[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09295204A - Surface coating throw away insert - Google Patents

Surface coating throw away insert

Info

Publication number
JPH09295204A
JPH09295204A JP13105096A JP13105096A JPH09295204A JP H09295204 A JPH09295204 A JP H09295204A JP 13105096 A JP13105096 A JP 13105096A JP 13105096 A JP13105096 A JP 13105096A JP H09295204 A JPH09295204 A JP H09295204A
Authority
JP
Japan
Prior art keywords
coated
carbonitride
coating
away insert
throw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13105096A
Other languages
Japanese (ja)
Other versions
JP3229947B2 (en
Inventor
Nobuhiko Shima
順彦 島
Kazuyuki Kubota
和幸 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15048848&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09295204(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP13105096A priority Critical patent/JP3229947B2/en
Publication of JPH09295204A publication Critical patent/JPH09295204A/en
Application granted granted Critical
Publication of JP3229947B2 publication Critical patent/JP3229947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep the sufficient adhesiveness of a film even in a cutting process of a steel, of which hardness is higher than the Rockwell hardness at 40 (scale C), by setting the diffraction intensity of a surface (200) at the time of X-ray diffraction of a coating layer at a value larger than a value of the diffraction intensity of a surface (111). SOLUTION: Surface of a throw away insert is coated with the compound nitride of Ti and Al, carbon nitride, and carbide. In this throw away insert, in the case where diffraction intensity of a surface (111) at the time of X-ray diffraction of a coating layer is expressed with I (111) and diffraction intensity of a surface (200) is expressed with I (200), both the diffraction intensity are set so that a value of I (200)/I (111) becomes 1 or more. For example, a compact arc ion plating device is used so that coating of a film of (Ti0.5 Al0.5 ) N is performed at 5μm of thickness in the condition of bias voltage at 60 V, vacuum degree at 2.0×10<-2> mbar, arc current at 150 A. A coating layer at 1.5 of I (200)/I (111) is thereby formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐欠損性、耐剥離性に富
む被覆スローアウェイインサートに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated throw-away insert having excellent fracture resistance and peel resistance.

【0002】[0002]

【従来の技術】TiとAlを主成分をする硬質被覆部材
に関しては、古くは特公平4−53642号、特公平5
−67705号の各公報にみられるようにTiN皮膜に
対し、Al添加効果を確認した数多くの報告がある。し
かしながら、これらの発明においてはAl添加による皮
膜の耐酸化性の向上、並びに皮膜物性の改善が認められ
たにすぎず、被覆スローアウェイインサートにおいて、
十分に満足される皮膜の密着性を得るに至っていない。
特に最近では金型加工において金型が熱処理後に加工さ
れる傾向が強く、熱処理後の高硬度スチールを加工する
場合においては、従来のTiとAlを主成分とするスロ
ーアウェイインサートにおいては、切削加工中に皮膜の
剥離が発生し易く、剥離により工具寿命が決定され満足
される工具寿命は得られるに至っていない。
2. Description of the Related Art Japanese Patent Publication No. 4-53642 and Japanese Patent Publication No.
There are many reports confirming the effect of Al addition to the TiN film as seen in each of the publications of -67705. However, in these inventions, the improvement of the oxidation resistance of the coating by the addition of Al and the improvement of the physical properties of the coating were only recognized, and in the coated throw-away insert,
It has not been possible to obtain a sufficiently satisfactory film adhesion.
In particular, in recent years, there is a strong tendency for the die to be processed after heat treatment in die processing, and in the case of processing high hardness steel after heat treatment, cutting processing is required in the conventional throw-away insert mainly composed of Ti and Al. Peeling of the coating easily occurs inside, and the tool life is determined by peeling, and a satisfactory tool life has not yet been obtained.

【0003】[0003]

【発明が解決しようとする課題】本発明者等は、この様
な問題点を解決すべく、ロックウェル硬度40(Cスケ
ール)を越える高硬度スチールの切削加工評価におい
て、皮膜の密着性を改善すべく鋭意研究を重ねた結果、
次のような事実を見出すに至った。
SUMMARY OF THE INVENTION In order to solve such problems, the present inventors have improved the adhesion of a coating in the evaluation of cutting processing of high hardness steel exceeding Rockwell hardness 40 (C scale). As a result of earnest research,
We came to the following facts.

【0004】[0004]

【課題を解決するための手段】本発明に至った第1の知
見は、金型を加工する場合、スローアウェイインサー
ト、エンドミル、ドリルといった種々の工具が用いられ
るわけであるが、それぞれにおいて切削メカニズムの相
違により最適な皮膜設計が異なるべきであることを見出
した点にある。スローアウェイインサートにおいては、
一般的には1刃当たりの送り量が0.1mmを越える場
合が多く、特に高硬度スチール切削において、切削応力
が極めて高く皮膜の剥離が発生し易い。更に、切削温度
が800℃以上に達し、皮膜の高温物性が工具寿命を決
定することが特徴であり、また、刃先が高温になるため
勿論皮膜の耐酸化性も重要な因子となる。従って、高硬
度材のスローアウェイインサートによる切削加工におい
ては、これらの知見を基に皮膜の密着性、高温物性、耐
酸化性を向上せしめることが工具寿命を大幅に改善する
ことになるわけである。
The first finding that has led to the present invention is that various tools such as a throw-away insert, an end mill, and a drill are used when machining a die. It was found that the optimum film design should differ depending on the difference in For throw-away inserts,
In general, the feed amount per blade often exceeds 0.1 mm, and particularly in the cutting of high hardness steel, the cutting stress is extremely high and the film peeling easily occurs. Further, the cutting temperature reaches 800 ° C. or higher, the high temperature physical properties of the coating determine the tool life, and the oxidation resistance of the coating is of course an important factor because the cutting edge becomes hot. Therefore, in cutting processing of throw-away inserts of high hardness materials, improving the adhesion, high temperature physical properties and oxidation resistance of the coating based on these findings will significantly improve the tool life. .

【0005】[0005]

【作用】第2の知見は、第1の知見に対し皮膜のX線回
折における(200)面の配向が、皮膜に密着し、高温
物性、耐酸化性を支配することを見出した点にある。つ
まり、(200)面の配向が(111)面の配向より強
くなるに伴い、皮膜の柱状結晶粒径は大きくなり、室温
における靱性を向上させることが可能であるとの結論を
得た。皮膜の剥離はスローアウェイインサートが被加工
物にぶつかるときの極めて高い衝撃力により、皮膜の内
部破壊に起因し発生する場合が多い。スローアウェイイ
ンサートが被削材に食い付くときは比較的温度が低いた
め、皮膜の室温での靱性を高めることが皮膜の内部破壊
を抑制し、前述の高硬度材料切削に対する必要条件の1
つである皮膜の密着性を向上させることに対して極めて
重要であることを見出した。更に、皮膜を(200)面
に配向させることにより、前述の柱状晶結晶粒径粗大化
により、皮膜中の総粒界面積を減少させることができ
る。
The second finding is that in contrast to the first finding, the orientation of the (200) plane in the X-ray diffraction of the coating adheres to the coating and controls the high temperature physical properties and the oxidation resistance. . That is, it was concluded that as the orientation of the (200) plane becomes stronger than that of the (111) plane, the columnar crystal grain size of the film increases, and the toughness at room temperature can be improved. The peeling of the coating is often caused by the internal fracture of the coating due to the extremely high impact force when the throw-away insert hits the work piece. Since the throw-away insert bites into the work material at a relatively low temperature, increasing the toughness of the coating at room temperature suppresses internal fracture of the coating, which is one of the prerequisites for cutting high hardness materials described above.
It has been found that it is extremely important for improving the adhesion of the coating film. Further, by orienting the film on the (200) plane, the grain size of the columnar crystal grains is increased, so that the total grain boundary area in the film can be reduced.

【0006】本発明者等の研究によれば、皮膜の酸化の
進行は粒界を介して進行することが確認されており、粒
界面積を減少させることが高硬度材切削に対するもう1
つの必要条件である皮膜の耐酸化性向上に対し、極めて
重要であることは言うまでもない。更に、皮膜が(20
0)面に配向した場合、粒界における欠陥が少なくなる
知見を得ており、この欠陥が少ないことが更に皮膜の耐
酸化性を向上せしめているものとも考えられる。また、
柱状結晶粒を粗大化させることが高温において皮膜の塑
性変形の発生を抑制し、結果的に高温硬度を高めるとい
う知見を得た。このことにより、高硬度材切削における
もう1つの必要条件である高温物性を大巾に改善するこ
とが可能である。
According to the research conducted by the inventors of the present invention, it has been confirmed that the oxidation of the coating progresses through grain boundaries, and reducing the grain boundary area is another factor for cutting hard materials.
It goes without saying that it is extremely important for improving the oxidation resistance of the film, which is one of the necessary conditions. Furthermore, the film is (20
It has been found that when the grains are oriented in the (0) plane, the number of defects at the grain boundaries is reduced, and it is considered that the number of these defects is further improving the oxidation resistance of the film. Also,
It has been found that coarsening the columnar crystal grains suppresses the plastic deformation of the coating at high temperature and consequently increases the high temperature hardness. As a result, it is possible to greatly improve high-temperature physical properties, which is another necessary condition for cutting high hardness materials.

【0007】本発明に至った第3の知見は、上述の(2
00)面に配向せしめたTiとAlの窒化物、炭窒化
物、炭化物皮膜と基体との間にTiの窒化物、炭窒化物
を中間層として用いることにより、更に皮膜の密着性を
向上させることが可能なことを見出した点である。一般
にAlを含有する皮膜を物理蒸着法、特にアークイオン
プレーティング法で蒸着する場合、Alの融点が低いた
めにAl成分に富んだ粗大粒子がターゲットから飛散
し、皮膜の面粗さを悪くする傾向にある。基体のコーテ
ィング初期の段階ではこの様な減少を避け緻密な皮膜を
成膜することが密着性向上に対し効果的であり、Alを
含有しないTiを主成分とするその窒化物、炭窒化物か
らなる中間層を設けることが密着性向上に対し好ましい
結果となる。特に(200)面に配向した、TiとAl
を含む皮膜に対しては、同じく(200)面に配向した
中間層を用いることによりTiとAlを含む皮膜が中間
層に対し、エピタキシャル成長する確率が高く、いっそ
う密着性を改善せしめる。
The third finding that led to the present invention is the above (2)
(00) plane oriented Ti and Al nitrides, carbonitrides, and Ti nitrides and carbonitrides used as an intermediate layer between the carbide coating and the substrate to further improve the adhesion of the coating. This is the point that we found that it was possible. In general, when a film containing Al is vapor-deposited by a physical vapor deposition method, particularly an arc ion plating method, coarse particles rich in Al component scatter from the target due to the low melting point of Al, which deteriorates the surface roughness of the film. There is a tendency. At the initial stage of coating of the substrate, it is effective to improve the adhesion by avoiding such a decrease and forming a dense film. From the nitride or carbonitride whose main component is Ti containing no Al, It is preferable to provide the intermediate layer to improve the adhesion. Especially Ti and Al oriented in the (200) plane
For a film containing Ti, by using an intermediate layer which is also oriented in the (200) plane, there is a high probability that the film containing Ti and Al will grow epitaxially with respect to the intermediate layer, and the adhesion can be further improved.

【0008】本発明に至った第4の知見は前述の切削時
に熱の発生を抑制することにより、より一層工具寿命を
向上させることが可能であることを見出した点にある。
TiとAlの複合窒化物、炭窒化物、炭化物は一般に鋼
に対する摩擦係数が0.40〜0.45と高く、切削時
に刃先が高温になり易い、本発明者等の研究によれば、
これらの皮膜に酸素を含有させることにより、摩擦係数
の低減が可能となり、最外層に用いることにより切削熱
の低減による更なる工具寿命の向上を確認することが出
来た。更には、Tiの炭窒化物、炭酸窒化物、Alの酸
化物の順で更に摩擦係数の低減が計れ、これらの皮膜を
最外層に用いることにより、より一層の工具寿命の向上
を認めるに至った。更に、皮膜の表面を機械的にラップ
し、表面粗さを1μm以下とすることにより、更に摩擦
係数の低減が可能であり、工具寿命を向上させることが
可能である。
A fourth finding of the present invention is to find out that it is possible to further improve the tool life by suppressing the generation of heat during the cutting.
The composite nitrides of Ti and Al, carbonitrides, and carbides generally have a high friction coefficient of 0.40 to 0.45 with respect to steel, and the cutting edge is likely to have a high temperature during cutting.
By including oxygen in these coatings, it was possible to reduce the friction coefficient, and by using it in the outermost layer, it was confirmed that the tool life was further improved by reducing the cutting heat. Furthermore, the friction coefficient can be further reduced in the order of Ti carbonitride, carbonitride, and Al oxide. By using these coatings as the outermost layer, it has been confirmed that the tool life is further improved. It was Further, by mechanically wrapping the surface of the coating and setting the surface roughness to 1 μm or less, the friction coefficient can be further reduced and the tool life can be improved.

【0009】本発明に至った第5の知見は、TiとAl
の複合窒化物、炭窒化物、炭化物にZr、Hf、Y、S
i、W、Crのうち1種もしくは2種以上の成分をTi
に対し、0.05at%から60at%の範囲で置き換
えることにより、より一層の耐酸化性の向上を可能にし
た点にある。これらの成分の添加により、結晶粒界の結
果が限定され皮膜の酸化速度を抑制することが可能であ
ると共に切削加工中に皮膜表面に形成される酸化物層が
より緻密な構造となり、酸素の皮膜内部への拡散を抑制
し皮膜の酸化速度を極めて遅くすることが可能である。
これらの理由については更に研究中である。
The fifth finding that led to the present invention is that Ti and Al
Compound nitrides, carbonitrides, and carbides of Zr, Hf, Y, S
One or more of i, W, and Cr are used as Ti
On the other hand, by substituting in the range of 0.05 at% to 60 at%, it is possible to further improve the oxidation resistance. By adding these components, the results of grain boundaries are limited, and it is possible to suppress the oxidation rate of the film, and the oxide layer formed on the film surface during cutting becomes a denser structure, and It is possible to suppress the diffusion into the inside of the film and to make the oxidation rate of the film extremely slow.
Further investigation of these reasons is underway.

【0010】本発明に至った第6の知見は、切削中に発
生する剥離に対する見かけ上の皮膜の密着力(σ1
が、σ2を母材−皮膜界面の密着力、σ3残留圧縮応力と
した時に σ1=σ2−k・σ3(kは定
数) で表されることを見出した点にある。従って、皮膜の残
留応力が高すぎると見かけ上の密着力が低下してしまう
ため、残留応力をある範囲に制御することが皮膜の密着
性を劣化を防ぐわけである。
The sixth finding that has led to the present invention is that the apparent adhesion force (σ 1 ) of the film against peeling that occurs during cutting.
However, when σ 2 is the adhesive force at the base material-film interface and σ 3 residual compressive stress, it is found that σ 1 = σ 2 −k · σ 3 (k is a constant). Therefore, if the residual stress of the film is too high, the apparent adhesion will be reduced. Therefore, controlling the residual stress within a certain range prevents deterioration of the adhesion of the film.

【0011】次に数値限定をした理由を述べる。(20
0)面の回折強度I(200)(111)面の回折強度
をI(111)とした時、I(200)/I(111)
を1以上とした理由は、(111)面の配向が強くなり
本値が1を下回ると柱状晶層の粒径が細かくなり、室温
靱性の劣化、耐酸化性の劣化、高温高度の低下をもたら
すため1以上とした。
Next, the reason for limiting the numerical values will be described. (20
When the diffraction intensity of the (0) plane I (200) (111) plane is I (111), I (200) / I (111)
Is set to 1 or more, the orientation of the (111) plane becomes strong, and when this value is less than 1, the grain size of the columnar crystal layer becomes finer, and deterioration in room temperature toughness, deterioration in oxidation resistance, and decrease in high temperature altitude are caused. It was set to 1 or more to bring it.

【0012】中間層として用いるTiも窒化物、炭窒化
物層の膜厚は、0.05μm未満であると密着性改善に
対し効果がなく、5μmを越えると皮膜全体の耐摩耗性
を損なうため0.05μm以上5μm以下とした。耐酸
化性向上のため添加するY等の成分は、0.05原子%
以下では耐酸化性に対する効果が少なく60原子%を越
えてTiを置き換えると耐摩耗性を劣化させるため0.
05原子%以上60原子%以下とした。
If the thickness of the nitride or carbonitride layer of Ti used as the intermediate layer is less than 0.05 μm, there is no effect on improving the adhesion, and if it exceeds 5 μm, the wear resistance of the entire coating is impaired. It was set to 0.05 μm or more and 5 μm or less. The components such as Y added to improve the oxidation resistance are 0.05 atomic%
Below, the effect on the oxidation resistance is small, and if Ti is replaced in excess of 60 atomic%, the wear resistance is deteriorated.
It was set to be at least 05 atom% and at most 60 atom%.

【0013】残留圧縮応力は、5GPaを越えると密着
性がスローアウェイインサートの使用条件において必要
限を下回り、1GPa以下であると熱クラックが発生し
易くなるため1GPa以上5GPa以下とした。以下、
実施例に基づき本発明を説明する。
When the residual compressive stress exceeds 5 GPa, the adhesiveness is less than the required limit under the use condition of the throw-away insert, and when it is 1 GPa or less, thermal cracking is likely to occur, so that it is set to 1 GPa or more and 5 GPa or less. Less than,
The present invention will be described based on examples.

【0014】[0014]

【実施例】【Example】

実施例1 小型アークイオンプレーティング装置を用い表1に示す
条件において、TiとAlの複合窒化物、炭窒化物を5
μmの厚さになるようコーティングを行った。
Example 1 Using a compact arc ion plating apparatus, under the conditions shown in Table 1, a composite nitride of Ti and Al and a carbonitride were used.
The coating was performed so as to have a thickness of μm.

【0015】[0015]

【表1】 [Table 1]

【0016】得られたインサートを次の条件においてフ
ライス切削した時の剥離発生までの可能切削距離を表1
に併記した。表1に示されたコーティング条件は装置の
大きさ等により、I(200)/I(111)の値と1
対1に対応はしない。また、切削諸元は、被削材SKD
61(HRC45)、切削速度:100m/分、送り:
0.1mm/刃、切り込み量:2.0mm、インサート
形状:SEE42TN(G9)である。表1より、I
(200)/I(111)が1以上である本発明被覆ス
ローアウェイインサートは格段に剥離に対し効果的であ
ることが認められる。
Table 1 shows possible cutting distances until peeling occurs when the obtained insert is milled under the following conditions.
It was also described in. The coating conditions shown in Table 1 are I (200) / I (111) and 1 depending on the size of the apparatus.
It does not correspond to one-to-one. The cutting specifications are for the work material SKD.
61 (HRC45), cutting speed: 100 m / min, feed:
0.1 mm / blade, depth of cut: 2.0 mm, insert shape: SEE42TN (G9). From Table 1, I
It is recognized that the coated throw-away insert of the present invention having (200) / I (111) of 1 or more is extremely effective for peeling.

【0017】実施例2 実施例1で用いた実験装置を用い、表2に示す皮膜構造
となるようにコーティングを行った。膜厚は、5μmに
統一した。実施例1と同一な切削評価を行い、工具寿命
を評価した。その結果を表2に併記する。
Example 2 Using the experimental apparatus used in Example 1, coating was performed so that the film structure shown in Table 2 was obtained. The film thickness was unified to 5 μm. The same cutting evaluation as in Example 1 was performed to evaluate the tool life. The results are also shown in Table 2.

【0018】[0018]

【表2】 [Table 2]

【0019】表2より、1以上のI(200)/I(1
11)値を有する本発明合金に中間層あるいは、最外層
を設けることにより、より一層工具寿命を向上させるこ
とが認められる。また、Al23が最外層として最も効
果的である。本実施例のAl23はTiAl層をコーテ
ィング後プラズマCVDにより0.5μm成膜したもの
である。
From Table 2, one or more I (200) / I (1
It is recognized that by providing the alloy of the present invention having the value 11) with the intermediate layer or the outermost layer, the tool life is further improved. Al 2 O 3 is the most effective as the outermost layer. Al 2 O 3 of the present embodiment is formed by coating a TiAl layer and then forming a film of 0.5 μm by plasma CVD.

【0020】実施例3 実施例1で用いた実験装置を用い表3に示す種々の組成
の(TiAlX)N皮膜を作成した。コーティングされ
た試験片を大気炉中で750℃、30分間保持し、形成
された酸化層の厚みを測定した。その結果も表3に併記
する。
Example 3 (TiAlX) N films having various compositions shown in Table 3 were prepared using the experimental apparatus used in Example 1. The coated test piece was held in an atmospheric furnace at 750 ° C. for 30 minutes, and the thickness of the formed oxide layer was measured. The results are also shown in Table 3.

【0021】[0021]

【表3】 [Table 3]

【0022】表3から明らかなように、Y、Si、W、
Cr、Zr、Hfの添加により皮膜の耐酸化性の改善が
可能である。
As is clear from Table 3, Y, Si, W,
The addition of Cr, Zr and Hf can improve the oxidation resistance of the film.

【0023】[0023]

【発明の効果】本発明を適用することにより、ロックウ
ェル硬度40(Cスケール)を越える高硬度鋼の切削加
工においても十分な皮膜の密着性を保つことが出来、金
型を加工する場合において適用されるスローアウェイイ
ンサートを使用した正面フライス、エンドミル、ドリル
等の様々な工具に適用することが出来る。
EFFECTS OF THE INVENTION By applying the present invention, it is possible to maintain sufficient film adhesion even in the cutting of high hardness steel having a Rockwell hardness of 40 (C scale) and in the case of processing a die. It can be applied to various tools such as face milling cutters, end mills and drills that use the applicable indexable inserts.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 TiとAlの複合窒化物、炭窒化物、炭
化物を被覆したスローアウェイインサートにおいて、被
覆層のX線回折における(111)面の回折強度をI
(111)、(200)面の回折強度をI(200)と
した時にI(200)/I(111)の値が1以上にな
ることを特徴とする表面被覆スローアウェイインサー
ト。
1. In a throwaway insert coated with a composite nitride of Ti and Al, carbonitride, or carbide, the diffraction intensity of the (111) plane in the X-ray diffraction of the coating layer is I.
A surface-coated throw-away insert, wherein the value of I (200) / I (111) is 1 or more when the diffraction intensity of the (111) and (200) planes is I (200).
【請求項2】 請求項1記載の表面被覆スローアウェイ
インサートにおいて、基体とTiとAlの複合窒化物、
炭窒化物、炭化物被覆層の間に、0.05μm以上5.
0μm以下の膜厚を有するTiの窒化物、炭窒化物を中
間層として用いたことを特徴とする表面被覆スローアウ
ェイインサート。
2. The surface-coated throw-away insert according to claim 1, wherein the substrate and a composite nitride of Ti and Al,
0.05 μm or more between the carbonitride and carbide coating layers
A surface coated throw-away insert, characterized by using Ti nitride or carbonitride having a film thickness of 0 μm or less as an intermediate layer.
【請求項3】 請求項1及び2記載の表面被覆スローア
ウェイにインサートおいて、TiとAlの複合窒化物、
炭窒化物、炭化物層の上に、更にTiの炭窒化物、炭酸
窒化物、TiとAlの複合窒酸化物、炭酸窒化物、炭酸
化物、酸化物、Alの酸化物のうち1種の単層もしくは
2種以上の被層を被覆したことを特徴とする表面被覆ス
ローアウェイインサート。
3. A composite nitride of Ti and Al, which is inserted into the surface-coated throwaway according to claim 1 or 2,
On top of the carbonitride and carbide layers, one of Ti carbonitride, carbonitride, Ti-Al composite oxynitride, carbonitride, carbonate, oxide, and Al oxide is used. A surface coated throw-away insert characterized by coating a layer or two or more kinds of coating layers.
【請求項4】 請求項1乃至3記載の表面被覆スローア
ウェイインサートにおいて、Tiの1部をTiに対し
0.05原子%以上60原子%以下の範囲でZr、H
f、Y、Si、W、Crのうち1種もしくは2種以上に
置き換えたことを特徴とする表面被覆スローアウェイイ
ンサート。
4. The surface-coated indexable insert according to claim 1, wherein a part of Ti is contained in the range of 0.05 at% to 60 at% with respect to Ti.
A surface-coated throw-away insert characterized by being replaced with one or more of f, Y, Si, W, and Cr.
【請求項5】 請求項1乃至4記載の表面被覆スローア
ウェイインサートにおいて、TiとAlの複合窒化物、
炭窒化物、炭化物に残留する圧縮応力が、1Gpa以上
5Gpaであることを特徴とする表面被覆スローアウェ
イインサート。
5. The surface coated throw-away insert according to claim 1, wherein a composite nitride of Ti and Al,
A surface-coated throw-away insert characterized in that the compressive stress remaining in carbonitride and carbide is 1 Gpa or more and 5 Gpa.
【請求項6】 請求項1乃至4記載の表面被覆スローア
ウェイインサートにおいて、スローアウェイインサート
のすくい面側の面粗さを1μm以下にしたことを特徴と
する表面被覆スローアウェイインサート。
6. The surface-coated indexable insert according to any one of claims 1 to 4, wherein the surface roughness of the indexable insert on the rake face side is 1 μm or less.
JP13105096A 1996-04-26 1996-04-26 Surface-coated indexable inserts Expired - Lifetime JP3229947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13105096A JP3229947B2 (en) 1996-04-26 1996-04-26 Surface-coated indexable inserts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13105096A JP3229947B2 (en) 1996-04-26 1996-04-26 Surface-coated indexable inserts

Publications (2)

Publication Number Publication Date
JPH09295204A true JPH09295204A (en) 1997-11-18
JP3229947B2 JP3229947B2 (en) 2001-11-19

Family

ID=15048848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13105096A Expired - Lifetime JP3229947B2 (en) 1996-04-26 1996-04-26 Surface-coated indexable inserts

Country Status (1)

Country Link
JP (1) JP3229947B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038653A (en) * 1998-07-21 2000-02-08 Sumitomo Electric Ind Ltd Mold or mold with surface coating
US6824601B2 (en) * 2000-12-28 2004-11-30 Kobe Steel, Ltd. Hard film for cutting tools, cutting tool coated with hard film, process for forming hard film, and target used to form hard film
WO2005053887A1 (en) * 2003-12-05 2005-06-16 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
US7056602B2 (en) 2002-09-04 2006-06-06 Seco Tools Ab Precipitation hardened wear resistant coating
US7083868B2 (en) 2002-09-04 2006-08-01 Seco Tools Ab Composite structured wear resistant coating
US7217466B2 (en) * 2002-03-20 2007-05-15 Joerg Guehring Wear-resistant coating for metal-removing tools, particularly for rotary metal-cutting tools
US7258933B2 (en) 2002-06-25 2007-08-21 Mitsubishi Materials Corporation Coated cutting tool member
JP2007229919A (en) * 2007-04-10 2007-09-13 Oc Oerlikon Balzers Ag Tool with protective layer system
US7368182B2 (en) * 2004-02-12 2008-05-06 Hitachi Tool Engineering, Ltd. Hard coating and its formation method, and hard-coated tool
JP2008150712A (en) * 2008-02-12 2008-07-03 Sumitomo Electric Ind Ltd Mold or mold with surface coating
JP2009101445A (en) * 2007-10-22 2009-05-14 Nachi Fujikoshi Corp Hard film-coated tool
WO2009096476A1 (en) 2008-01-29 2009-08-06 Kyocera Corporation Cutting tool
DE102008019202A1 (en) * 2008-04-17 2009-10-22 Kennametal Inc. Coating method, workpiece or tool and its use
US8034438B2 (en) * 2007-08-24 2011-10-11 Seco Tools Ab Coated cutting tool for general turning in heat resistant super alloys (HRSA)
US8084148B2 (en) * 2007-09-13 2011-12-27 Seco Tools Ab Insert for milling of cast iron
WO2012043459A1 (en) 2010-09-29 2012-04-05 京セラ株式会社 Cutting tool
WO2015178484A1 (en) * 2014-05-23 2015-11-26 株式会社タンガロイ Cemented carbide alloy and coated cemented carbide alloy
WO2020213260A1 (en) 2019-04-17 2020-10-22 住友電工ハードメタル株式会社 Cutting tool
US11007580B2 (en) 2019-04-17 2021-05-18 Sumitomo Electric Hardmetal Corp. Cutting tool
US11179782B2 (en) 2019-04-17 2021-11-23 Sumitomo Electric Hardmetal Corp. Cutting tool
US11203068B2 (en) 2019-04-17 2021-12-21 Sumitomo Electric Hardmetal Corp. Cutting tool

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038653A (en) * 1998-07-21 2000-02-08 Sumitomo Electric Ind Ltd Mold or mold with surface coating
US6824601B2 (en) * 2000-12-28 2004-11-30 Kobe Steel, Ltd. Hard film for cutting tools, cutting tool coated with hard film, process for forming hard film, and target used to form hard film
US6919288B2 (en) 2000-12-28 2005-07-19 Kobe Steel, Ltd. Hard film for cutting tools, cutting tool coated with hard film, process for forming hard film, and target used to form hard film
US7186324B2 (en) 2000-12-28 2007-03-06 Kabushiki Kaisha Kobe Seiko Sho Hard film cutting tools, cutting tool coated with hard film, process for forming hard film and target used to form hard film
US7217466B2 (en) * 2002-03-20 2007-05-15 Joerg Guehring Wear-resistant coating for metal-removing tools, particularly for rotary metal-cutting tools
US7258933B2 (en) 2002-06-25 2007-08-21 Mitsubishi Materials Corporation Coated cutting tool member
US7056602B2 (en) 2002-09-04 2006-06-06 Seco Tools Ab Precipitation hardened wear resistant coating
US7083868B2 (en) 2002-09-04 2006-08-01 Seco Tools Ab Composite structured wear resistant coating
JP2005271190A (en) * 2003-12-05 2005-10-06 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
EP1710326A4 (en) * 2003-12-05 2008-07-23 Sumitomo Elec Hardmetal Corp CUTTING TOOL WITH COATED SURFACE
US7410707B2 (en) 2003-12-05 2008-08-12 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
WO2005053887A1 (en) * 2003-12-05 2005-06-16 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
US7368182B2 (en) * 2004-02-12 2008-05-06 Hitachi Tool Engineering, Ltd. Hard coating and its formation method, and hard-coated tool
JP2007229919A (en) * 2007-04-10 2007-09-13 Oc Oerlikon Balzers Ag Tool with protective layer system
US8110075B2 (en) 2007-08-24 2012-02-07 Seco Tools Ab Coated cutting tool for general turning in heat resistant super alloys (HRSA)
US8034438B2 (en) * 2007-08-24 2011-10-11 Seco Tools Ab Coated cutting tool for general turning in heat resistant super alloys (HRSA)
US8084148B2 (en) * 2007-09-13 2011-12-27 Seco Tools Ab Insert for milling of cast iron
US8142621B2 (en) 2007-09-13 2012-03-27 Seco Tools Ab Insert for milling of cast iron
JP2009101445A (en) * 2007-10-22 2009-05-14 Nachi Fujikoshi Corp Hard film-coated tool
WO2009096476A1 (en) 2008-01-29 2009-08-06 Kyocera Corporation Cutting tool
US8415033B2 (en) 2008-01-29 2013-04-09 Kyocera Corporation Cutting tool
JP2008150712A (en) * 2008-02-12 2008-07-03 Sumitomo Electric Ind Ltd Mold or mold with surface coating
DE102008019202A1 (en) * 2008-04-17 2009-10-22 Kennametal Inc. Coating method, workpiece or tool and its use
WO2012043459A1 (en) 2010-09-29 2012-04-05 京セラ株式会社 Cutting tool
KR20130115225A (en) 2010-09-29 2013-10-21 쿄세라 코포레이션 Cutting tool
US8945251B2 (en) 2010-09-29 2015-02-03 Kyocera Corporation Cutting tool
WO2015178484A1 (en) * 2014-05-23 2015-11-26 株式会社タンガロイ Cemented carbide alloy and coated cemented carbide alloy
JPWO2015178484A1 (en) * 2014-05-23 2017-04-20 株式会社タンガロイ Cemented carbide and coated cemented carbide
WO2020213260A1 (en) 2019-04-17 2020-10-22 住友電工ハードメタル株式会社 Cutting tool
US11007580B2 (en) 2019-04-17 2021-05-18 Sumitomo Electric Hardmetal Corp. Cutting tool
US11179782B2 (en) 2019-04-17 2021-11-23 Sumitomo Electric Hardmetal Corp. Cutting tool
US11203068B2 (en) 2019-04-17 2021-12-21 Sumitomo Electric Hardmetal Corp. Cutting tool
US11919092B2 (en) 2019-04-17 2024-03-05 Sumitomo Electric Hardmetal Corp. Cutting tool

Also Published As

Publication number Publication date
JP3229947B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
JP3229947B2 (en) Surface-coated indexable inserts
JP3031907B2 (en) Multilayer coating member
JP3598074B2 (en) Hard coating tool
JP4680932B2 (en) Surface coated cutting tool
EP3346026B1 (en) Coated cutting tool
JP3382781B2 (en) Multi-layer coated hard tool
JPH09323204A (en) Multilayer coated hard tool
JP3003986B2 (en) Surface-coated insert made of cemented carbide
EP3440232A1 (en) Coated cutting tool
EP3332899B1 (en) Coated cutting tool
JP2006075976A (en) Surface-coated cermet cutting tool with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting work
JP3248898B2 (en) Hard coating tool
JP3392115B2 (en) Hard coating tool
JP3001849B2 (en) Coated hard tool
JP3404012B2 (en) Hard coating tool
JP3445899B2 (en) Surface coated end mill
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4676780B2 (en) Hard coating, laminated hard coating and method for producing the same
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2020151774A (en) Surface coated cutting tool superior in thermal crack resistance and chipping resistance
JP3586216B2 (en) Hard coating tool
JP3705381B2 (en) Multi-layer hard tool
JP2000309864A (en) Multilayer film coated member
JP3705382B2 (en) Multi-layer hard tool
JP2004130514A (en) Hard film coated tool and its manufacturing method