[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0940491A - Method for growing semiconductor crystal film - Google Patents

Method for growing semiconductor crystal film

Info

Publication number
JPH0940491A
JPH0940491A JP12580596A JP12580596A JPH0940491A JP H0940491 A JPH0940491 A JP H0940491A JP 12580596 A JP12580596 A JP 12580596A JP 12580596 A JP12580596 A JP 12580596A JP H0940491 A JPH0940491 A JP H0940491A
Authority
JP
Japan
Prior art keywords
reaction gas
substrate
susceptors
substrates
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12580596A
Other languages
Japanese (ja)
Inventor
Yasuhiko Matsushita
保彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP12580596A priority Critical patent/JPH0940491A/en
Publication of JPH0940491A publication Critical patent/JPH0940491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To greatly simplify equipment by eliminating the need for a pressing gas and to obtain crystal films having the quality identical to the quality obtain able when the films are formed by a two-flow MOCVD method. SOLUTION: The mounting surfaces of substrates S1 , S2 are disposed to face each other. Susceptors 2, 3 are arranged to face each other above and below apart a required spacing. A nozzle 4a of reactive gases G is arranged to face the spacing between both susceptors 2 and 3. While the susceptors 2, 3 are kept rotated, the substrates S1 , S2 are heated and the reactive gases are passed between the two susceptors 2 and 3 from the nozzle 4a, by which the crystal films are grown on the surfaces of the substrates S1 , S2 without using the pressing gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基板表面に反応ガ
スを通流させて半導体結晶膜を成長させる方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a semiconductor crystal film by passing a reaction gas through the surface of a substrate.

【0002】[0002]

【従来の技術】図3は、特開平4−164895号公報
に開示された、基板面に沿わせて反応ガスを通流させつ
つ基板と垂直に押圧ガスを流して基板表面に結晶膜を成
長させる、所謂2フロー−MOCVD法による窒素化合
物半導体結晶膜の成長方法の実施状態を示す模式図であ
り、図中11はサセプタ、S1,S2は基板を示してい
る。
2. Description of the Related Art FIG. 3 discloses a crystal film grown on the surface of a substrate, which is disclosed in Japanese Patent Laid-Open No. 4-164895, in which a reaction gas is flowed along the surface of the substrate while a pressure gas is flowed perpendicularly to the substrate. let a schematic diagram showing a preferred state of the method of growing a nitrogen compound semiconductor crystal film according to so-called two-flow -MOCVD method, reference numeral 11 is a susceptor, S 1, S 2 denotes a substrate.

【0003】サセプタ11はその中心部を軸支されて矢
符方向に回転可能となっており、その表面に形成した凹
部11a,11b内にその表面が略サセプタ11の表面
と面一となる態様で基板S1,S2が装着されている。
The susceptor 11 is rotatably supported at its central portion so as to be rotatable in the direction of the arrow, and its surface is substantially flush with the surface of the susceptor 11 in the recesses 11a and 11b formed in the surface thereof. Substrates S 1 and S 2 are mounted.

【0004】G1はトリメチルガリウム(TMG)ガ
ス、H2ガス、N2ガス、NH3ガス等の混合ガスからな
る反応ガスであって、サセプタ11の一側方にサセプタ
11の表面と略平行に設置したノズルから吹き出され、
サセプタ11、基板S1,S2の表面に沿うよう流通せし
められる。
G 1 is a reaction gas composed of a mixed gas of trimethylgallium (TMG) gas, H 2 gas, N 2 gas, NH 3 gas, etc., and is parallel to the surface of the susceptor 11 on one side of the susceptor 11. Is blown out from the nozzle installed in
They are distributed along the surfaces of the susceptor 11 and the substrates S 1 and S 2 .

【0005】G2はN2、H2ガス等からなる押圧ガスで
あって、サセプタ11、基板S1,S 2の表面に対し、こ
れと直交する向きに流される。
G2Is N2, H2Pressing gas consisting of gas etc.
Yes, susceptor 11 and substrate S1, S 2Against the surface of
It is shed in the direction orthogonal to this.

【0006】この押圧ガスG2は主として次の目的で使
用されている。即ち、例えば、GaN、InGaN、A
lGaN等のNを含むIII−V族化合物半導体の結晶膜
の成長は通常700℃以上、例えば1000℃以上の高
温下で進行するため、サセプタ11上では熱対流が発生
し、反応ガスG1はサセプタ11表面、換言すれば基板
1,S2表面から離反してその上方に流れる傾向を示す
ため、そのままでは反応ガス供給量が不足する結果とな
るから、押圧ガスG2によって反応ガスG1をサセプタ1
1表面側に圧迫することで基板S1,S2表面での反応ガ
ス不足を解消することにある。
The pressing gas G 2 is mainly used for the following purpose. That is, for example, GaN, InGaN, A
Since the growth of the crystal film of the III-V group compound semiconductor containing N such as lGaN usually proceeds at a high temperature of 700 ° C. or higher, for example, 1000 ° C. or higher, thermal convection occurs on the susceptor 11 and the reaction gas G 1 is susceptor 11 surface, to show a tendency to flow in the upward away from the substrate S 1, S 2 surface other words, since the intact results in insufficient reaction gas supply amount, reaction gas G 1 by a pressing gas G 2 The susceptor 1
(1) It is to eliminate the reaction gas shortage on the surfaces of the substrates S 1 and S 2 by pressing on the surface side.

【0007】つまり、2フロー−MOCVD法では反応
ガスG1をサセプタ11,基板S1,S2の表面に沿って
所定の流速で通流せしめた場合、反応ガスG1は高温の
サセプタ11による熱対流によって、ノズルからの距離
が遠くなるに従ってサセプタ11、基板S1,S2の表面
から離反し、浮き上がる傾向を呈するが、押圧ガスG2
をサセプタ11、基板S1,S2の表面に直交する向きに
流して、サセプタ11、基板S1,S2の表面から離反
し、浮き上がろうとする反応ガスG1をサセプタ11、
基板S1,S2の表面側に向けて圧迫することで反応ガス
1と基板S1,S2との接触面積を大きくし、反応の促
進を図っている。
That is, in the two-flow MOCVD method, when the reaction gas G 1 is caused to flow along the surfaces of the susceptor 11 and the substrates S 1 and S 2 at a predetermined flow velocity, the reaction gas G 1 is generated by the high temperature susceptor 11. Due to the heat convection, as the distance from the nozzle increases, it tends to separate from the surfaces of the susceptor 11 and the substrates S 1 and S 2 and rise, but the pressing gas G 2
The susceptor 11, flowing in a direction perpendicular to the surface of the substrate S 1, S 2, susceptor 11, the substrate S 1, away from the surface of S 2, the reaction gas G 1 a susceptor 11 to be Ukiagaro,
The contact area between the reaction gas G 1 and the substrate S 1, S 2 by pressing toward the surface side of the substrate S 1, S 2 is increased, thereby achieving a promotion of the reaction.

【0008】[0008]

【発明が解決しようとする課題】ところで、このような
従来の成長方法では押圧ガスG2は基板S1,S2の略全
面にわたって流す必要があるから、基板の枚数が増すと
多量の押圧ガスG2が必要となり、押圧ガスの供給ノズ
ル設備が大掛かりになり、ランニングコストが高くなる
等の問題があった。
By the way, in such a conventional growth method, the pressing gas G 2 needs to flow over substantially the entire surfaces of the substrates S 1 and S 2. Therefore, as the number of substrates increases, a large amount of pressing gas is generated. There is a problem that G 2 is required, the pressure gas supply nozzle facility becomes large, and the running cost becomes high.

【0009】本発明はかかる事情に鑑みなされたもので
あって、その目的とするところは押圧ガスを不要として
設備の簡略化を図り、小型の装置で効率的に、高品質の
成膜が出来、コスト低減を可能とした半導体結晶膜の成
長方法を提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to simplify the facility by eliminating the need for a pressing gas, and to perform high-quality film formation efficiently with a small apparatus. Another object of the present invention is to provide a method for growing a semiconductor crystal film that enables cost reduction.

【0010】[0010]

【課題を解決するための手段】第1の発明に係る半導体
結晶膜の成長方法は、基板を加熱しつつ、反応ガスを用
いて該基板上に半導体結晶膜を成長させる方法におい
て、対向面が互いに離間対向してなる一対の対向部材を
備え、該両対向面の少なくとも一方に基板を装着し、反
応ガスを前記両対向面間に通流させることを特徴とす
る。
A method for growing a semiconductor crystal film according to a first invention is a method for growing a semiconductor crystal film on a substrate while using a reaction gas while heating the substrate. It is characterized in that a pair of opposed members facing each other are provided, a substrate is mounted on at least one of the opposed surfaces, and a reaction gas is allowed to flow between the opposed surfaces.

【0011】前記両対向面の間隙の延在方向が横方向で
ある場合、熱対流の方向を考慮し、基板は少なくとも上
側対向面に装着されるのが好ましい。
When the extending direction of the gap between the both facing surfaces is the lateral direction, the substrate is preferably mounted on at least the upper facing surface in consideration of the direction of thermal convection.

【0012】また前記両対向面の間隙の延在方向が横方
向であって、基板が両対向面に装着される場合、熱対流
の方向を考慮し、反応ガスの通流は前記両対向面間の中
央下方位置からなされることが好ましい。
Further, when the extending direction of the gap between the both facing surfaces is the lateral direction and the substrate is mounted on the both facing surfaces, the flow of the reaction gas is taken into consideration in consideration of the direction of thermal convection. It is preferable to be made from the central lower position between.

【0013】更に反応ガスが基板により均一に到達する
ためには、基板を保持する対向部材は回転することが好
ましい。
Further, in order that the reaction gas reaches the substrate more uniformly, it is preferable that the facing member holding the substrate rotates.

【0014】更に基板面で均一な膜成長を得るために基
板に対し反応ガスを平行に噴射するのが望ましい。
Further, in order to obtain uniform film growth on the surface of the substrate, it is desirable to inject the reaction gas in parallel to the substrate.

【0015】更に、GaN、InGaN,AlGaN等
の窒素化合物の半導体結晶膜を成長させるのに好適であ
る。
Further, it is suitable for growing a semiconductor crystal film of a nitrogen compound such as GaN, InGaN and AlGaN.

【0016】第2の発明に係る半導体結晶膜の成長方法
は、前記両対向面の間隙の延在方向が縦方向であり、反
応ガスの前記両対向面間への通流が下方からなされるこ
とを特徴とする。
In the method for growing a semiconductor crystal film according to the second aspect of the invention, the extending direction of the gap between the opposing surfaces is the vertical direction, and the reaction gas is passed from below between the opposing surfaces. It is characterized by

【0017】第3の発明に係る半導体結晶膜の成長方法
は、前記反応ガスは1又は複数のノズルから前記両対向
面間に吹き出されることを特徴とする。
The method for growing a semiconductor crystal film according to a third aspect of the invention is characterized in that the reaction gas is blown from one or a plurality of nozzles between the opposing surfaces.

【0018】[0018]

【発明の実施の形態】以下本発明をその実施例を示す図
面に基づき具体的に説明する。 (実施例1)図1は本発明に係る半導体結晶膜の成長方
法の実施状態を示す模式的側面図であり、図中1は反応
管、2,3は一対の対向部材を構成するサセプタ、4は
反応ガス供給管、S1,S2は基板を示している。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below with reference to the drawings showing the embodiments thereof. (Embodiment 1) FIG. 1 is a schematic side view showing an embodiment of a method for growing a semiconductor crystal film according to the present invention, in which 1 is a reaction tube, 2 and 3 are susceptors constituting a pair of opposing members, Reference numeral 4 denotes a reaction gas supply pipe, and S 1 and S 2 denote substrates.

【0019】反応管1は内部の透視が可能な石英製の円
筒体1aの両端に端板1b,1cを嵌着して構成され、
内部は適宜の真空度に設定可能としてある。反応管1の
内部中央には図2(a)に示す如く上,下に所定の間隔
(1〜10mm)を隔てて対向配置された一対のサセプ
タ2,3が夫々支持アームに軸支された状態で設置され
ている。
The reaction tube 1 is constructed by fitting end plates 1b and 1c to both ends of a cylindrical body 1a made of quartz and capable of seeing through.
The inside can be set to an appropriate degree of vacuum. As shown in FIG. 2 (a), a pair of susceptors 2 and 3, which are opposed to each other at a predetermined interval (1 to 10 mm), are axially supported by support arms at the center of the inside of the reaction tube 1. It is installed in the state.

【0020】サセプタ2,3は夫々円盤形に形成され、
夫々の対向面には基板S1,S2を嵌着する凹部2a,3
aを夫々備えている。
The susceptors 2 and 3 are each formed in a disc shape,
Recesses 2a, 3 into which the substrates S 1 , S 2 are fitted are provided on the respective facing surfaces.
Each has a.

【0021】反応管1の一側からは、前記端板1bを貫
通して反応ガス供給管4が導入され、その先端のノズル
部4aをサセプタ2,3の一側であって、対向面間の隙
間の略中央部に臨ませてある。
The reaction gas supply pipe 4 is introduced from one side of the reaction tube 1 through the end plate 1b, and the nozzle portion 4a at the tip thereof is located on one side of the susceptors 2 and 3 between the facing surfaces. It faces almost the center of the gap.

【0022】また、反対側の端板1cの中央部には反応
ガス供給管4よりも大径の排気管5が貫設されている。
An exhaust pipe 5 having a diameter larger than that of the reaction gas supply pipe 4 is provided at the center of the opposite end plate 1c.

【0023】6は加熱用のコイルであって、サセプタ
2,3の配設域と対向する位置で、反応管1の円筒体1
aの外周にこれと同心状に配設してある。
Reference numeral 6 denotes a heating coil, which is located at a position facing the area where the susceptors 2 and 3 are disposed, and is a cylindrical body 1 of the reaction tube 1.
It is arranged concentrically with the outer periphery of a.

【0024】なお各サセプタ2,3は夫々その背面の中
心部を支持アームに軸支されており、図示しない駆動源
にて同方向又は逆方向に水平回転せしめられるようにな
っている。
Each of the susceptors 2 and 3 is pivotally supported by a support arm at the center of the back surface thereof, and can be horizontally rotated in the same direction or in the opposite direction by a drive source (not shown).

【0025】このような実施例1にあっては、例えばサ
ファイアからなる基板S1,S2をサセプタ2,3の凹部
2a,3aに装着し、サセプタ2,3を夫々その中心軸
回りに水平回転させる。
In the first embodiment, the substrates S 1 and S 2 made of, for example, sapphire are mounted in the recesses 2a and 3a of the susceptors 2 and 3, and the susceptors 2 and 3 are horizontally arranged around their central axes. Rotate.

【0026】コイル6に通電して基板S1,S2を所定温
度に加熱しつつ反応ガス供給管4、ノズル4aを通じて
トリメチルガリウム(TMG)ガス+アンモニア(NH
3)ガス+水素(H2)ガスを混合してなる反応ガスGを
反応管1内へ供給する。
While energizing the coil 6 to heat the substrates S 1 and S 2 to a predetermined temperature, trimethylgallium (TMG) gas + ammonia (NH) is supplied through the reaction gas supply pipe 4 and the nozzle 4a.
3 ) A reaction gas G prepared by mixing gas + hydrogen (H 2 ) gas is supplied into the reaction tube 1.

【0027】反応ガスGはノズル4aからサセプタ2,
3間に吹き出され、これらをガイドとして対向する基板
1,S2に沿って流れ、基板S1,S2表面と接触してG
aN結晶が成長せしめられて成膜が行われる。
The reaction gas G is supplied from the nozzle 4a to the susceptor 2,
Blown between 3, they flow along opposite substrate S 1, S 2 as a guide, in contact with the substrate S 1, S 2 surface G
The aN crystal is grown to form a film.

【0028】反応ガスはガスの種類毎に個別のノズルか
ら供給してもよく、この場合はサセプタ2,3の対向す
る間隙に臨ませて複数個のノズルを並列配置する。これ
によってノズル位置,噴射速度等の条件を独立に制御可
能でより良好な成膜が可能となり、結晶膜品質の向上が
図れる。
The reaction gas may be supplied from individual nozzles for each type of gas. In this case, a plurality of nozzles are arranged in parallel so as to face the gaps between the susceptors 2 and 3 facing each other. As a result, the conditions such as the nozzle position and the jetting speed can be controlled independently, and a better film can be formed and the quality of the crystal film can be improved.

【0029】なお、上述の実施例1では各サセプタ2,
3夫々に基板S1,S2を対向させて装着した場合を示し
たが、いずれか一方のみに基板を装着することとしても
よい。
In the first embodiment described above, each susceptor 2,
Although the case where the substrates S 1 and S 2 are mounted facing each other has been shown, the substrates may be mounted on only one of them.

【0030】基板を一方のサセプタ2又は3のみに装着
する場合は、反応ガスが受ける熱対流の影響を考慮して
上側に位置するサセプタ2に設けるのが望ましい。また
基板を2枚設置する場合は、両基板上の成長層の膜質を
同一にするため、ノズル4aの位置は熱対流の影響を考
慮して両サセプタ2,3間の間隙の中央よりも下方寄り
に位置させるのが望ましい。
When the substrate is mounted on only one of the susceptors 2 or 3, it is desirable to mount it on the upper susceptor 2 in consideration of the effect of thermal convection on the reaction gas. When two substrates are installed, the nozzle 4a is positioned below the center of the gap between the susceptors 2 and 3 in consideration of the effect of thermal convection in order to make the growth layers on both substrates have the same film quality. It is desirable to position it closer.

【0031】更に、この場合両サセプタ2,3は反応ガ
ス流の乱れを抑制するよう同方向に回転させるのが望ま
しい。 (数値例)サファイアのc面を主面とする2枚の基板
を、上,下方向に1〜10mmの間隔を隔てて対向配置
したカーボンサセプタにおける対向面に夫々装着し、基
板を1150℃に加熱しつつ、反応ガスとしてNH3
3.2l/分、TMG:24μmol/分、H2ガス1
l/分をカーボンサセプタ間に通流させ、成膜を行っ
た。
Further, in this case, it is desirable that both the susceptors 2 and 3 rotate in the same direction so as to suppress the turbulence of the reaction gas flow. (Numerical example) Two substrates whose main surface is the c-plane of sapphire are mounted on the facing surfaces of the carbon susceptors which are arranged facing each other at an interval of 1 to 10 mm in the upper and lower directions, and the substrates are heated to 1150 ° C. While heating, NH 3 as a reaction gas:
3.2 l / min, TMG: 24 μmol / min, H 2 gas 1
l / min was passed between the carbon susceptors to form a film.

【0032】その結果、2フロー−MOCVD法に依っ
て得た成長層と略同程度の品質のGaN成長層が形成さ
れた2枚の基板(ウエハ)を、従来方法において必要な
反応ガス流量の約4割のガス流量で得られることが確認
出来た。 (実施例2)図2(b)は本発明の実施例2を示す模式
図であり、この実施例2では図1に示す反応管1を全体
として垂直面で右向きに90°回転させて、略垂直をな
すよう配置して実施している状態に相当する。
As a result, the two substrates (wafers) on which the GaN growth layer having substantially the same quality as the growth layer obtained by the two-flow MOCVD method are formed, have the reaction gas flow rates required in the conventional method. It was confirmed that the gas flow rate was about 40%. (Embodiment 2) FIG. 2B is a schematic view showing Embodiment 2 of the present invention. In this Embodiment 2, the reaction tube 1 shown in FIG. This corresponds to a state in which they are arranged so as to be substantially vertical.

【0033】この実施例2では、サセプタ2,3は夫々
基板S1,S2の装着面を向かい合わせにして相互に所定
の間隔(1〜10mm)を隔てて縦向きに対向配設さ
れ、夫々垂直面内で回転せしめられるようになってい
る。両サセプタ2,3の間隙の下端であって、その間隙
の略中央に位置させて反応ガス供給用のノズルを設置す
る。
In the second embodiment, the susceptors 2 and 3 are vertically arranged at predetermined intervals (1 to 10 mm) with the mounting surfaces of the substrates S 1 and S 2 facing each other. Each can be rotated in the vertical plane. A nozzle for supplying a reaction gas is installed at the lower end of the gap between the two susceptors 2 and 3 and at substantially the center of the gap.

【0034】このような実施例2にあってはノズルから
吹き出される反応ガスは熱対流の原因となる熱を両側の
サセプタ2,3から略等しく受けるため、反応ガス流の
片寄りが少なく基板S1,S2に対し均一な成膜が可能と
なる。
In the second embodiment, since the reaction gas blown out from the nozzle receives the heat causing the heat convection from the susceptors 2 and 3 on both sides substantially equally, the deviation of the reaction gas flow is small. A uniform film can be formed on S 1 and S 2 .

【0035】なお基板は一枚でもよく、この場合はサセ
プタ2,3のいずれの側に装着してもよい。他の構成は
実施例1のそれと実質的に同じであり、説明を省略す
る。
The number of substrates may be one, and in this case, it may be attached to either side of the susceptors 2 and 3. The other structure is substantially the same as that of the first embodiment, and the description is omitted.

【0036】また、本発明により基板上に複数の成長層
を順次形成できるのは勿論のことである。
Of course, according to the present invention, a plurality of growth layers can be sequentially formed on the substrate.

【0037】[0037]

【発明の効果】以上の如く第1の発明にあっては、一対
の対向部材における対向面の少なくとも一方に基板を装
着して対向部材間に反応ガスを通流し、成膜を行うこと
としたから、反応ガスは対向面に案内されて、自然に基
板表面に沿って流れることとなり、押圧ガスを必要とせ
ず、反応ガスと基板との接触が無駄なく行われ、均質な
結晶成長膜が得られると共に、反応ガス量の大幅な節減
が可能となる。
As described above, in the first aspect of the invention, the substrate is mounted on at least one of the facing surfaces of the pair of facing members, and the reaction gas is passed between the facing members to form a film. Therefore, the reaction gas is guided to the opposite surface and naturally flows along the substrate surface, so that no pressing gas is required, the reaction gas and the substrate are contacted without waste, and a homogeneous crystal growth film is obtained. As a result, the amount of reaction gas can be significantly reduced.

【0038】即ち、第1の発明にあっては、一対の対向
部材における両対向面の少なくとも一方に基板を装着
し、この間に反応ガスを通流させることで、対向面を反
応ガスのガイドとして機能させ、従来の如く押圧ガスを
全く必要とせず、反応ガスを効率的に基板表面に沿って
通流せしめ得る。
That is, in the first aspect of the present invention, the substrate is mounted on at least one of the opposing surfaces of the pair of opposing members, and the reaction gas is allowed to flow between them so that the opposing surface serves as a guide for the reaction gas. It is functional and requires no pressing gas as in the prior art, and allows the reaction gas to efficiently flow along the substrate surface.

【0039】第2の発明にあっては、縦向きに対向させ
た対向部材間に反応ガスを下側から通流させることで高
温の対向部材に起因する熱が反応ガス流に及ぼす熱対流
化という悪影響を低減し得、均質な成膜が可能となる。
In the second aspect of the present invention, the reaction gas is caused to flow from the lower side between the facing members facing each other in the vertical direction, so that the heat generated by the facing members having a high temperature exerts a heat convection on the reaction gas flow. That is, the adverse effect can be reduced, and a uniform film can be formed.

【0040】即ち、第2の発明にあっては、縦向きに反
応ガスを流すことで対向部材の熱による熱対流の影響を
低減し得る。
That is, in the second aspect of the invention, the influence of heat convection due to the heat of the facing member can be reduced by causing the reaction gas to flow vertically.

【0041】第3の発明にあっては、一のノズルから反
応ガスを供給することで設備の簡略化が図れ、また複数
のノズルから反応ガスを個別に供給することで各反応ガ
ス夫々に個別に吹き出し位置等の設定制御が出来て、各
基板表面に対し均一な成膜が可能となり、結晶膜品質の
向上を図れる。
In the third aspect of the invention, the equipment can be simplified by supplying the reaction gas from one nozzle, and the reaction gas can be individually supplied from the plurality of nozzles. The blowing position and the like can be controlled, and uniform film formation can be performed on each substrate surface, and the quality of the crystal film can be improved.

【0042】即ち、第3の発明にあっては、反応ガスを
1又は複数のノズルからサセプタ間に通流させること
で、反応ガス流と基板表面との効率的な接触が得られる
よう反応ガスを通流することが可能となる。
That is, in the third aspect of the invention, the reaction gas is allowed to flow from one or a plurality of nozzles between the susceptor so that the reaction gas flow and the surface of the substrate are efficiently contacted. It becomes possible to flow through.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施状態を示す模式的側面図であ
る。
FIG. 1 is a schematic side view showing an embodiment of the method of the present invention.

【図2】(a)は図1に示すサセプタを拡大して示す模
式図であり、(b)はサセプタの他の配置例を示す模式
図である。
2A is an enlarged schematic view of the susceptor shown in FIG. 1, and FIG. 2B is a schematic view showing another arrangement example of the susceptor.

【図3】従来方法の実施状態を示す模式図である。FIG. 3 is a schematic diagram showing an implementation state of a conventional method.

【符号の説明】[Explanation of symbols]

1 反応管 2,3 サセプタ 4 反応ガス供給管 4a ノズル 5 排気管 S1,S2 基板1 reaction tube 2,3 susceptor 4 reaction gas supply tube 4a nozzle 5 exhaust tube S 1 , S 2 substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板を加熱しつつ、反応ガスを用いて該
基板上に半導体結晶膜を成長させる方法において、対向
面が互いに離間対向してなる一対の対向部材を備え、該
両対向面の少なくとも一方に基板を装着し、反応ガスを
前記両対向面間に通流させることを特徴とする半導体結
晶膜の成長方法。
1. A method for growing a semiconductor crystal film on a substrate using a reaction gas while heating the substrate, comprising a pair of opposing members whose opposing surfaces are spaced apart from each other and opposed to each other. A method for growing a semiconductor crystal film, comprising mounting a substrate on at least one side and allowing a reaction gas to flow between the opposite surfaces.
【請求項2】 前記両対向面の間隙の延在方向が縦方向
であり、反応ガスの前記両対向面間への通流が下方から
なされることを特徴とする請求項1記載の半導体結晶膜
の成長方法。
2. The semiconductor crystal according to claim 1, wherein the extending direction of the gap between the facing surfaces is a vertical direction, and the reaction gas is allowed to flow between the facing surfaces from below. Membrane growth method.
【請求項3】 前記反応ガスは1又は複数のノズルから
前記両対向面間に吹き出されることを特徴とする請求項
1又は2記載の半導体結晶膜の成長方法。
3. The method for growing a semiconductor crystal film according to claim 1, wherein the reaction gas is blown from one or a plurality of nozzles between the opposing surfaces.
JP12580596A 1995-05-22 1996-05-21 Method for growing semiconductor crystal film Pending JPH0940491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12580596A JPH0940491A (en) 1995-05-22 1996-05-21 Method for growing semiconductor crystal film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12283995 1995-05-22
JP7-122839 1995-05-22
JP12580596A JPH0940491A (en) 1995-05-22 1996-05-21 Method for growing semiconductor crystal film

Publications (1)

Publication Number Publication Date
JPH0940491A true JPH0940491A (en) 1997-02-10

Family

ID=26459888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12580596A Pending JPH0940491A (en) 1995-05-22 1996-05-21 Method for growing semiconductor crystal film

Country Status (1)

Country Link
JP (1) JPH0940491A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537422A (en) * 2007-08-22 2010-12-02 株式会社テラセミコン Semiconductor manufacturing equipment
EP2533975A2 (en) * 2010-02-13 2012-12-19 McAlister Technologies, LLC Architectural construct having for example a plurality of architectural crystals
EP2534094A2 (en) * 2010-02-13 2012-12-19 McAlister Technologies, LLC Induction for thermochemical processes, and associated systems and methods
US8828491B2 (en) 2011-08-12 2014-09-09 Mcalister Technologies, Llc Methods for manufacturing architectural constructs
US8980416B2 (en) 2009-02-17 2015-03-17 Mcalister Technologies, Llc Architectural construct having for example a plurality of architectural crystals
US9511663B2 (en) 2013-05-29 2016-12-06 Mcalister Technologies, Llc Methods for fuel tank recycling and net hydrogen fuel and carbon goods production along with associated apparatus and systems
US9534296B2 (en) 2013-03-15 2017-01-03 Mcalister Technologies, Llc Methods of manufacture of engineered materials and devices
US9617983B2 (en) 2011-08-12 2017-04-11 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537422A (en) * 2007-08-22 2010-12-02 株式会社テラセミコン Semiconductor manufacturing equipment
US8980416B2 (en) 2009-02-17 2015-03-17 Mcalister Technologies, Llc Architectural construct having for example a plurality of architectural crystals
EP2533975A2 (en) * 2010-02-13 2012-12-19 McAlister Technologies, LLC Architectural construct having for example a plurality of architectural crystals
EP2534094A2 (en) * 2010-02-13 2012-12-19 McAlister Technologies, LLC Induction for thermochemical processes, and associated systems and methods
CN102844264A (en) * 2010-02-13 2012-12-26 麦卡利斯特技术有限责任公司 Induction for thermochemical processes, and associated systems and methods
EP2534094A4 (en) * 2010-02-13 2014-01-01 Mcalister Technologies Llc Induction for thermochemical processes, and associated systems and methods
EP2533975A4 (en) * 2010-02-13 2014-01-15 Mcalister Technologies Llc Architectural construct having for example a plurality of architectural crystals
CN102844264B (en) * 2010-02-13 2016-04-20 麦卡利斯特技术有限责任公司 The induction of thermochemical process and related system and method
US8828491B2 (en) 2011-08-12 2014-09-09 Mcalister Technologies, Llc Methods for manufacturing architectural constructs
US9617983B2 (en) 2011-08-12 2017-04-11 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US9534296B2 (en) 2013-03-15 2017-01-03 Mcalister Technologies, Llc Methods of manufacture of engineered materials and devices
US9511663B2 (en) 2013-05-29 2016-12-06 Mcalister Technologies, Llc Methods for fuel tank recycling and net hydrogen fuel and carbon goods production along with associated apparatus and systems

Similar Documents

Publication Publication Date Title
EP0502209B1 (en) Method and apparatus for growing compound semiconductor crystals
US8349083B2 (en) Vapor-phase process apparatus, vapor-phase process method, and substrate
JP2008066490A (en) Vapor phase growing device
JP2002316892A (en) Vapor phase epitaxial growth system
JPH0940491A (en) Method for growing semiconductor crystal film
JP2002158175A (en) Chemical vapor deposition system and method for growing semiconductor film
JP3553583B2 (en) Vapor growth equipment for nitride
US20010021593A1 (en) Chemical vapor deposition apparatus and chemical vapor deposition process
JP4879693B2 (en) MOCVD apparatus and MOCVD method
JP4341647B2 (en) Chemical vapor deposition equipment
JP2001284269A (en) Vapor phase growth apparatus and method
JPH0296324A (en) Method for manufacturing semiconductor devices and vapor phase growth apparatus used therein
JPH0677136A (en) Method and device for vapor growing compound semiconductor thin film crystal
JP7436333B2 (en) Film-forming method and film-forming equipment
JP2012084581A (en) Vapor phase epitaxial growth device
JPH05217903A (en) Method and apparatus for vapor growth
JPS61271822A (en) Continuous vapor phase growth equipment
JP2002261021A (en) Apparatus and method for vapor-phase growth
JP2004063783A (en) Cvd equipment, substrate for semiconductor crystal growth, and method of manufacturing semiconductor device
JPS6240720A (en) Vapor phase epitaxial growing device
JP2003328136A (en) Vapor growth system and vapor growth method
JP3010739B2 (en) Method and apparatus for growing compound semiconductor crystal
JPH04221820A (en) Metal-organic vapor phase growth method
JPH0265125A (en) Reaction pipe of mocvd crystal growth device
JPH0727868B2 (en) Vapor phase growth equipment