[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0943510A - Recording and reproducing optical system of optical information recording medium - Google Patents

Recording and reproducing optical system of optical information recording medium

Info

Publication number
JPH0943510A
JPH0943510A JP7211259A JP21125995A JPH0943510A JP H0943510 A JPH0943510 A JP H0943510A JP 7211259 A JP7211259 A JP 7211259A JP 21125995 A JP21125995 A JP 21125995A JP H0943510 A JPH0943510 A JP H0943510A
Authority
JP
Japan
Prior art keywords
lens
optical system
reproducing
information recording
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7211259A
Other languages
Japanese (ja)
Other versions
JP3451152B2 (en
Inventor
Noriyuki Yamazaki
敬之 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP21125995A priority Critical patent/JP3451152B2/en
Priority to US08/637,210 priority patent/US5754513A/en
Publication of JPH0943510A publication Critical patent/JPH0943510A/en
Priority to US09/015,061 priority patent/US5920532A/en
Application granted granted Critical
Publication of JP3451152B2 publication Critical patent/JP3451152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an information pickup device and an optical disk device capable of recording/reproducing an optical disk having the different thickness of a substrate by means of one optical pickup. SOLUTION: A recording/reproducing optical system has a laser beam source, a lens for converting the divergent angle of a divergent beam from the laser beam source to a small angle and an objective lens 6 of a positive refractive power for converging a transmitted light beam from the lens on an information recording surface through a transparent substrate of an information recording medium, the divergent angle converting lens is moved along the optical axis according to the thickness of a transparent substrate 7 and the system satisfies the following condition: d1 >d2 , where, d1 : a distance from the laser beam source to a point at which the surface of the divergent angle converting lens closest to the beam source intersects the optical axis, the distances are d1 , d2 when the thicknesses of the transparent substrate are t1 , t2 , respectively, and the relation: t1 <t2 holds.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー光などの光ビ
ームを光情報記録媒体に照射することにより、光情報を
記録再生する光学系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical system for recording / reproducing optical information by irradiating an optical information recording medium with a light beam such as a laser beam.

【0002】[0002]

【従来技術】図28に於いて、半導体レーザ等の光源1
から出射した光束はビームスプリッタ2を通過してコリ
メータレンズ3に入射して平行光束となり、絞り5で所
定の光束に制限されて対物レンズ6へ入射する。この対
物レンズ6は、平行光束が入射すると、所定の厚みの基
板7を通してほぼ無収差の光スポットを記録面8上へ結
像する。この記録面8で情報ピットにより変調されて反
射した光束は、対物レンズ6、コリメータレンズ3を介
してビームスプリッタ2に戻り、ここでレーザ光源1か
らの光路から分離され、受光手段9に入射する。この受
光手段9は多分割されたPINフォトダイオードであ
り、各素子から入射光束の強度に比例した信号電流を出
力し、この信号電流を図には示さない検出回路系に送
る。ここで検出された情報信号、フォーカスエラー信
号、トラックエラー信号に基づき、磁気回路とコイル等
で構成される2次元アクチュエータで対物レンズ6を制
御し、常にトラック上に光スポット位置を合わせる。
2. Description of the Related Art In FIG. 28, a light source 1 such as a semiconductor laser is provided.
The light beam emitted from the laser beam passes through the beam splitter 2, enters the collimator lens 3, becomes a parallel light beam, is limited to a predetermined light beam by the diaphragm 5, and enters the objective lens 6. When the parallel light flux enters, the objective lens 6 forms a substantially aberration-free light spot on the recording surface 8 through the substrate 7 having a predetermined thickness. The light flux modulated and reflected by the information pits on the recording surface 8 returns to the beam splitter 2 via the objective lens 6 and the collimator lens 3, where it is separated from the optical path from the laser light source 1 and enters the light receiving means 9. . The light receiving means 9 is a PIN photodiode which is multi-divided. Each element outputs a signal current proportional to the intensity of the incident light beam, and sends this signal current to a detection circuit system (not shown). Based on the detected information signal, focus error signal, and track error signal, the objective lens 6 is controlled by a two-dimensional actuator composed of a magnetic circuit and a coil, and the light spot position is always aligned on the track.

【0003】この様な情報ピックアップでは、対物レン
ズ6で集光される光スポットを小さくするため大NA
(例えばNA0.6)であるので、この様な集光光束中
に置かれる基板7の厚みが所定の厚みからずれると大き
な球面収差を発生させる。図29でこれを説明するとN
A0.6、レーザ光源から出射されるレーザ光の波長6
35nm、基板厚み0.6mm、基板屈折率1.58の
条件で最適化された対物レンズで、基板の厚みを変えた
場合、0.01mmずれる毎に0.01λrms程収差
が増大する。従って、基板厚みが±0.07mmずれる
と0.07λrmsの収差となり、読み取りが正常に行
える目安となるマレシャルの限界値に達してしまう。
In such an information pickup, a large NA is used to reduce the light spot condensed by the objective lens 6.
Since it is (for example, NA 0.6), if the thickness of the substrate 7 placed in such a condensed light flux deviates from a predetermined thickness, large spherical aberration is generated. This will be explained with reference to FIG.
A0.6, wavelength 6 of laser light emitted from laser light source
With an objective lens optimized under the conditions of 35 nm, substrate thickness 0.6 mm, and substrate refractive index 1.58, when the substrate thickness is changed, the aberration increases by 0.01 λrms for every 0.01 mm deviation. Therefore, if the substrate thickness deviates by ± 0.07 mm, the aberration will be 0.07 λrms, and the Marechal limit value, which is a standard for normal reading, will be reached.

【0004】このため、0.6mm厚の基板に換えて例
えば1.2mm厚の基板を再生しようとする場合、 アクチュエータ部で1.2mm厚対応の対物レンズ1
1と絞り10に切り替えて再生する。 0.6mm厚の基板用と1.2mm厚の基板用の2組
のピックアップを装置に組み込む。 情報ピックアップ中にホログラムを設け、これを透過
する0次光と1次光の各々を0.6mm厚基板と1.2
mm厚基板に対応する光スポットとして情報記録面に集
光させる。 等の方法が提案されている。
For this reason, when reproducing a substrate having a thickness of 1.2 mm instead of a substrate having a thickness of 0.6 mm, for example, the objective lens 1 corresponding to the thickness of 1.2 mm is used in the actuator section.
Playback is switched to 1 and aperture 10. Two sets of pickups for a 0.6 mm thick substrate and a 1.2 mm thick substrate are incorporated in the device. A hologram is provided in the information pickup, and each of the 0th-order light and the 1st-order light transmitted through the hologram is transferred to a 0.6 mm thick substrate and 1.2
A light spot corresponding to a mm-thick substrate is focused on the information recording surface. And other methods have been proposed.

【0005】しかし、前述の様に1台の光ディスク装置
で異なる基板厚を有する光ディスクを再生可能とするた
めに、上記のようにディスクの基板厚が0.6mm用と
1.2mm用それぞれに対応する対物レンズを2個取り
付けたり、ディスクの基板厚が0.6mmと1.2mm
用の2個の光ピックアップを装置に組み込む方法では、
情報ピックアップ装置及び光ディスク装置をコンパクト
で低コストとすることは出来ない。また、情報ピックア
ップ中にホログラムを設け、これを透過する0次光、1
次光の各々を0.6mm厚基板と1.2mm厚基板に対
応する光スポットとして情報記録面に集光させる方法で
は、常に情報記録媒体の情報記録面に向け2つの光束が
出射されるため、一方の光束による光スポットでの情報
読み出しを行うときは他方の光束は読み出しには寄与し
ない不要光となるだけでなく、ノイズ増大要因となる。
また、レーザー光強度を分割して用いる事になるため、
光量低下によるS/N比の低下が生じ、光量を増大させ
た場合にはレーザー寿命が低下してしまう。更に、記録
を行う方式とするときは、出射ロス分が増大することに
より、より高い出力のレーザーが必要となりコストが高
くなる。
However, as described above, in order to be able to reproduce optical disks having different substrate thicknesses with one optical disk device, as described above, the substrate thicknesses of the disk correspond to 0.6 mm and 1.2 mm, respectively. Two objective lenses are attached, and the substrate thickness of the disc is 0.6mm and 1.2mm.
In the method of incorporating two optical pickups for
The information pickup device and the optical disc device cannot be made compact and low cost. In addition, a hologram is provided in the information pickup, and the 0th-order light that passes through the hologram, 1
In the method of converging each of the next rays on the information recording surface as a light spot corresponding to a 0.6 mm thick substrate and a 1.2 mm thick substrate, two light fluxes are always emitted toward the information recording surface of the information recording medium. When information is read from a light spot by one light flux, the other light flux not only becomes unnecessary light that does not contribute to reading but also causes noise increase.
Also, since the laser light intensity will be divided and used,
The S / N ratio is reduced due to the decrease in the light amount, and the laser life is shortened when the light amount is increased. Further, when the recording method is adopted, the emission loss is increased, so that a laser having a higher output is required and the cost is increased.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記欠点を
含まぬ光情報記録媒体の記録再生用光学系を得るために
為されたものである。すなわち、一つの光ピックアップ
で異なる基板厚を有する光ディスクの記録再生を可能と
し、基板厚の異なる光ディスク相互の互換性を有する、
構造が簡単でコンパクトな情報ピックアップ装置及び光
ディスク装置を実現する事を可能とすることを目的とし
ている。
SUMMARY OF THE INVENTION The present invention has been made to obtain an optical system for recording / reproducing an optical information recording medium which does not include the above-mentioned drawbacks. That is, it is possible to record and reproduce optical disks having different substrate thicknesses with one optical pickup, and to have compatibility with optical disks having different substrate thicknesses.
It is an object of the present invention to realize an information pickup device and an optical disc device which are simple and compact in structure.

【0007】[0007]

【問題を解決するための手段】本発明の光情報記録媒体
の記録再生用光学系は、レーザー光源と、該レーザー光
源からの発散光の発散角を小に変換するレンズと、該レ
ンズからの出射光を光情報記録媒体の透明基板を介して
情報記録面上に集光する正の屈折力を有する対物レンズ
を有する光情報記録媒体の記録再生用光学系において、
前記透明基板の厚みに応じて前記発散角変換レンズが光
軸に沿って移動し、以下の条件を満たすことを特徴とす
る。 d1 >d2 但し、 d1:レーザー光源から発散角変換レンズの最も光源に
近い面が光軸と交わる点までの距離で、透明基板の厚み
がt1,t2のとき、前記距離はそれぞれd1,d2であ
り、t1<t2の関係にある。
A recording / reproducing optical system for an optical information recording medium according to the present invention comprises a laser light source, a lens for converting a divergence angle of diverging light from the laser light source to a small value, and a lens for converting the divergence angle. In a recording / reproducing optical system of an optical information recording medium having an objective lens having a positive refractive power for converging emitted light on an information recording surface through a transparent substrate of the optical information recording medium,
The divergence angle conversion lens moves along the optical axis according to the thickness of the transparent substrate, and the following condition is satisfied. d 1 > d 2 where d 1 is the distance from the laser light source to the point where the surface of the divergence angle conversion lens closest to the light source intersects the optical axis. When the thickness of the transparent substrate is t 1 and t 2 , the distance is They are d 1 and d 2 , respectively, and have a relationship of t 1 <t 2 .

【0008】前記対物レンズは光源側に凸面を向けた正
の単レンズであり、光源側、情報記録面側に面する両面
が非球面であり、ガラス素材あるいはプラスチック素材
から成る。
The objective lens is a positive single lens having a convex surface facing the light source side, both surfaces facing the light source side and the information recording surface side are aspherical surfaces, and are made of a glass material or a plastic material.

【0009】また、前記発散角変換レンズが前記d1
位置するとき、該発散角変換レンズから出射し、前記対
物レンズに入射する光束がほぼ平行となるように構成さ
れるのが望ましい。
Further, it is preferable that when the divergence angle conversion lens is located at the d 1 , the light flux emitted from the divergence angle conversion lens and incident on the objective lens is substantially parallel.

【0010】さらに、Further,

【数2】 但し、△d=d1−d2 △t=t2−t1 n :光情報媒体の透明基板の光源波長での屈折率 fo :対物レンズの焦点距離 fc :発散角変換レンズの焦点距離 fT :透明基板t1 時の光学系全系の焦点距離 の条件式を満足することが望ましい。[Equation 2] However, Δd = d 1 −d 2 Δt = t 2 −t 1 n: Refractive index of the transparent substrate of the optical information medium at the light source wavelength fo: Focal length of the objective lens fc: Focal length of the divergence angle conversion lens fT : It is desirable to satisfy the conditional expression of the focal length of the entire optical system at the time of the transparent substrate t 1 .

【0011】[0011]

【作用】本発明は、対物レンズに入射する光束の入射角
を光情報記録媒体の透明基板の厚みに応じて変えること
により、基板の厚みが異なる光ディスクの記録再生を可
能とする光学系を提供しようとするものである。図1
は、NA0.60、基板厚み0.60mm、基板屈折率
1.58の条件で波長635nmの平行光束が入射する
ときに収差補正が最適化された対物レンズ6に光束を入
射させたときの光路図である。無限遠よりの光束は絞り
5、対物レンズ6、基板7を通り、記録面8に相当する
位置に集光する。この様な対物レンズ6は、レンズ面に
非球面を用いることにより容易に波面収差0.000λ
msのものを得ることが出来る。
The present invention provides an optical system capable of recording / reproducing optical disks having different substrate thicknesses by changing the incident angle of a light beam incident on an objective lens according to the thickness of a transparent substrate of an optical information recording medium. Is what you are trying to do. FIG.
Is an optical path when a light beam is incident on the objective lens 6 whose aberration correction is optimized when a parallel light beam having a wavelength of 635 nm is incident under the conditions of NA 0.60, substrate thickness 0.60 mm, and substrate refractive index 1.58. It is a figure. A light beam from infinity passes through the diaphragm 5, the objective lens 6, and the substrate 7, and is condensed at a position corresponding to the recording surface 8. Such an objective lens 6 can easily have a wavefront aberration of 0.000λ by using an aspherical surface for the lens surface.
You can get ms.

【0012】図2は実施例1において、基板厚み0.6
mmに対して収差補正が最適化された光学系において、
発散角変換レンズを光軸に沿って移動した時に発生する
球面収差量を示している。ここで、発散角の大小の定義
を、光束が発散光の場合を+方向、収束光の場合を−方
向、平行光の場合を0とする。発散角変換レンズを所定
の位置から光源寄りに光軸に沿って移動すると、発散角
変換レンズから出射される光束の出射角は、移動前の出
射角と比べて大きくなり、対物レンズに最適状態よりも
発散角の大きな光束が入射されることになり、アンダー
の球面収差が発生することになる。また、発散角変換レ
ンズを所定の位置から対物レンズ寄りに光軸に沿って移
動すると、発散角変換レンズから出射される光束の出射
角は、移動前の出射角と比べて小さくなり、対物レンズ
に最適状態よりも発散角の小さな光束が入射されること
になる。これにより、オーバーの球面収差が発生するこ
とになる。
FIG. 2 shows the substrate thickness of 0.6 in Example 1.
In an optical system in which aberration correction is optimized for mm,
The amount of spherical aberration generated when the divergence angle conversion lens is moved along the optical axis is shown. Here, the magnitude of the divergence angle is defined as + direction when the light flux is divergent light, −direction when the light flux is convergent light, and 0 when the light flux is parallel light. When the divergence angle conversion lens is moved from the predetermined position toward the light source along the optical axis, the emission angle of the light beam emitted from the divergence angle conversion lens becomes larger than the emission angle before the movement, and the optimum state for the objective lens. A light beam having a divergence angle larger than that of the light beam is incident, and under spherical aberration occurs. Further, when the divergence angle conversion lens is moved from the predetermined position toward the objective lens along the optical axis, the emission angle of the light flux emitted from the divergence angle conversion lens becomes smaller than the emission angle before the movement, and the objective lens In this case, a light beam with a divergence angle smaller than that in the optimum state is incident. As a result, excessive spherical aberration occurs.

【0013】図2、図29より、所定の基板厚みに対し
て最適化された光学系において、基板が厚くなるほど、
また発散角変換レンズが光源から遠ざかるほど、球面収
差はオーバーになる。逆に、基板が薄くなるほど、また
発散角変換レンズが光源に近付くほど、球面収差はアン
ダーになることがわかる。従って、基板が厚くなった場
合に発生するオーバーの球面収差を、発散角変換レンズ
を光源に近付けてアンダーの球面収差を発生させること
で打ち消すことが可能である。逆に、基板が薄くなった
場合に発生するアンダーの球面収差を、発散角変換レン
ズを光源から遠ざけてオーバーの球面収差を発生させる
ことで打ち消すことが可能である。
From FIGS. 2 and 29, in the optical system optimized for a given substrate thickness, the thicker the substrate,
Further, the farther the divergence angle conversion lens is from the light source, the more spherical aberration becomes. On the contrary, it can be seen that the thinner the substrate is and the closer the divergence angle conversion lens is to the light source, the lower the spherical aberration is. Therefore, it is possible to cancel the excess spherical aberration that occurs when the substrate becomes thicker by bringing the divergence angle conversion lens closer to the light source and generating the under spherical aberration. On the contrary, it is possible to cancel the under spherical aberration that occurs when the substrate becomes thin by moving the divergence angle conversion lens away from the light source and generating the over spherical aberration.

【0014】対物レンズの光源側面を凸面とし、更に非
球面を導入することにより、本発明に用いられる対物レ
ンズは単レンズで実現することが可能であり、コスト低
減に寄与する。この際に、対物レンズの素材はガラスと
樹脂のいずれを用いることも可能であるが、コスト低減
への寄与の点においては、樹脂とすることが望ましい。
By making the light source side surface of the objective lens convex and introducing an aspherical surface, the objective lens used in the present invention can be realized by a single lens, which contributes to cost reduction. At this time, it is possible to use either glass or resin as the material of the objective lens, but it is desirable to use resin in terms of contributing to cost reduction.

【0015】基板厚みの変化△tにより発生した球面収
差を、焦点距離fc の発散角変換レンズを光軸に沿って
移動することにより、逆方向の球面収差を発生させて光
学系全系として球面収差を良好に補正するが、その際、
{(n2−1)/n3}△tが大きいほど発散角変換レン
ズの移動量△dも大きくなり、その関係は比例する。ま
た、発散角変換レンズの移動により補正できる球面収差
の量は、√(fo/fT)及び(fo/fc)2に反比例す
る。以上のことから、光情報媒体の透明基板の厚みが変
化したことにより発生した球面収差を補正するために移
動する発散角変換レンズの移動量は、これらの{(n2
−1)/n3}△t、√(fo/fT)および(fo/f
c)2で正規化した値が条件式(1)の範囲になければな
らない。上限を越えて移動しすぎると、球面収差がアン
ダーに成り過ぎ、回折限界の目安であるマレシャル限界
を越えてしまう。逆に下限を下回ると△tで発生したオ
ーバーの球面収差を十分に補正できず、やはりマレシャ
ル限界を越えてしまう。
The spherical aberration generated by the change Δt in the substrate thickness is moved along the optical axis of the divergence angle conversion lens having the focal length fc to generate spherical aberration in the opposite direction, and the spherical surface is formed as the entire optical system. Corrects aberrations well, but at that time
The larger {(n 2 −1) / n 3 } Δt, the larger the moving amount Δd of the divergence angle conversion lens, and the relationship is proportional. Also, the amount of spherical aberration that can be corrected by moving the divergence angle conversion lens is inversely proportional to √ (fo / fT) and (fo / fc) 2 . From the above, the movement amount of the divergence angle conversion lens that moves to correct the spherical aberration caused by the change in the thickness of the transparent substrate of the optical information medium can be calculated by these {(n 2
−1) / n 3 } Δt, √ (fo / fT) and (fo / f
c) The value normalized by 2 must be within the range of conditional expression (1). If the lens moves too much beyond the upper limit, spherical aberration will be too low and will exceed the Marechal limit, which is a measure of the diffraction limit. On the other hand, when the value goes below the lower limit, the excessive spherical aberration generated at Δt cannot be sufficiently corrected, and the Marechal limit is also exceeded.

【0016】[0016]

【実施例】以下実施例を説明する。各実施例において、
数値例は、レーザー光源を第0面とし、ここから順に第
i番目の面(絞り面を含む)の曲率半径をr1 、第i番
目の面と第i+1番目の面との光軸上の厚み、間隔をd
i 、第i番目と第i+1番目との間の媒質のレーザー光
源の波長での屈折率をni で表す。また、空気の屈折率
を1とする。また、レンズ面に非球面を用いている場合
においては、その非球面形状は面の頂点を原点とし、光
軸方向をX軸とした直交座標系において、κを円錐係
数、Ai を非球面係数、Pi を非球面のべき数とすると
き、
EXAMPLES Examples will be described below. In each example,
In the numerical example, the laser light source is the 0th surface, the radius of curvature of the i-th surface (including the diaphragm surface) is r 1 in this order , and the i-th surface and the (i + 1) th surface are on the optical axis. Thickness, spacing d
The refractive index at the wavelength of the laser light source of the medium between the i, i-th and (i + 1) -th is represented by ni. Further, the refractive index of air is 1. Further, when an aspherical surface is used for the lens surface, the aspherical surface shape has a vertex of the surface as an origin, and in a rectangular coordinate system with the optical axis direction as the X axis, κ is a conical coefficient and Ai is an aspherical surface coefficient. , Pi is a power of the aspherical surface,

【数3】 で表される。(Equation 3) It is represented by

【0017】実施例1 透明基板の厚み 0.6mm 1.2mm ・各面間隔 di di' ・絞り径 φ4.08 φ4.08 ・光学系全系の倍率 −1/7.9 −1/6.2 ・記録面側NA 0.60 0.59 発散角変換レンズの焦点距離 fc=26.85(mm) 対物レンズの焦点距離 fo= 3.40(mm) 透明基板t1時の光学系全系の焦点距離fT= 3.53(mm) i ri di di' ni 0 光源 0.55 0.55 1.0 1 ∞ 3.00 3.00 1.51455 2 ∞ 22.05 12.40 1.0 3 39.8985 2.00 2.00 1.80186 4 13.6343 3.00 3.00 1.58701 5 −17.4703 3.00 12.83 1.0 6 絞り(∞) 0.00 0.00 1.0 7 2.0500 2.60 2.60 1.49005 8 −5.1870 1.60 1.42 1.0 9 ∞ 0.60 1.20 1.58 10 記録面(∞) 第7面の非球面データ κ =−0.46211 A1 =−0.81009×10-3 , P1= 4 A2 =−0.18077×10-3 , P2= 6 A3 =−0.23378×10-4 , P3= 8 A4 =−0.87100×10-5 , P4=10 第8面の非球面データ κ =−0.20447×1021 =+0.91069×10-2 , P1= 4 A2 =−0.35507×10-2 , P2= 6 A3 =+0.78952×10-3 , P3= 8 A4 =−0.68843×10-4 , P4=10Example 1 Thickness of transparent substrate 0.6 mm 1.2 mm-Each surface spacing di di'-Aperture diameter φ4.08 φ4.08-Magnification of the whole optical system -1 / 7.9-1 / 6. 2 ・ NA on recording surface 0.60 0.59 Focal length of divergence angle conversion lens fc = 26.85 (mm) Focal length of objective lens fo = 3.40 (mm) Whole optical system at transparent substrate t 1 Focal length fT = 3.53 (mm) i ri di di'ni 0 light source 0.55 0.55 1.0 1.0 1 ∞ 3.00 3.00 1.51455 2 ∞ 22.05 12.40 1.0 3 39.8985 2.00 2.00 1.80186 4 13.6343 3.00 3.00 1.58701 5-17.4703 3.00 12.83 1.06 Aperture (∞) 0.00 0. 00 1.0 7 2.0500 2.60 2.60 1. 9005 8 -5.1870 1.60 1.42 1.0 9 ∞ 0.60 1.20 1.58 10 recording surface (∞) seventh surface aspheric data κ = -0.46211 A 1 = -0 .81009 × 10 −3 , P 1 = 4 A 2 = −0.18077 × 10 −3 , P 2 = 6 A 3 = −0.23378 × 10 −4 , P 3 = 8 A 4 = −0.87100 × 10 −5 , P 4 = 10 Aspherical surface data of the eighth surface κ = −0.20447 × 10 2 A 1 = + 0.91069 × 10 −2 , P 1 = 4 A 2 = −0.35507 × 10 − 2 , P 2 = 6 A 3 = + 0.78952 × 10 −3 , P 3 = 8 A 4 = −0.68843 × 10 −4 , P 4 = 10

【0018】実施例2. 透明基板の厚み 0.6mm 1.2mm ・各面間隔 di di' ・絞り径 φ4.08 φ4.08 ・光学系全系の倍率 −1/8.0 −1/6.2 ・記録面側NA 0.60 0.59 発散角変換レンズの焦点距離 fc=26.85(mm) 対物レンズの焦点距離 fo= 3.40(mm) 透明基板t1時の光学系全系の焦点距離fT= 3.41(mm) i ri di di' ni 0 光源 0.55 0.55 1.0 1 ∞ 3.00 3.00 1.51455 2 ∞ 23.90 14.15 1.0 3 −156.0000 1.20 1.20 1.82920 4 −19.5513 3.00 12.93 1.0 5 絞り(∞) 0.00 0.00 1.0 6 2.0500 2.60 2.60 1.49005 7 −5.1870 1.60 1.42 1.0 8 ∞ 0.60 1.20 1.58 9 記録面(∞) 第6面の非球面データ κ =−0.46211 A1 =−0.81009×10-3 , P1= 4 A2 =−0.18077×10-3 , P2= 6 A3 =−0.23378×10-4 , P3= 8 A4 =−0.87100×10-5 , P4=10 第7面の非球面データ κ =−0.20447×1021 =+0.91069×10-2 , P1= 4 A2 =−0.35507×10-2 , P2= 6 A3 =+0.78952×10-3 , P3= 8 A4 =−0.68843×10-4 , P4=10Embodiment 2 FIG. Thickness of transparent substrate 0.6 mm 1.2 mm-Each surface spacing di di'-Aperture diameter φ4.08 φ4.08-Magnification of the entire optical system -1 / 8.0 -1 / 6.2-NA on the recording surface side 0.60 0.59 Focal length of divergence angle conversion lens fc = 26.85 (mm) Focal length of objective lens fo = 3.40 (mm) Focal length of optical system whole system at transparent substrate t 1 fT = 3 .41 (mm) i ri di di 'ni 0 light source 0.55 0.55 1.0 1 ∞ 3.00 3.00 1.51455 2 ∞ 23.90 14.15 1.0 3 -156.00000 1 .20 1.20 1.82920 4 -195.5513 3.00 12.93 1.05 Aperture (∞) 0.00 0.00 1.0 1.0 6 2.0500 2.60 2.60 1.49 005 7 -5.1870 1.60 1.42 1.08 ∞ 0.60 .20 1.58 9 recording surface (∞) Aspherical surface data κ = -0.46211 sixth surface A 1 = -0.81009 × 10 -3, P 1 = 4 A 2 = -0.18077 × 10 - 3 , P 2 = 6 A 3 = −0.23378 × 10 −4 , P 3 = 8 A 4 = −0.87100 × 10 −5 , P 4 = 10 Aspherical surface data κ = −0. 20447 × 10 2 A 1 = + 0.91069 × 10 −2 , P 1 = 4 A 2 = −0.35507 × 10 −2 , P 2 = 6 A 3 = + 0.78952 × 10 −3 , P 3 = 8 A 4 = −0.68843 × 10 −4 , P 4 = 10

【0019】実施例3 透明基板の厚み 0.6mm 1.2mm ・各面間隔 di di' ・絞り径 φ4.08 φ4.08 ・光学系全系の倍率 −1/8.0 −1/6.1 ・記録面側NA 0.60 0.59 発散角変換レンズの焦点距離 fc=26.85(mm) 対物レンズの焦点距離 fo= 3.40(mm) 透明基板t1時の光学系全系の焦点距離fT= 3.34(mm) i ri di di' ni 0 光源 0.55 0.55 1.0 1 ∞ 3.00 3.00 1.51455 2 ∞ 23.90 14.51 1.0 3 −156.0000 1.20 1.20 1.82920 4 −19.5513 3.00 12.58 1.0 5 絞り(∞) 0.00 0.00 1.0 6 2.4000 2.60 2.60 1.69404 7 −78.2277 1.51 1.32 1.0 8 ∞ 0.60 1.20 1.58 9 記録面(∞) 第6面の非球面データ κ =−0.22769 A1 =−0.14079×10-2 , P1= 4 A2 =−0.18562×10-3 , P2= 6 A3 =−0.22586×10-4 , P3= 8 A4 =−0.24870×10-5 , P4=10 第7面の非球面データ κ =−0.21220×1021 =+0.11864×10-1 , P1= 4 A2 =−0.32315×10-2 , P2= 6 A3 =+0.89784×10-3 , P3= 8 A4 =−0.65119×10-4 , P4=10Example 3 Thickness of transparent substrate 0.6 mm 1.2 mm-Each surface spacing di di'-Aperture diameter φ4.08 φ4.08-Magnification of the entire optical system -1 / 8.0 -1/6. 1. NA 0.60 0.59 on recording surface side Focal length of divergence angle conversion lens fc = 26.85 (mm) Focal length of objective lens fo = 3.40 (mm) Overall system of transparent substrate t 1 Focal length fT = 3.34 (mm) i ri di di'ni 0 light source 0.55 0.55 1.0 1.0 1 ∞ 3.00 3.00 1.51455 2 ∞ 23.90 14.51 1.0 3 -156.00000 1.20 1.20 1.822920 4 -195.5513 3.00 12.58 1.05 Aperture (∞) 0.00 0.00 1.0 6 2.4000 2.602 .60 1.694047 -78.2277 1.51 1.3 1.0 8 ∞ 0.60 1.20 1.58 9 recording surface (∞) first aspherical data of six surfaces κ = -0.22769 A 1 = -0.14079 × 10 -2, P 1 = 4 A 2 = −0.18562 × 10 −3 , P 2 = 6 A 3 = −0.22586 × 10 −4 , P 3 = 8 A 4 = −0.24870 × 10 −5 , P 4 = 10 7th surface Aspherical surface data of κ = −0.21220 × 10 2 A 1 = + 0.11864 × 10 −1 , P 1 = 4 A 2 = −0.32315 × 10 −2 , P 2 = 6 A 3 = + 0.89784 × 10 -3 , P 3 = 8 A 4 = -0.651119 × 10 -4 , P 4 = 10

【0020】実施例4 透明基板の厚み 0.6mm 1.2mm ・各面間隔 di di' ・絞り径 φ4.08 φ4.08 ・光学系全系の倍率 −1/11.8 −1/8.9 ・記録面側NA 0.60 0.59 発散角変換レンズの焦点距離 fc=26.85(mm) 対物レンズの焦点距離 fo= 3.40(mm) 透明基板t1時の光学系全系の焦点距離fT= 3.31(mm) i ri di di' ni 0 光源 0.55 0.55 1.0 1 ∞ 3.00 3.00 1.51455 2 ∞ 36.96 16.22 1.0 3 −339.3412 1.20 1.20 1.82920 4 −30.2635 3.00 23.92 1.0 5 絞り(∞) 0.00 0.00 1.0 6 2.0500 2.60 2.60 1.49005 7 −5.1870 1.60 1.42 1.0 8 ∞ 0.60 1.20 1.58 9 記録面(∞) 第6面の非球面データ κ =−0.46211 A1 =−0.81009×10-3 , P1= 4 A2 =−0.18077×10-3 , P2= 6 A3 =−0.23378×10-4 , P3= 8 A4 =−0.87100×10-5 , P4=10 第7面の非球面データ κ =−0.20447×1021 =+0.91069×10-2 , P1= 4 A2 =−0.35507×10-2 , P2= 6 A3 =+0.78952×10-3 , P3= 8 A4 =−0.68843×10-4 , P4=10Example 4 Thickness of transparent substrate 0.6 mm 1.2 mm-Each surface spacing di di'-Aperture diameter φ4.08 φ4.08-Magnification of the whole optical system -1 / 11.8-1 / 8. 9 ・ NA on recording surface 0.60 0.59 Focal length of divergence angle conversion lens fc = 26.85 (mm) Focal length of objective lens fo = 3.40 (mm) Whole optical system at transparent substrate t 1 Focal length fT = 3.31 (mm) i ri di di'ni 0 light source 0.55 0.55 1.0 1.0 1 ∞ 3.00 3.00 1.51455 2 ∞ 36.96 16.22 1.0 3 -339.33412 1.20 1.20 1.82920 4 -30.2635 3.00 23.92 1.05 Aperture (∞) 0.00 0.00 1.0 6 2.0500 2.602 .60 1.49005 7-5.1870 1.60 1.4 1.0 8 ∞ 0.60 1.20 1.58 9 recording surface (∞) sixth surface aspheric data κ = -0.46211 A 1 = -0.81009 × 10 -3, P 1 = 4 A 2 = −0.18077 × 10 −3 , P 2 = 6 A 3 = −0.23378 × 10 −4 , P 3 = 8 A 4 = −0.87100 × 10 −5 , P 4 = 10 7th surface Aspherical surface data κ = −0.20447 × 10 2 A 1 = + 0.91069 × 10 −2 , P 1 = 4 A 2 = −0.35507 × 10 −2 , P 2 = 6 A 3 = + 0.78952 × 10 -3 , P 3 = 8 A 4 = -0.68843 × 10 -4 , P 4 = 10

【0021】[0021]

【発明の効果】以上のように、本発明により、基板厚み
の異なる光情報記録媒体を1つの情報ピックアップ装置
で記録、再生可能となり、複数の基板厚みに互換性を有
する、構造が簡単でコンパクトで低コストな情報ピック
アップ装置及び光ディスク装置が得られた。また、読み
出し、書き込みに用いる光スポットは一つであるため、
パワーロスがなく、読み出しではS/N比が向上し、記
録を行う方式においては、より低いレーザーパワーで書
き込みが可能である。さらに、基板の任意の厚みへの対
応や、個々の基板の厚みばらつきの補正も容易に対応す
ることが可能となる。なお、対物レンズへの入射光の発
散角の変化に伴い、作動距離の若干の変化を生じるが、
合焦アクチャエータの作動範囲内であり、これを考慮す
る必要はない。
As described above, according to the present invention, optical information recording media having different substrate thicknesses can be recorded / reproduced by one information pickup device, and compatible with a plurality of substrate thicknesses, and the structure is simple and compact. Thus, a low-cost information pickup device and optical disc device were obtained. Also, since there is only one light spot used for reading and writing,
There is no power loss, the S / N ratio is improved in reading, and writing can be performed with lower laser power in the method of recording. Furthermore, it becomes possible to easily cope with an arbitrary thickness of the substrate and to correct a variation in thickness of each substrate. It should be noted that although the working distance slightly changes as the divergence angle of the incident light on the objective lens changes,
It is within the working range of the focusing actuator and this need not be taken into account.

【図面の簡単な説明】[Brief description of drawings]

【図1】収差補正が最適化された対物レンズによる光路
図である。
FIG. 1 is an optical path diagram of an objective lens in which aberration correction is optimized.

【図2】本発明の実施例1における発散角変換レンズ移
動量と球面収差の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the amount of divergence angle conversion lens movement and spherical aberration in Embodiment 1 of the present invention.

【図3】本発明の情報記録再生用光学系の実施例1にお
ける、透明基板厚0.6mm時の光路図である。
FIG. 3 is an optical path diagram of Example 1 of the information recording / reproducing optical system of the present invention when the transparent substrate has a thickness of 0.6 mm.

【図4】本発明の情報記録再生用光学系の実施例1にお
ける、透明基板厚1.2mm時の光路図である。
FIG. 4 is an optical path diagram of Example 1 of the information recording / reproducing optical system of the present invention when the transparent substrate has a thickness of 1.2 mm.

【図5】本発明の情報記録再生用光学系の実施例2にお
ける、透明基板厚0.6mm時の光路図である。
FIG. 5 is an optical path diagram of Example 2 of the information recording / reproducing optical system of the present invention when the transparent substrate has a thickness of 0.6 mm.

【図6】本発明の情報記録再生用光学系の実施例2にお
ける、透明基板厚1.2mm時の光路図である。
FIG. 6 is an optical path diagram when a transparent substrate thickness is 1.2 mm in Example 2 of the information recording / reproducing optical system of the present invention.

【図7】本発明の情報記録再生用光学系の実施例3にお
ける、透明基板厚0.6mm時の光路図である。
FIG. 7 is an optical path diagram of Example 3 of the information recording / reproducing optical system of the present invention when the transparent substrate has a thickness of 0.6 mm.

【図8】本発明の情報記録再生用光学系の実施例3にお
ける、透明基板厚1.2mm時の光路図である。
FIG. 8 is an optical path diagram of Example 3 of the information recording / reproducing optical system of the present invention when the transparent substrate has a thickness of 1.2 mm.

【図9】本発明の情報記録再生用光学系の実施例4にお
ける、透明基板厚0.6mm時の光路図である。
FIG. 9 is an optical path diagram of Example 4 of the information recording / reproducing optical system of the present invention when the transparent substrate has a thickness of 0.6 mm.

【図10】本発明の情報記録再生用光学系の実施例4に
おける、透明基板厚1.2mm時の光路図である。
FIG. 10 is an optical path diagram of Example 4 of the information recording / reproducing optical system of the present invention when the transparent substrate has a thickness of 1.2 mm.

【図11】実施例1の光学系において、透明基板厚0.
6mm時の球面収差図である。
FIG. 11 shows a transparent substrate having a thickness of 0.
It is a spherical-aberration figure at 6 mm.

【図12】実施例1の光学系において、発散角変換レン
ズが透明基板厚0.6mm用配置のままのときに、厚み
1.2mmの透明基板が挿入された場合の球面収差図で
ある。
FIG. 12 is a spherical aberration diagram in the case where a transparent substrate having a thickness of 1.2 mm is inserted in the optical system of Example 1 while the divergence angle converting lens is still arranged for the transparent substrate having a thickness of 0.6 mm.

【図13】実施例1の光学系において、発散角変換レン
ズが透明基板厚1.2mm用の配置のときに、厚み0.
6mmの透明基板が挿入された場合の球面収差図であ
る。
FIG. 13 shows an optical system of Example 1, in which the divergence angle conversion lens has a thickness of 0.
It is a spherical-aberration figure at the time of inserting a 6-mm transparent substrate.

【図14】実施例1の光学系において、透明基板厚1.
2mmに調整された場合の球面収差図である。
FIG. 14 shows a transparent substrate having a thickness of 1.
It is a spherical-aberration figure at the time of adjusting to 2 mm.

【図15】実施例2の光学系において、透明基板厚0.
6mm時の球面収差図である。
FIG. 15 shows a transparent substrate having a thickness of 0.
It is a spherical-aberration figure at 6 mm.

【図16】実施例2の光学系において、発散角変換レン
ズが透明基板厚0.6mm用配置のままのときに、厚み
1.2mmの透明基板が挿入された場合の球面収差図で
ある。
FIG. 16 is a spherical aberration diagram in the case where a transparent substrate having a thickness of 1.2 mm is inserted in the optical system of Example 2 while the divergence angle converting lens is still arranged for the transparent substrate having a thickness of 0.6 mm.

【図17】実施例2の光学系において、発散角変換レン
ズが透明基板厚1.2mm用の配置のときに、厚み0.
6mmの透明基板が挿入された場合の球面収差図であ
る。
FIG. 17 is an optical system of Example 2 in which the divergence angle conversion lens has a thickness of 0.
It is a spherical-aberration figure at the time of inserting a 6-mm transparent substrate.

【図18】実施例2の光学系において、透明基板厚1.
2mmに調整された場合の球面収差図である。
FIG. 18 shows a transparent substrate having a thickness of 1.
It is a spherical-aberration figure at the time of adjusting to 2 mm.

【図19】実施例3の光学系において、透明基板厚0.
6mm時の球面収差図である。
FIG. 19 shows a transparent substrate having a thickness of 0.
It is a spherical-aberration figure at 6 mm.

【図20】実施例3の光学系において、発散角変換レン
ズが透明基板厚0.6mm用配置のままのときに、厚み
1.2mmの透明基板が挿入された場合の球面収差図で
ある。
FIG. 20 is a spherical aberration diagram in the case where a transparent substrate having a thickness of 1.2 mm is inserted in the optical system of Example 3 while the divergence angle converting lens is still arranged for the transparent substrate having a thickness of 0.6 mm.

【図21】実施例3の光学系において、発散角変換レン
ズが透明基板厚1.2mm用の配置のときに、厚み0.
6mmの透明基板が挿入された場合の球面収差図であ
る。
FIG. 21 is an optical system of Example 3 in which the divergence angle conversion lens has a thickness of 0.
It is a spherical-aberration figure at the time of inserting a 6-mm transparent substrate.

【図22】実施例3の光学系において、透明基板厚1.
2mmに調整された場合の球面収差図である。
FIG. 22 is a diagram showing a transparent substrate thickness 1.
It is a spherical-aberration figure at the time of adjusting to 2 mm.

【図23】実施例4の光学系において、透明基板厚0.
6mm時の球面収差図である。
FIG. 23 is a diagram illustrating a transparent substrate thickness of 0.
It is a spherical-aberration figure at 6 mm.

【図24】実施例4の光学系において、発散角変換レン
ズが透明基板厚0.6mm用配置のままのときに、厚み
1.2mmの透明基板が挿入された場合の球面収差図で
ある。
FIG. 24 is a spherical aberration diagram in the case where a transparent substrate having a thickness of 1.2 mm is inserted in the optical system of Example 4 while the divergence angle converting lens is still arranged for the transparent substrate having a thickness of 0.6 mm.

【図25】実施例4の光学系において、発散角変換レン
ズが透明基板厚1.2mm用の配置のときに、厚み0.
6mmの透明基板が挿入された場合の球面収差図であ
る。
FIG. 25 is an optical system of Example 4, in which the divergence angle conversion lens has a thickness of 0.
It is a spherical-aberration figure at the time of inserting a 6-mm transparent substrate.

【図26】実施例4の光学系において、透明基板厚1.
2mmに調整された場合の球面収差図である。
FIG. 26 shows a transparent substrate having a thickness of 1.
It is a spherical-aberration figure at the time of adjusting to 2 mm.

【図27】従来技術における光情報記録媒体の記録再生
用光学系の一例を示す光学配置図である。
FIG. 27 is an optical layout diagram showing an example of a recording / reproducing optical system of an optical information recording medium in a conventional technique.

【図28】光情報記録媒体の基板の厚みと球面収差との
関係を示すグラフである。
FIG. 28 is a graph showing the relationship between the thickness of the substrate of the optical information recording medium and spherical aberration.

【符号の説明】[Explanation of symbols]

1 レーザー光源 2 ピームスプリ
ッタ 3 発散角変換レンズ 5,10 絞り 6,11 対物レンズ 7 透明基板 8 情報記録面 9 光検出手段
DESCRIPTION OF SYMBOLS 1 laser light source 2 beam splitter 3 divergence angle conversion lens 5,10 diaphragm 6,11 objective lens 7 transparent substrate 8 information recording surface 9 light detection means

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 レーザー光源と、該レーザー光源からの
発散光の発散角を小に変換するレンズと、該レンズから
の出射光を光情報記録媒体の透明基板を介して情報記録
面上に集光する正の屈折力を有する対物レンズを有する
光情報記録媒体の記録再生用光学系において、前記透明
基板の厚みに応じて前記発散角変換レンズが光軸に沿っ
て移動し、以下の条件を満たすことを特徴とする光情報
記録媒体の記録再生用光学系。 d1 >d2 但し、 d1:レーザー光源から発散角変換レンズの最も光源に
近い面が光軸と交わる点までの距離で、透明基板の厚み
がt1,t2のとき、前記距離はそれぞれd1,d2であ
り、t1<t2の関係にある。
1. A laser light source, a lens for converting a divergence angle of divergent light from the laser light source to a small value, and light emitted from the lens is collected on an information recording surface via a transparent substrate of an optical information recording medium. In a recording / reproducing optical system of an optical information recording medium having an objective lens having a positive refracting power to emit light, the divergence angle converting lens moves along the optical axis according to the thickness of the transparent substrate, and the following conditions are satisfied. An optical system for recording / reproducing an optical information recording medium characterized by satisfying. d 1 > d 2 where d 1 is the distance from the laser light source to the point where the surface of the divergence angle conversion lens closest to the light source intersects the optical axis. When the thickness of the transparent substrate is t 1 and t 2 , the distance is They are d 1 and d 2 , respectively, and have a relationship of t 1 <t 2 .
【請求項2】 前記対物レンズは光源側に凸面を向けた
正の単レンズであり、光源側、情報記録面側に面する両
面が非球面であることを特徴とする請求項1の光情報記
録媒体の記録再生用光学系。
2. The optical information according to claim 1, wherein the objective lens is a positive single lens having a convex surface facing the light source side, and both surfaces facing the light source side and the information recording surface side are aspherical surfaces. Optical system for recording and reproducing recording media.
【請求項3】 前記対物レンズはガラス素材から成るこ
とを特徴とする請求項2の光情報記録媒体の記録再生用
光学系。
3. The recording / reproducing optical system for an optical information recording medium according to claim 2, wherein the objective lens is made of a glass material.
【請求項4】 前記対物レンズはプラスチック素材から
成ることを特徴とする請求項2の光情報記録媒体の記録
再生用光学系。
4. The recording / reproducing optical system for an optical information recording medium according to claim 2, wherein the objective lens is made of a plastic material.
【請求項5】 前記発散角変換レンズが前記d1 に位置
するとき、該発散角変換レンズから出射し、前記対物レ
ンズに入射する光束がほぼ平行となることを特徴とする
請求項1の光情報記録媒体の記録再生用光学系。
5. The light according to claim 1, wherein when the divergence angle conversion lens is located at the d 1 , the light flux emitted from the divergence angle conversion lens and incident on the objective lens are substantially parallel. Optical system for recording / reproducing information recording medium.
【請求項6】 前記対物レンズは光源側に凸面を向けた
正の単レンズであり、光源側、情報記録面側に面する両
面が非球面であることを特徴とする請求項5の光情報記
録媒体の記録再生用光学系。
6. The optical information according to claim 5, wherein the objective lens is a positive single lens having a convex surface facing the light source side, and both surfaces facing the light source side and the information recording surface side are aspherical surfaces. Optical system for recording and reproducing recording media.
【請求項7】 前記対物レンズはガラス素材から成るこ
とを特徴とする請求項6の光情報記録媒体の記録再生用
光学系。
7. The recording / reproducing optical system for an optical information recording medium according to claim 6, wherein the objective lens is made of a glass material.
【請求項8】 前記対物レンズはプラスチック素材から
成ることを特徴とする請求項6の光情報記録媒体の記録
再生用光学系。
8. The recording / reproducing optical system for an optical information recording medium according to claim 6, wherein the objective lens is made of a plastic material.
【請求項9】 以下の条件式を満足することを特徴とす
る請求項1の光情報記録媒体の記録再生用光学系。 【数1】 但し、△d=d1−d2 △t=t2−t1 n :光情報媒体の透明基板の光源波長での屈折率 fo :対物レンズの焦点距離 fc :発散角変換レンズの焦点距離 fT :透明基板t1 時の光学系全系の焦点距離
9. The recording / reproducing optical system for an optical information recording medium according to claim 1, wherein the following conditional expression is satisfied. [Equation 1] However, Δd = d 1 −d 2 Δt = t 2 −t 1 n: Refractive index of the transparent substrate of the optical information medium at the light source wavelength fo: Focal length of the objective lens fc: Focal length of the divergence angle conversion lens fT : Focal length of the whole optical system at transparent substrate t 1
【請求項10】 前記発散角変換レンズが前記d1 に位
置するとき、該発散角変換レンズから出射し、前記対物
レンズに入射する光束がほぼ平行となることを特徴とす
る請求項9の光情報記録媒体の記録再生用光学系。
10. The light according to claim 9, wherein when the divergence angle conversion lens is located at the d 1 , the light flux emitted from the divergence angle conversion lens and incident on the objective lens are substantially parallel. Optical system for recording / reproducing information recording medium.
【請求項11】 前記対物レンズは光源側に凸面を向け
た正の単レンズであり、光源側、情報記録面側に面する
両面が非球面であることを特徴とする請求項10の光情
報記録媒体の記録再生用光学系。
11. The optical information according to claim 10, wherein the objective lens is a positive single lens having a convex surface facing the light source side, and both surfaces facing the light source side and the information recording surface side are aspherical surfaces. Optical system for recording and reproducing recording media.
【請求項12】 前記対物レンズはガラス素材から成る
ことを特徴とする請求項11の光情報記録媒体の記録再
生用光学系。
12. The recording / reproducing optical system for an optical information recording medium according to claim 11, wherein the objective lens is made of a glass material.
【請求項13】 前記対物レンズはプラスチック素材か
ら成ることを特徴とする請求項11の光情報記録媒体の
記録再生用光学系。
13. The recording / reproducing optical system for an optical information recording medium according to claim 11, wherein the objective lens is made of a plastic material.
JP21125995A 1995-04-28 1995-07-28 Optical system for recording and reproducing optical information recording media Expired - Lifetime JP3451152B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21125995A JP3451152B2 (en) 1995-07-28 1995-07-28 Optical system for recording and reproducing optical information recording media
US08/637,210 US5754513A (en) 1995-04-28 1996-04-24 Information pick-up apparatus and optical disk apparatus
US09/015,061 US5920532A (en) 1995-04-28 1998-01-28 Information pick-up apparatus and optical disk apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21125995A JP3451152B2 (en) 1995-07-28 1995-07-28 Optical system for recording and reproducing optical information recording media

Publications (2)

Publication Number Publication Date
JPH0943510A true JPH0943510A (en) 1997-02-14
JP3451152B2 JP3451152B2 (en) 2003-09-29

Family

ID=16602955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21125995A Expired - Lifetime JP3451152B2 (en) 1995-04-28 1995-07-28 Optical system for recording and reproducing optical information recording media

Country Status (1)

Country Link
JP (1) JP3451152B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097691A (en) * 1997-09-05 2000-08-01 Asahi Glass Company Ltd. Optical device for recording or reading data to an optical disk
US6108139A (en) * 1996-10-28 2000-08-22 Nec Corporation Optical head device and method of information reproduction using the same
US6285645B1 (en) 1997-05-27 2001-09-04 Asahi Glass Company Ltd. Optical device
US6556534B2 (en) 2000-03-31 2003-04-29 Asahi Glass Company, Limited Objective lens and optical device
US6900949B2 (en) 2003-01-22 2005-05-31 Pentax Corporation Optical system of optical pick-up
WO2005098839A1 (en) * 2004-04-02 2005-10-20 Konica Minolta Opto, Inc. Objective lens and optical pickup device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108139A (en) * 1996-10-28 2000-08-22 Nec Corporation Optical head device and method of information reproduction using the same
US6285645B1 (en) 1997-05-27 2001-09-04 Asahi Glass Company Ltd. Optical device
US6097691A (en) * 1997-09-05 2000-08-01 Asahi Glass Company Ltd. Optical device for recording or reading data to an optical disk
US6556534B2 (en) 2000-03-31 2003-04-29 Asahi Glass Company, Limited Objective lens and optical device
US6900949B2 (en) 2003-01-22 2005-05-31 Pentax Corporation Optical system of optical pick-up
WO2005098839A1 (en) * 2004-04-02 2005-10-20 Konica Minolta Opto, Inc. Objective lens and optical pickup device
JPWO2005098839A1 (en) * 2004-04-02 2008-02-28 コニカミノルタオプト株式会社 Objective lens and optical pickup device

Also Published As

Publication number Publication date
JP3451152B2 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
US6043912A (en) Optical pickup compatible with a digital versatile disk and a recordable compact disk using a holographic ring lens
EP1202259A2 (en) Objective lens, light converging optical system, optical pickup apparatus, and recording/reproducing apparatus
KR100567291B1 (en) Optical pickup apparatus
EP0780838B1 (en) Optical pickup apparatus, objective lens and converging optical system for optical pickup and optical disk apparatus
JP2004030724A (en) Optical pickup device
JP2004005943A (en) Registration reproduction optics, objective lens, optical element for aberation compensation, optical pickup system, and orecording/reproducing apparatus, aberration correcting optical element, optical pickup device and recording and reproducing device
US5883747A (en) Recording and/or reproducing optical system and objective lens for optical information recording medium
US6816449B2 (en) Optical pickup compatible with a digital versatile disk and a recordable compact disk using a holographic ring lens
JPH10208276A (en) Optical pickup device
US6114689A (en) Optical pickup device
JPH07311970A (en) Optical head and optical memory
JP2002055274A (en) Objective lens for optical recording medium and optical pickup device using the same
JP2002006210A (en) Objective lens for optical recording medium and optical pickup device using the same
JPH09145995A (en) Optical system for recording and reproducing optical information recording medium
JP3451152B2 (en) Optical system for recording and reproducing optical information recording media
KR20010100318A (en) Objective lens and the optical pickup device adopting the same
JP3613745B2 (en) Optical pickup device and objective lens
JP2000028917A (en) Pickup device for recording and reproducing of optical information recording medium, objective lens, and design method for objective lens
JP2002237078A (en) Object lens and optical pickup device
JP4789169B2 (en) Chromatic aberration correcting optical element, optical system, optical pickup device and recording / reproducing device
JPH09219034A (en) Optical disk device and optical head used for it
JPH0981953A (en) Recording and reproducing optical system of optical recording information medium
JPH09306014A (en) Condensing optical system for recording and/or reproducing of optical information recording medium and object lens
EP0996120A1 (en) Optical pickup compatible with a digital versatile disk and a recordable compact disk using a holographic ring lens
KR100492834B1 (en) Recording / reproducing method of optical information recording medium, optical pickup device, objective lens and design method of objective lens

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030610

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term