5 to 4.0%, P: 0.02 to 0.10%, and acid-soluble Al: 0.010 to 0 by weight. 0.050%, N: 0.0040 to 0.0130%, 0.007 to 0.020 at least one of S and Se
%, Mn: 0.05 to 0.5%, Sn + Sb: 0.06 to 0.20%, Cu: 0.03 to 0.50%, and a balance of 1280 slabs composed of Fe and inevitable impurities.
Heating at a temperature below ℃, hot rolling, hot-rolled sheet annealing, cold rolling at least once with intermediate annealing sandwiched between hydrogen, nitrogen, and ammonia under conditions that allow strips to run after decarburization annealing. Nitriding is performed in a mixed gas, then Mg
A method for manufacturing a grain-oriented electrical steel sheet having excellent iron loss characteristics, which comprises applying an annealing separator containing O as a main component and performing final finishing annealing.
%、 Mn:0.05〜0.5%、 Sn+Sb:0.06〜0.20%、 Cu:0.03〜0.50%、 残部がFe及び不可避不純物からなるスラブを1280
℃未満の温度で加熱し、熱延を行ない、熱延板焼鈍を行
なわず、中間焼鈍を挟む一回以上の冷延を行ない、脱炭
焼鈍後ストリップを走行せしめる状態下で水素、窒素、
アンモニアの混合ガス中で窒化処理を行ない、次いでM
gOを主成分とする焼鈍分離材を塗布して最終仕上焼鈍
を施すことを特徴とする鉄損特性が優れた一方向性電磁
鋼板の製造方法。2. C: 0.025 to 0.075%, Si: 2.5 to 4.0%, P: 0.02 to 0.10%, and acid-soluble Al: 0.010 to 0 by weight. 0.050%, N: 0.0040 to 0.0130%, 0.007 to 0.020 at least one of S and Se
%, Mn: 0.05 to 0.5%, Sn + Sb: 0.06 to 0.20%, Cu: 0.03 to 0.50%, and a balance of 1280 slabs composed of Fe and inevitable impurities.
Heating at a temperature of less than ℃, hot-rolling, hot-rolled sheet annealing is not performed, one or more cold-rolling with intermediate annealing is performed, hydrogen, nitrogen under the condition of running the strip after decarburization annealing,
Nitriding is performed in a mixed gas of ammonia, then M
A method for producing a grain-oriented electrical steel sheet having excellent iron loss characteristics, which comprises applying an annealing separator containing gO as a main component and performing final finishing annealing.
0.30%を含有させることを特徴とする請求項1また
は2記載の方法。3. As a molten steel component, Cr: 0.05-
The method according to claim 1 or 2, wherein the content is 0.30%.
0.10%を含有させることを特徴とする請求項1,2
または3記載の方法。4. Ni: 0.01 to 0.01 as a molten steel component
The content of 0.10% is contained.
Or the method of 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7204781A JPH0949023A (en) | 1995-08-10 | 1995-08-10 | Production of grain oriented silicon steel sheet excellent in iron loss |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7204781A JPH0949023A (en) | 1995-08-10 | 1995-08-10 | Production of grain oriented silicon steel sheet excellent in iron loss |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0949023A true JPH0949023A (en) | 1997-02-18 |
Family
ID=16496246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7204781A Pending JPH0949023A (en) | 1995-08-10 | 1995-08-10 | Production of grain oriented silicon steel sheet excellent in iron loss |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0949023A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100721819B1 (en) * | 2005-12-14 | 2007-05-28 | 주식회사 포스코 | Grain-oriented electrical steel sheets manufacturing method with low core loss, high magnetic induction |
WO2009091127A3 (en) * | 2007-12-28 | 2009-10-08 | Posco | Grain oriented electrical steel having excellent magnetic properties and manufacturing method for the same |
KR100957911B1 (en) * | 2007-12-28 | 2010-05-13 | 주식회사 포스코 | Grain oriented electrical steel having excellent magnetic properties and manufacturing method for the same |
WO2011040723A3 (en) * | 2009-10-01 | 2011-07-07 | 주식회사 포스코 | Low-core-loss, high-magnetic-flux density, grain-oriented electrical steel sheet and production method therefor |
KR101353554B1 (en) * | 2011-12-21 | 2014-01-23 | 주식회사 포스코 | Grain-oriented electrical steel sheet and manufacturing method for the same |
WO2017082621A1 (en) * | 2015-11-10 | 2017-05-18 | 주식회사 포스코 | Grain-oriented electrical steel sheet and method for manufacturing same |
-
1995
- 1995-08-10 JP JP7204781A patent/JPH0949023A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100721819B1 (en) * | 2005-12-14 | 2007-05-28 | 주식회사 포스코 | Grain-oriented electrical steel sheets manufacturing method with low core loss, high magnetic induction |
WO2009091127A3 (en) * | 2007-12-28 | 2009-10-08 | Posco | Grain oriented electrical steel having excellent magnetic properties and manufacturing method for the same |
KR100957911B1 (en) * | 2007-12-28 | 2010-05-13 | 주식회사 포스코 | Grain oriented electrical steel having excellent magnetic properties and manufacturing method for the same |
WO2011040723A3 (en) * | 2009-10-01 | 2011-07-07 | 주식회사 포스코 | Low-core-loss, high-magnetic-flux density, grain-oriented electrical steel sheet and production method therefor |
CN102575314A (en) * | 2009-10-01 | 2012-07-11 | Posco公司 | Low-core-loss, high-magnetic-flux density, grain-oriented electrical steel sheet and production method therefor |
KR101353554B1 (en) * | 2011-12-21 | 2014-01-23 | 주식회사 포스코 | Grain-oriented electrical steel sheet and manufacturing method for the same |
WO2017082621A1 (en) * | 2015-11-10 | 2017-05-18 | 주식회사 포스코 | Grain-oriented electrical steel sheet and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0717961B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties | |
JPH0949023A (en) | Production of grain oriented silicon steel sheet excellent in iron loss | |
JP2603130B2 (en) | Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet | |
JP3397277B2 (en) | Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip | |
KR950009760B1 (en) | Method of manufacturing grain oriented silicon steel sheet | |
JP3056970B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties | |
JP2000017330A (en) | Production of nonoriented silicon steel sheet low in iron loss | |
JPH06256847A (en) | Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic | |
JPS6333518A (en) | Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production | |
JP4261633B2 (en) | Manufacturing method of unidirectional electrical steel sheet | |
JP3507232B2 (en) | Manufacturing method of unidirectional electrical steel sheet with large product thickness | |
JPH09118920A (en) | Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property | |
JP3331402B2 (en) | Manufacturing method of semi-process non-oriented electrical steel sheet with excellent all-around magnetic properties | |
JP2712913B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JPH09287025A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JP2784661B2 (en) | Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet | |
JPH07305116A (en) | Production of high magnetic flux density grain-oriented silicon steel sheet | |
JP3474594B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness | |
JP4320794B2 (en) | Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction | |
JPH07310124A (en) | Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic | |
JP3324044B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JPH04362138A (en) | Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property | |
JP3527276B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP2003027139A (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JPH1025516A (en) | Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030204 |