JPH09299796A - Catalyst for purification of exhaust gas and its production - Google Patents
Catalyst for purification of exhaust gas and its productionInfo
- Publication number
- JPH09299796A JPH09299796A JP8118934A JP11893496A JPH09299796A JP H09299796 A JPH09299796 A JP H09299796A JP 8118934 A JP8118934 A JP 8118934A JP 11893496 A JP11893496 A JP 11893496A JP H09299796 A JPH09299796 A JP H09299796A
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- exhaust gas
- purifying catalyst
- amount
- treatment step
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims description 49
- 238000000746 purification Methods 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000002245 particle Substances 0.000 claims abstract description 31
- 230000001590 oxidative effect Effects 0.000 claims abstract description 8
- 239000010948 rhodium Substances 0.000 claims description 91
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 36
- 230000003647 oxidation Effects 0.000 claims description 26
- 238000007254 oxidation reaction Methods 0.000 claims description 26
- 229910052703 rhodium Inorganic materials 0.000 claims description 9
- 239000010419 fine particle Substances 0.000 claims description 6
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 6
- 239000012266 salt solution Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims 1
- 150000003283 rhodium Chemical class 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 31
- 230000003197 catalytic effect Effects 0.000 abstract description 8
- 150000003839 salts Chemical class 0.000 abstract description 8
- 229910018404 Al2 O3 Inorganic materials 0.000 abstract 2
- 239000007787 solid Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 239000006104 solid solution Substances 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 238000012937 correction Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000000635 electron micrograph Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、担体としてα−A
l2 O3 を用い、その担体に触媒貴金属としてのロジウ
ム(Rh)を担持した排ガス浄化用触媒に関する。本発
明の排ガス浄化用触媒は、排ガス中のNOx を効率よく
浄化することができる。TECHNICAL FIELD The present invention relates to α-A as a carrier.
The present invention relates to an exhaust gas purifying catalyst in which l 2 O 3 is used and rhodium (Rh) as a catalytic precious metal is supported on the carrier. The exhaust gas-purifying catalyst of the present invention can efficiently purify NO x in exhaust gas.
【0002】[0002]
【従来の技術】従来より自動車の排ガス浄化用触媒とし
て、排ガス中のCO及びHCの酸化とNOx の還元とを
同時に行って浄化する三元触媒が用いられている。この
ような三元触媒としては、例えばコーディエライトなど
からなる耐熱性ハニカム基材にγ−Al2 O3 からなる
担体層を形成し、その担体層に白金(Pt)などの触媒
貴金属を担持させたものが広く知られている。2. Description of the Related Art Conventionally, a three-way catalyst has been used as an exhaust gas purifying catalyst for automobiles, which purifies the exhaust gas by simultaneously oxidizing CO and HC and reducing NO x . As such a three-way catalyst, for example, a carrier layer made of γ-Al 2 O 3 is formed on a heat-resistant honeycomb substrate made of cordierite or the like, and a catalytic precious metal such as platinum (Pt) is carried on the carrier layer. The ones made to be widely known.
【0003】また従来の排ガス浄化用触媒を製造するに
は、γ−Al2 O3 よりなる担体層をもつ担体をPt塩
やRh塩の水溶液に浸漬し引き上げて乾燥・焼成するこ
とで担持する吸着担持法、あるいはPt塩やRh塩の水
溶液の所定量を含浸させ蒸発・乾固させて担持する吸水
担持法などによりPtやRhを担持している。γ−Al
2 O3 は活性アルミナとも称され、高い比表面積をもつ
ため触媒担体として広く用いられている。また触媒貴金
属としては、HCやCOを酸化する活性の高いPtと、
排ガス中のHCなどの還元性物質によりNOx を還元す
る活性に優れたRhを併用するのが一般的である。Further, in order to produce a conventional exhaust gas purifying catalyst, a carrier having a carrier layer made of γ-Al 2 O 3 is immersed in an aqueous solution of Pt salt or Rh salt, pulled up, dried and calcined. Pt or Rh is supported by an adsorption supporting method, or a water absorption supporting method of impregnating a predetermined amount of an aqueous solution of Pt salt or Rh salt, evaporating and drying to support. γ-Al
2 O 3 is also referred to as activated alumina, and is widely used as a catalyst carrier because it has a high specific surface area. As the catalytic noble metal, Pt, which has a high activity of oxidizing HC and CO,
Generally, Rh, which has an excellent activity of reducing NO x by a reducing substance such as HC in exhaust gas, is used together.
【0004】ところがγ−Al2 O3 担体にRhを担持
した触媒では、初期の浄化活性には優れるものの、高温
の酸素過剰雰囲気においてRhが担体中に固溶し、担体
表面における触媒活性点の減少によりNOx 浄化性能が
大きく低下するという問題があることが明らかとなっ
た。そこでRhが固溶しない担体にRhを担持すること
が想起され、ジルコニアを用いたもの(米国特許第23
3189号)や、α−Al2 O3 を用いたもの(特開昭
55−41894号公報)などの提案がある。However, although the catalyst in which Rh is supported on the γ-Al 2 O 3 carrier is excellent in the initial purification activity, Rh is solid-dissolved in the carrier in a high-temperature oxygen-excessive atmosphere, so that the catalyst active site on the surface of the carrier becomes It was revealed that there is a problem that the NO x purification performance is significantly reduced due to the decrease. Therefore, it was conceived that Rh is supported on a carrier in which Rh does not form a solid solution, and one using zirconia (US Pat.
3189) and those using α-Al 2 O 3 (JP-A-55-41894).
【0005】特開昭55−41894号公報には、Rh
は高温の酸素過剰雰囲気下においてγ−Al2 O3 に固
溶するが、担体としてα−Al2 O3 を用いれば固溶が
抑制され、Rhの触媒活性が長期間維持されることが記
載されている。Japanese Patent Laid-Open No. 55-41894 discloses Rh.
Is dissolved in γ-Al 2 O 3 in a high temperature excess oxygen atmosphere, but if α-Al 2 O 3 is used as a carrier, the solid solution is suppressed and the catalytic activity of Rh is maintained for a long time. Has been done.
【0006】[0006]
【発明が解決しようとする課題】ところがジルコニアや
α−Al2 O3 は、γ−Al2 O3 に比べて比表面積が
著しく低い。したがって従来の吸着担持法や吸水担持法
による製造方法では、α−Al2 O3 にRhを高分散で
担持することが困難であり、そのため触媒活性点が少な
くなって初期から触媒活性が低いという不具合がある。However, the specific surface area of zirconia and α-Al 2 O 3 is significantly lower than that of γ-Al 2 O 3 . Therefore, it is difficult to support Rh in α-Al 2 O 3 in a high dispersion by the conventional adsorption-supporting method or water-absorption supporting method, and therefore, the catalytic activity points are reduced and the catalytic activity is low from the beginning. There is a defect.
【0007】本発明はこのような事情に鑑みてなされた
ものであり、α−Al2 O3 を担体としRhを高分散担
持することで触媒活性を高めることを目的とする。The present invention has been made in view of such circumstances, and it is an object of the present invention to enhance catalytic activity by supporting Rh in a highly dispersed manner using α-Al 2 O 3 as a carrier.
【0008】[0008]
【課題を解決するための手段】上記課題を解決する請求
項1に記載の本発明の排ガス浄化用触媒の特徴は、α−
Al2 O3 よりなる担体と、担体に担持されたRhとか
らなる排ガス浄化用触媒であって、Rhはその担持量の
50%以上が粒子径2nm以下の微粒子として担持され
ていることにある。The features of the exhaust gas purifying catalyst of the present invention as set forth in claim 1 for solving the above-mentioned problems are α-
An exhaust gas purifying catalyst comprising a carrier made of Al 2 O 3 and Rh carried on the carrier, wherein 50% or more of the carried amount of Rh is carried as fine particles having a particle diameter of 2 nm or less. .
【0009】また請求項2に記載の排ガス浄化用触媒の
特徴は、請求項1に記載の排ガス浄化用触媒において、
Rhの担持量は担体120g当たり0.01〜0.3g
であることにある。さらに請求項3に記載の排ガス浄化
用触媒の特徴は、請求項1に記載の排ガス浄化用触媒に
おいて、Rhの担持量は担体120g当たり0.15〜
0.3gであることにある。The exhaust gas purifying catalyst according to claim 2 is characterized in that in the exhaust gas purifying catalyst according to claim 1,
The supported amount of Rh is 0.01 to 0.3 g per 120 g of the carrier.
Is to be. Further, the exhaust gas purifying catalyst according to claim 3 is characterized in that, in the exhaust gas purifying catalyst according to claim 1, the amount of Rh supported is 0.15 to 120 g of the carrier.
It is to be 0.3 g.
【0010】そして上記排ガス浄化用触媒を製造できる
請求項4に記載の本発明の排ガス浄化用触媒の製造方法
の特徴は、α−Al2 O3 よりなる担体にRh塩溶液を
含浸しRh含浸担体とする含浸工程と、Rh含浸担体を
酸化雰囲気下にて800〜1000℃で熱処理し酸化処
理担体とする酸化処理工程と、酸化処理担体を還元雰囲
気下にて700〜1000℃で熱処理し粒子径2nm以
下の微粒子状のRh粒子を担体表面に析出させる還元処
理工程と、からなることにある。A feature of the method for producing an exhaust gas purifying catalyst of the present invention according to claim 4 which is capable of producing the exhaust gas purifying catalyst is that the carrier comprising α-Al 2 O 3 is impregnated with a Rh salt solution to impregnate Rh. Particles obtained by performing an impregnation step of forming a carrier, an oxidation treatment step of heat-treating an Rh-impregnated support at 800 to 1000 ° C. in an oxidizing atmosphere to form an oxidation treated carrier, and a heat treatment of the oxidation treated carrier at 700 to 1000 ° C. in a reducing atmosphere And a reduction treatment step of precipitating fine Rh particles having a diameter of 2 nm or less on the surface of the carrier.
【0011】[0011]
【発明の実施の形態】本発明の排ガス浄化用触媒では、
Rhはその担持量の50%以上が粒子径2nm以下の微
粒子としてα−Al2 O3 担体に担持されている。した
がってRhはきわめて微細な状態で高分散状態で担持さ
れているため、触媒の活性点が増大し高いNOx 浄化性
能を示す。BEST MODE FOR CARRYING OUT THE INVENTION In the exhaust gas purifying catalyst of the present invention,
At least 50% of the supported amount of Rh is supported on the α-Al 2 O 3 carrier as fine particles having a particle diameter of 2 nm or less. Therefore, since Rh is supported in an extremely fine state and in a highly dispersed state, the active points of the catalyst are increased and a high NO x purification performance is exhibited.
【0012】そしてα−Al2 O3 は熱安定性に優れ、
かつRhの固溶が生じにくい。したがって使用中に高温
の酸素過剰雰囲気に曝されたとしてもRhの凝集が起こ
りにくく、Rhは高分散状態が維持され、NOx 浄化性
能の耐久性にも優れている。担持されているRhのう
ち、粒子径が2nmを超えるものが担持量の50%以上
となると、触媒の活性点が減少するためNOx 浄化性能
が低下してしまう。粒子径は2nm以下の微細であるほ
ど望ましく、その微細粒子が多いほど望ましい。And α-Al 2 O 3 has excellent thermal stability,
Moreover, solid solution of Rh hardly occurs. Therefore, even when exposed to a high-temperature oxygen-excess atmosphere during use, Rh does not easily agglomerate, Rh is maintained in a highly dispersed state, and the durability of NO x purification performance is excellent. When the amount of supported Rh having a particle size of more than 2 nm is 50% or more of the supported amount, the active sites of the catalyst decrease, and the NO x purification performance deteriorates. The finer the particle diameter is 2 nm or less, the more desirable it is, and the more the fine particles are, the more desirable.
【0013】Rhの担持量は、担体120g当たり0.
01〜0.3gが好適な範囲である。Rhの担持量が
0.01gより少ないと十分なNOx 浄化性能が得られ
ず、0.3gより多く担持してもNOx 浄化性能が飽和
して高価なRhが無駄になってしまう。また担持量が
0.3gより多くなると、粒子径が10nm以上の粗大
粒子が多くなる。The amount of Rh supported is 0.
01-0.3g is a suitable range. When the amount of Rh carried is less than 0.01 g, sufficient NO x purification performance cannot be obtained, and even when more than 0.3 g is carried, the NO x purification performance is saturated and expensive Rh is wasted. Further, when the supported amount exceeds 0.3 g, the number of coarse particles having a particle diameter of 10 nm or more increases.
【0014】なお、Rhの担持量を担体120g当たり
0.15〜0.3gとすれば、ほとんどのRhを有効利
用できるとともに、ほとんどのRhの粒子径が2nm以
下となり、特に高いNOx 浄化性能が得られる。また本
発明の排ガス浄化用触媒の製造方法では、先ずα−Al
2 O3 よりなる担体にRh塩溶液を含浸してRh含浸担
体が製造される。Rh塩としては、硝酸ロジウム(Rh
(NO3 )3 )、塩化ロジウム(RhCl3 )などが用
いられ、これらの塩の場合には水溶液として用いられ
る。またRh塩の種類によっては、アルコールなどの有
機溶媒を用いることもできる。[0014] Incidentally, if the loading amount of Rh with 0.15~0.3g per carrier 120 g, it is possible to effectively use the most Rh, the particle size of most of the Rh becomes 2nm or less, particularly high the NO x purification performance Is obtained. In the method for producing an exhaust gas purifying catalyst of the present invention, first, α-Al
An Rh-impregnated carrier is manufactured by impregnating a carrier composed of 2 O 3 with a Rh salt solution. Rh salts include rhodium nitrate (Rh
(NO 3 ) 3 ), rhodium chloride (RhCl 3 ) and the like are used, and in the case of these salts, they are used as an aqueous solution. An organic solvent such as alcohol may be used depending on the type of Rh salt.
【0015】このRh含浸担体は、酸化処理工程におい
て、例えば大気中などの酸化雰囲気下にて800〜10
00℃で熱処理され、酸化処理担体となる。α−Al2
O3はRhとの相互作用が低くRhが固溶しにくいが、
この酸化処理工程では、含浸したRhのうち担体表面か
ら3〜5nmの深さの範囲にRhが固溶する。酸化処理
工程の熱処理温度が800℃未満ではRhの固溶が困難
となり、次工程の還元処理工程における担体表面へのR
hの析出も困難となるため、Rhの微細化が困難とな
る。また熱処理温度が1000℃を超えると、Rh粒子
が粗大化しα−Al2 O3 中に固溶しにくくなる。This Rh-impregnated carrier has an oxidation treatment step of 800 to 10 in an oxidizing atmosphere such as air.
It is heat-treated at 00 ° C. and becomes an oxidation-treated carrier. α-Al 2
O 3 has a low interaction with Rh and Rh does not easily form a solid solution,
In this oxidation treatment step, Rh is solid-soluted in the impregnated Rh in the depth range of 3 to 5 nm from the surface of the carrier. If the heat treatment temperature in the oxidation treatment step is less than 800 ° C., it becomes difficult for Rh to form a solid solution, and R on the carrier surface in the reduction treatment step in the next step becomes difficult.
Precipitation of h is also difficult, and thus it is difficult to make Rh fine. Further, when the heat treatment temperature exceeds 1000 ° C., the Rh particles become coarse and it becomes difficult to form a solid solution in α-Al 2 O 3 .
【0016】なお酸化処理工程における熱処理時間は、
1〜3時間で十分である。熱処理時間が1時間より少な
いとRhの固溶が不十分となり、次工程の還元処理工程
における担体表面へのRhの析出も困難となるため、R
hの微細化が困難となる。また、3時間以上行うとRh
がα−Al2 O3 担体の内部に拡散し、次工程の還元処
理でRhが析出しにくくなる。また熱エネルギーも無駄
になる。The heat treatment time in the oxidation treatment step is
1 to 3 hours is sufficient. If the heat treatment time is less than 1 hour, the solid solution of Rh becomes insufficient and it becomes difficult to precipitate Rh on the surface of the carrier in the subsequent reduction treatment step.
It becomes difficult to miniaturize h. Also, if you do it for 3 hours or more, Rh
Diffuses into the α-Al 2 O 3 carrier, making it difficult for Rh to precipitate in the subsequent reduction treatment. Also, heat energy is wasted.
【0017】酸化処理工程で熱処理されRhが固溶した
酸化処理担体は、還元処理工程において、還元雰囲気下
にて700〜1000℃で熱処理される。これにより固
溶したRhが粒径2nm以下の微粒子となって担体表面
に析出し、高分散担持される。還元雰囲気としては、例
えば不活性ガス中に水素ガスを含むガスなどが用いられ
る。そして熱処理温度が700℃未満ではRhの析出が
困難となり、熱処理温度が1000℃を超えると析出し
た微細Rh粒子が粗大化する。The oxidation-treated carrier in which Rh is solid-solved in the oxidation treatment step is heat-treated at 700 to 1000 ° C. in a reducing atmosphere in the reduction treatment step. As a result, the solid solution Rh becomes fine particles having a particle diameter of 2 nm or less and is deposited on the surface of the carrier, and is highly dispersed and supported. As the reducing atmosphere, for example, a gas containing hydrogen gas in an inert gas is used. When the heat treatment temperature is lower than 700 ° C., it is difficult to precipitate Rh, and when the heat treatment temperature exceeds 1000 ° C., the fine Rh particles precipitated are coarsened.
【0018】なお還元処理工程における熱処理時間は、
1〜3時間で十分である。熱処理時間が1時間より少な
いとRhの析出が不十分となり、3時間以上行うと析出
した微細Rh粒子が粗大化する。また熱エネルギーも無
駄になる。The heat treatment time in the reduction treatment step is
1 to 3 hours is sufficient. When the heat treatment time is less than 1 hour, the precipitation of Rh is insufficient, and when the heat treatment is carried out for 3 hours or more, the fine Rh particles precipitated are coarsened. Also, heat energy is wasted.
【0019】[0019]
【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。 (実施例1) (1)α−Al2 O3 の調製 市販のγ−Al2 O3 粉末を用意し、大気中にて120
0℃で10時間加熱することにより、比表面積7m2 /
gの粉末状のα−Al2 O3 担体を調製した。 (2)含浸工程 このα−Al2 O3 担体に所定濃度の塩化ロジウム水溶
液の所定量を含浸させ、水分を蒸発乾固させた後、大気
中にて120℃で12時間乾燥後、600℃で3時間焼
成してRh含浸担体を調製した。Rhの担持量は、金属
Rhとしてα−Al2 O3 担体120gに対して0.0
4gである。 (3)熱処理工程 このRh含浸担体を、水素を5体積%含有する窒素ガス
中にて600℃で1時間熱処理した。この熱処理は、含
浸担持されたRh化合物を還元して金属Rhとするため
に行うものである。 (4)酸化処理工程 次に、熱処理温度を600℃、900℃、1200℃の
3水準採用し、上記の熱処理工程後のRh含浸担体を大
気中にて各温度で1時間熱処理する酸化処理工程を行っ
た。EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. (Example 1) (1) Preparation of α-Al 2 O 3 Commercially available γ-Al 2 O 3 powder was prepared, and 120 in the air.
By heating at 0 ° C for 10 hours, a specific surface area of 7 m2 /
g of powdered α-Al 2 O 3 carrier was prepared. (2) Impregnation Step This α-Al 2 O 3 carrier is impregnated with a predetermined amount of a rhodium chloride aqueous solution having a predetermined concentration, the water content is evaporated to dryness, and then dried in air at 120 ° C. for 12 hours, and then at 600 ° C. A Rh-impregnated carrier was prepared by firing at 3 hours. The supported amount of Rh is 0.0 as metal Rh with respect to 120 g of α-Al 2 O 3 carrier.
It is 4 g. (3) Heat Treatment Step This Rh-impregnated support was heat-treated at 600 ° C. for 1 hour in nitrogen gas containing 5% by volume of hydrogen. This heat treatment is performed in order to reduce the impregnated and supported Rh compound into metal Rh. (4) Oxidation treatment step Next, an oxidation treatment step in which heat treatment temperatures of 600 ° C., 900 ° C., and 1200 ° C. are adopted, and the Rh-impregnated carrier after the heat treatment step is heat-treated in the atmosphere at each temperature for 1 hour I went.
【0020】それぞれRhが固溶した割合をX線光電子
分光分析(XPS)により求め、結果を図1に示す。ま
たα−Al2 O3 担体の代わりにγ−Al2 O3 担体を
用い、同様に含浸工程、熱処理工程及び酸化処理工程を
行ったものについても同様にRhが固溶した割合を測定
し、結果を図1に併せて示す。図1より、α−Al2 O
3 担体では、酸化処理工程における熱処理温度が800
℃未満ではRhの固溶割合が80%以下となっている。
したがって酸化処理工程では、800℃以上の温度で熱
処理することが好ましいことがわかる。The proportion of Rh in solid solution was determined by X-ray photoelectron spectroscopy (XPS), and the results are shown in FIG. The use of a γ-Al 2 O 3 carrier in place of the α-Al 2 O 3 carrier, likewise impregnation process, by measuring the ratio of Rh was dissolved Similarly for having been subjected to the heat treatment step and the oxidizing step, The results are also shown in FIG. From FIG. 1, α-Al 2 O
With 3 carriers, the heat treatment temperature in the oxidation treatment process is 800
When the temperature is lower than ° C, the solid solution ratio of Rh is 80% or less.
Therefore, it is preferable to perform the heat treatment at a temperature of 800 ° C. or higher in the oxidation treatment step.
【0021】そこで本実施例では、酸化処理工程の熱処
理温度を1000℃とし、熱処理工程後のRh含浸担体
を大気中にて1000℃で1時間熱処理して酸化処理担
体を得た。 (4)還元処理工程 次に、熱処理温度を400〜800℃の間で5水準採用
し、上記の酸化処理担体を5体積%の水素ガスを含み
0.1atmの窒素ガス中にて、各温度で10分間熱処
理する還元処理工程を行った。Therefore, in this example, the heat treatment temperature of the oxidation treatment step was set to 1000 ° C., and the Rh-impregnated support after the heat treatment step was heat-treated at 1000 ° C. for 1 hour in the atmosphere to obtain an oxidation treatment support. (4) Reduction treatment step Next, five levels of heat treatment temperatures were adopted between 400 and 800 ° C., and the above oxidation treatment carrier was added at a temperature of 0.1 atm of nitrogen gas containing 5% by volume of hydrogen gas at each temperature. Then, a reduction treatment step of performing heat treatment for 10 minutes was performed.
【0022】それぞれRhが析出した割合をX線光電子
分光分析(XPS)により求め、結果を図2に示す。ま
たα−Al2 O3 担体の代わりにγ−Al2 O3 担体を
用い、同様に含浸工程、熱処理工程、酸化処理工程及び
還元処理工程を行ったものについても同様にRhが析出
した割合を測定し、結果を図2に併せて示す。図2よ
り、還元工程においてはα−Al2 O3 の方がγ−Al
2 O3 より固溶しているRhが析出し易いことがわか
る。またα−Al2 O3 担体では、還元処理工程におけ
る熱処理温度が700℃未満ではRhの析出率が50%
以下となっている。したがって還元処理工程では、70
0℃以上の温度で熱処理することが好ましいことがわか
る。The proportion of Rh deposited was determined by X-ray photoelectron spectroscopy (XPS), and the results are shown in FIG. The use of a γ-Al 2 O 3 carrier in place of the α-Al 2 O 3 carrier, likewise impregnation step, heat treatment step, the ratio of Rh precipitated Similarly for having been subjected to the oxidation treatment process and the reduction treatment process It measured and the result is also shown in FIG. As shown in FIG. 2, α-Al 2 O 3 is more γ-Al in the reduction process.
It can be seen that Rh in solid solution is more likely to precipitate than 2 O 3 . Further, in the α-Al 2 O 3 carrier, when the heat treatment temperature in the reduction treatment step is less than 700 ° C., the Rh precipitation rate is 50%.
It is as follows. Therefore, in the reduction process, 70
It can be seen that it is preferable to perform the heat treatment at a temperature of 0 ° C. or higher.
【0023】そこで本実施例では、還元処理工程の熱処
理温度を800℃とし、酸化処理担体を5体積%の水素
ガスを含む窒素ガス中にて800℃で1時間熱処理し
て、本実施例の排ガス浄化用触媒を得た。 (実施例2)Rhの担持量をα−Al2 O3 担体120
gに対して0.08gとしたこと以外は実施例1と同様
にして、実施例2の排ガス浄化用触媒を得た。Therefore, in this embodiment, the heat treatment temperature in the reduction treatment step is set to 800 ° C., and the oxidation-treated support is heat treated in nitrogen gas containing 5% by volume of hydrogen gas at 800 ° C. for 1 hour to obtain the heat treatment temperature of the present embodiment. An exhaust gas purifying catalyst was obtained. (Example 2) The supported amount of Rh was changed to α-Al 2 O 3 carrier 120.
An exhaust gas-purifying catalyst of Example 2 was obtained in the same manner as in Example 1 except that the amount of g was 0.08 g.
【0024】(実施例3)Rhの担持量をα−Al2 O
3 担体120gに対して0.10gとしたこと以外は実
施例1と同様にして、実施例3の排ガス浄化用触媒を得
た。 (実施例4)Rhの担持量をα−Al2 O3 担体120
gに対して0.20gとしたこと以外は実施例1と同様
にして、実施例4の排ガス浄化用触媒を得た。(Example 3) The supported amount of Rh was changed to α-Al 2 O.
An exhaust gas-purifying catalyst of Example 3 was obtained in the same manner as in Example 1 except that the amount of 0.10 g was changed with respect to 120 g of 3 carriers. (Example 4) The supported amount of Rh was changed to α-Al 2 O 3 carrier 120.
An exhaust gas-purifying catalyst of Example 4 was obtained in the same manner as in Example 1 except that 0.20 g was used for g.
【0025】(実施例5)Rhの担持量をα−Al2 O
3 担体120gに対して0.30gとしたこと以外は実
施例1と同様にして、実施例5の排ガス浄化用触媒を得
た。 (実施例6)Rhの担持量をα−Al2 O3 担体120
gに対して0.50gとしたこと以外は実施例1と同様
にして、実施例6の排ガス浄化用触媒を得た。(Embodiment 5) The amount of Rh carried is α-Al 2 O.
3 except that the 0.30g against carrier 120g in the same manner as in Example 1 to obtain an exhaust gas purifying catalyst of Example 5. (Example 6) The supported amount of Rh was changed to α-Al 2 O 3 carrier 120.
An exhaust gas-purifying catalyst of Example 6 was obtained in the same manner as in Example 1 except that 0.50 g was used for g.
【0026】(比較例1)酸化処理工程と還元処理工程
を行わなかったこと以外は実施例1と同様にして、比較
例1の排ガス浄化用触媒を得た。 (比較例2)Rhの担持量をα−Al2 O3 担体120
gに対して0.10gとしたこと、及び酸化処理工程と
還元処理工程を行わなかったこと以外は実施例1と同様
にして、比較例2の排ガス浄化用触媒を得た。Comparative Example 1 An exhaust gas purifying catalyst of Comparative Example 1 was obtained in the same manner as in Example 1 except that the oxidation treatment step and the reduction treatment step were not performed. (Comparative Example 2) The amount of Rh supported was changed to α-Al 2 O 3 carrier 120.
An exhaust gas-purifying catalyst of Comparative Example 2 was obtained in the same manner as in Example 1 except that the amount of g was 0.10 g and that the oxidation treatment step and the reduction treatment step were not performed.
【0027】(比較例3)Rhの担持量をα−Al2 O
3 担体120gに対して0.30gとしたこと、及び酸
化処理工程と還元処理工程を行わなかったこと以外は実
施例1と同様にして、比較例3の排ガス浄化用触媒を得
た。 (試験・評価)それぞれの排ガス浄化用触媒粉末を圧粉
成形し、0.5〜1.0mmの粒径のペレット触媒とし
た。そして各ペレット触媒について、表1に示す評価ガ
スを用い、触媒量1.0g、ガス流量3.3L/min
の条件で、入りガス温度を100℃から500℃まで5
℃/minの速度で昇温させながら、NOx 浄化率を測
定した。そしてそれぞれの50%浄化温度(初期)を求
め、結果を表3に示す。(Comparative Example 3) The supported amount of Rh was changed to α-Al 2 O.
An exhaust gas-purifying catalyst of Comparative Example 3 was obtained in the same manner as in Example 1, except that the amount of 0.30 g per 120 g of 3 carriers and that the oxidation treatment step and the reduction treatment step were not performed. (Test / Evaluation) Each of the exhaust gas-purifying catalyst powders was compacted into a pellet catalyst having a particle size of 0.5 to 1.0 mm. Then, for each pellet catalyst, the evaluation gas shown in Table 1 was used, the catalyst amount was 1.0 g, and the gas flow rate was 3.3 L / min.
Under the conditions of, the temperature of the incoming gas should be 5 from 100 ℃ to 500 ℃
The NO x purification rate was measured while raising the temperature at a rate of ° C / min. Then, the respective 50% purification temperatures (initial) were obtained, and the results are shown in Table 3.
【0028】[0028]
【表1】 なお、実施例5と比較例3の排ガス浄化用触媒の表面の
電子顕微鏡写真を図3及び図4にそれぞれ示す。図3よ
り、実施例5の排ガス浄化用触媒では、粒径が1〜2n
mのRh粒子がα−Al2 O3 表面に析出していること
が観察される。しかし比較例3では、Rh粒子の粒径が
5〜10nmと粗大化していることがわかる。[Table 1] The electron micrographs of the surfaces of the exhaust gas-purifying catalysts of Example 5 and Comparative Example 3 are shown in FIGS. 3 and 4, respectively. From FIG. 3, in the exhaust gas purifying catalyst of Example 5, the particle size is 1 to 2n.
It is observed that Rh particles of m are deposited on the α-Al 2 O 3 surface. However, in Comparative Example 3, it can be seen that the particle size of the Rh particles is coarsened to 5 to 10 nm.
【0029】このようにして、それぞれの排ガス浄化用
触媒についてα−アルミナ担体上に析出したRh粒子の
粒径を電子顕微鏡観察により測定し、結果を表3に示
す。次に、表2に示す酸化性ガスと還元性ガスを10分
周期で交互に流通させながら、触媒量2.0g、ガス流
量1.0L/min、ガス温度1000℃の条件で各ペ
レット触媒を5時間処理する耐久試験を行い、その後上
記と同様にNOx 浄化率を測定した。そしてそれぞれの
50%浄化温度(耐久後)を求め、結果を表3に示す。In this way, the particle size of the Rh particles deposited on the α-alumina carrier for each exhaust gas-purifying catalyst was measured by observing with an electron microscope, and the results are shown in Table 3. Next, while alternately flowing the oxidizing gas and the reducing gas shown in Table 2 in a cycle of 10 minutes, each pellet catalyst was treated under the conditions of a catalyst amount of 2.0 g, a gas flow rate of 1.0 L / min, and a gas temperature of 1000 ° C. An endurance test of treating for 5 hours was performed, and then the NO x purification rate was measured in the same manner as above. Then, the respective 50% purification temperatures (after endurance) were determined, and the results are shown in Table 3.
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【表3】 表3より、実施例1〜6の排ガス浄化用触媒では、初期
及び耐久後の50%NOx 浄化温度が比較例1〜3に比
べて低く、NOx 浄化性能に優れていることがわかる。
これは担持されているRhの粒子径が実施例では2nm
以下であるのに対し、比較例では5〜30nmと大きい
という差異に起因しているものと考えられる。[Table 3] From Table 3, it can be seen that the exhaust gas-purifying catalysts of Examples 1 to 6 have lower 50% NO x purification temperatures at the initial stage and after durability than those of Comparative Examples 1 to 3, and are excellent in NO x purification performance.
This is because the supported Rh particle size is 2 nm in the example.
In contrast to the following, it is considered that this is due to the large difference of 5 to 30 nm in the comparative example.
【0032】また耐久試験によるNOx 浄化率の低下度
合いは、実施例及び比較例ともに小さく、α−Al2 O
3 を用いた効果はどちらも良好に奏され、実施例におい
てRhの粒子径が微細化したことによる不具合はみられ
ない。なお実施例6では、Rh担持量が多すぎるため
に、粒子径が10nmのRh粒子が存在し、この粗大R
h粒子はNOx 浄化性能にほとんど寄与せずコスト面で
不具合がある。したがってRh担持量は実施例5の0.
30g以下が適当である。The degree of decrease in the NO x purification rate by the durability test was small in both the examples and the comparative examples, and α-Al 2 O
Both of the effects obtained by using 3 were excellent, and no defects due to the finer Rh particle size were observed in the examples. In Example 6, since the amount of Rh supported was too large, there were Rh particles with a particle size of 10 nm, and this coarse R
The h particles hardly contribute to the NO x purification performance and have a problem in cost. Therefore, the amount of Rh supported was 0.
30 g or less is suitable.
【0033】[0033]
【発明の効果】すなわち本発明によれば、α−Al2 O
3 担体を用いながらRhを高分散担持できるため、触媒
の活性点が多く、効率良くNOx を浄化することができ
る。That is, according to the present invention, α-Al 2 O
Since Rh can be carried in a highly dispersed manner while using 3 carriers, the catalyst has many active sites and can efficiently purify NO x .
【図1】酸化処理工程における熱処理温度とRhの固溶
割合の関係を示すグラフである。FIG. 1 is a graph showing a relationship between a heat treatment temperature and an Rh solid solution ratio in an oxidation treatment step.
【図2】還元処理工程における熱処理温度とRhの析出
率との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the heat treatment temperature and the Rh precipitation rate in the reduction treatment step.
【図3】実施例5の排ガス浄化用触媒のRh粒子を示す
電子顕微鏡写真である。3 is an electron micrograph showing Rh particles of the exhaust gas purifying catalyst of Example 5. FIG.
【図4】比較例3の排ガス浄化用触媒のRh粒子を示す
電子顕微鏡写真である。FIG. 4 is an electron micrograph showing Rh particles of an exhaust gas purifying catalyst of Comparative Example 3.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成8年5月24日[Submission date] May 24, 1996
【手続補正1】[Procedure amendment 1]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図3[Correction target item name] Figure 3
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図3】 [Figure 3]
【手続補正2】[Procedure amendment 2]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図4[Correction target item name] Fig. 4
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図4】 FIG. 4
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 教友 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 曽布川 英夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 福井 雅幸 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 森川 彰 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noriyuki Suzuki, Aichi Prefecture, Nagakute-cho, Aichi-gun, Nagakute-cho 1 41, Yokomichi, Toyota Central Research Institute Co., Ltd. (72) Inventor Hideo Sofugawa, Nagakute-cho, Aichi-gun, Aichi 1 in 41 Chuo Yokoido, Central Research Institute, Toyota Central Research Institute Co., Ltd. (72) Inventor Masayuki Fukui Nagakute-cho, Aichi-gun, Aichi 1 in 41, Yokochi Central Research Institute, Toyota Central Research Institute (72) Inventor, Akira Morikawa 1 of 41 Yokomichi, Nagakute, Nagakute-cho, Aichi-gun, Aichi Prefecture Toyota Central Research Institute Co., Ltd.
Claims (4)
に担持されたロジウムとからなる排ガス浄化用触媒であ
って、 該ロジウムはその担持量の50%以上が粒子径2nm以
下の微粒子として担持されていることを特徴とする排ガ
ス浄化用触媒。1. A catalyst for exhaust gas purification comprising a carrier composed of α-Al 2 O 3 and rhodium supported on the carrier, wherein 50% or more of the supported amount of rhodium has a particle diameter of 2 nm or less. An exhaust gas purifying catalyst, which is carried as fine particles.
g当たり0.01〜0.3gであることを特徴とする請
求項1記載の排ガス浄化用触媒。2. The amount of the rhodium carried is the carrier 120.
The exhaust gas-purifying catalyst according to claim 1, wherein the amount is 0.01 to 0.3 g per g.
g当たり0.15〜0.3gであることを特徴とする請
求項1記載の排ガス浄化用触媒。3. The amount of rhodium carried is the carrier 120.
The exhaust gas-purifying catalyst according to claim 1, which is 0.15 to 0.3 g per g.
塩溶液を含浸しRh含浸担体とする含浸工程と、該Rh
含浸担体を酸化雰囲気下にて800〜1000℃で熱処
理し酸化処理担体とする酸化処理工程と、該酸化処理担
体を還元雰囲気下にて700〜1000℃で熱処理し粒
子径2nm以下の微粒子状のロジウム粒子を該担体表面
に析出させる還元処理工程と、からなることを特徴とす
る排ガス浄化用触媒の製造方法。4. An impregnating step of impregnating a carrier made of α-Al 2 O 3 with a rhodium salt solution to obtain a Rh-impregnated carrier, and the Rh impregnated carrier.
An oxidation treatment step in which the impregnated carrier is heat-treated at 800 to 1000 ° C. in an oxidizing atmosphere to be an oxidation treated carrier, and the oxidation treated carrier is heat treated at 700 to 1000 ° C. in a reducing atmosphere to form fine particles having a particle diameter of 2 nm or less. A method for producing an exhaust gas-purifying catalyst, which comprises a reduction treatment step of depositing rhodium particles on the surface of the carrier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8118934A JPH09299796A (en) | 1996-05-14 | 1996-05-14 | Catalyst for purification of exhaust gas and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8118934A JPH09299796A (en) | 1996-05-14 | 1996-05-14 | Catalyst for purification of exhaust gas and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09299796A true JPH09299796A (en) | 1997-11-25 |
Family
ID=14748848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8118934A Pending JPH09299796A (en) | 1996-05-14 | 1996-05-14 | Catalyst for purification of exhaust gas and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09299796A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002102701A (en) * | 2000-09-28 | 2002-04-09 | Toyota Central Res & Dev Lab Inc | Ordinary temperature catalyst |
JP2004275919A (en) * | 2003-03-17 | 2004-10-07 | Toyota Central Res & Dev Lab Inc | Catalyst for exhaust gas cleaning, and production method therefor |
-
1996
- 1996-05-14 JP JP8118934A patent/JPH09299796A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002102701A (en) * | 2000-09-28 | 2002-04-09 | Toyota Central Res & Dev Lab Inc | Ordinary temperature catalyst |
JP2004275919A (en) * | 2003-03-17 | 2004-10-07 | Toyota Central Res & Dev Lab Inc | Catalyst for exhaust gas cleaning, and production method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3956437B2 (en) | Exhaust gas purification catalyst | |
JPH0653229B2 (en) | Exhaust gas purification catalyst | |
JPH0838897A (en) | Production of exhaust gas purifying catalyst | |
JPS6193832A (en) | Catalyst and method for treating exhaust gas form internal combustion engine | |
JP5607131B2 (en) | Exhaust gas purification catalyst | |
JP5491745B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP4161633B2 (en) | Particulate purification catalyst | |
JP5515635B2 (en) | Noble metal-supported silicon carbide particles, production method thereof, catalyst containing the same, and production method thereof | |
KR100745117B1 (en) | Catalyst for purifying exhaust gases and process for producing the same | |
JP2007289921A (en) | Exhaust-gas cleaning catalyst and its regeneration method | |
JP3441267B2 (en) | Catalyst production method | |
JPH09299796A (en) | Catalyst for purification of exhaust gas and its production | |
JPS63116742A (en) | Catalyst for purifying exhaust gas | |
JP2000296339A (en) | Composite metal colloid and its production as well as catalyst for purification of gas and its production | |
JP4730947B2 (en) | Method for regenerating exhaust gas purification catalyst | |
JP3644572B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JPH08155302A (en) | Catalyst for purifying exhaust gas and its production | |
JP4697506B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP4665458B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP2007260564A (en) | Exhaust gas-purifying catalyst and method for regenerating the same | |
JP3861823B2 (en) | Exhaust gas purification catalyst | |
JP3879992B2 (en) | Exhaust gas purification catalyst | |
JP3156577B2 (en) | Material for exhaust gas purification catalyst and method for producing the same | |
JP3766984B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP2001104782A (en) | Method for preparation of catalyst for controlling exhaust gas emission |