[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09282935A - Silver-plated copper powder - Google Patents

Silver-plated copper powder

Info

Publication number
JPH09282935A
JPH09282935A JP8645496A JP8645496A JPH09282935A JP H09282935 A JPH09282935 A JP H09282935A JP 8645496 A JP8645496 A JP 8645496A JP 8645496 A JP8645496 A JP 8645496A JP H09282935 A JPH09282935 A JP H09282935A
Authority
JP
Japan
Prior art keywords
silver
copper powder
weight
conductive paste
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8645496A
Other languages
Japanese (ja)
Inventor
Keizo Hirai
圭三 平井
Hiroshi Wada
和田  弘
Akihiro Sasaki
顕浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP8645496A priority Critical patent/JPH09282935A/en
Publication of JPH09282935A publication Critical patent/JPH09282935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide inexpensive conductive paste excellent in conductivity and migration resistance by setting a ratio of silver forming a porous coating film to copper powder within a predetermined range. SOLUTION: In silver-plated copper powder in which a porous silver coating film is formed on copper powder, a ratio of the silver forming the porous coating film to the copper powder is 5-30wt%. In this case, a particle size of the silver-plated copper powder is increased by 5-100% and a specific surface area is increased by 50-300%, respectively, with respect to the copper powder before plating. An average particle diameter of the copper powder ranges within 1-50μm, 1-30μm or 1-10μm. Consequently, a using quantity of expensive silver powder can be reduced. Furthermore, it is possible to provide conductive paste excellent in conductivity and migration resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気回路形成用の
導電性ペーストに適した銀めっき銅粉に関する。
TECHNICAL FIELD The present invention relates to a silver-plated copper powder suitable as a conductive paste for forming an electric circuit.

【0002】[0002]

【従来の技術】従来、配線板、電子部品等の配線導体を
形成する方法として、特開平6−325617号公報、
特開平6−333417号公報等に示されるように金、
銀、パラジウム、銅、アルミニウム等の導電性金属粉末
を導電粉体とし、これに樹脂、ガラスフリット等のバイ
ンダ及び溶剤を加えてペースト状にした導電性ペースト
を塗布又は印刷して形成する方法が一般的に知られてい
る。各種導電性金属粉末のうち、金は極めて高価である
ため、高い導電性が要求される分野では銀が、それ以外
の分野では銅が導電粉体として用いられることが多い。
2. Description of the Related Art Conventionally, as a method of forming a wiring conductor such as a wiring board or an electronic component, Japanese Patent Laid-Open Publication No. 6-325617
As shown in JP-A-6-333417, gold,
There is a method in which a conductive metal powder such as silver, palladium, copper, or aluminum is used as a conductive powder, and a conductive paste made into a paste by adding a binder and a solvent such as resin or glass frit to this is applied or printed. Is commonly known. Since gold is extremely expensive among various conductive metal powders, silver is often used as a conductive powder in fields where high conductivity is required and copper is used as a conductive powder in other fields.

【0003】しかしながら、銀は金やパラジウムについ
で高価であり、また水分の存在下で直流電圧が印加され
ると、電極や配線導体にマイグレーションと称する銀の
電析を生じ、電極間又は配線間が短絡するという重大な
問題点が生じる。
However, silver is expensive next to gold and palladium, and when a direct current voltage is applied in the presence of moisture, silver electrodeposition called migration occurs on electrodes or wiring conductors, and the electrodes or the wirings are electrically connected. The serious problem of short circuiting occurs.

【0004】一方、銅は安価であり、比較的マイグレー
ションを生じにくいが、導電性ペーストを加熱する際、
空気及びバインダー中の酸素により銅粒子表面に酸化膜
を形成して導電性を悪化させるという問題点がある。こ
のため、導体の表面に防湿塗料を塗布したり、導電ペー
ストに腐食、酸化防止剤を添加するなどの方策が検討さ
れているが、十分な効果が得られるものではなかった。
On the other hand, copper is inexpensive and relatively resistant to migration, but when heating the conductive paste,
There is a problem that an oxide film is formed on the surface of the copper particles by air and oxygen in the binder to deteriorate the conductivity. For this reason, measures such as applying a moisture-proof coating to the surface of the conductor, corroding the conductive paste, and adding an antioxidant have been investigated, but sufficient effects have not been obtained.

【0005】そこで、銀めっき銅粉を導電性ペースト用
導電粉体として用いることが特開昭56−8892号公
報で提案されているが、銀めっき銅粉を導電粉体の主成
分とする導電性ペーストはほとんど実用化されていな
い。
Therefore, Japanese Patent Laid-Open No. 56-8892 proposes to use silver-plated copper powder as a conductive powder for a conductive paste. Sex paste has hardly been put to practical use.

【0006】微細粉体に銀をめっきする方法としては無
電解めっき法が用いられるが、無電解めっき法には、め
っきする金属イオンのめっき液中への溶出を伴う置換め
っき法と、めっき液中の金属塩がめっき液中の還元剤か
ら電子を受け取って金属被膜を形成する化学還元めっき
法がある。しかし、置換めっき法は、めっきする金属の
表面が完全にめっき被膜で被覆されてしまうと反応が停
止して厚膜のものが形成できなくなり、また膜質が劣る
ため、産業上はほとんど実用化されておらず、一般的に
は化学還元めっき法が無電解めっきと呼ばれている。
An electroless plating method is used as a method for plating fine powder with silver. The electroless plating method includes a displacement plating method involving elution of metal ions to be plated into a plating solution, and a plating solution. There is a chemical reduction plating method in which a metal salt therein receives electrons from a reducing agent in a plating solution to form a metal film. However, when the surface of the metal to be plated is completely covered with the plating film, the displacement plating method cannot be used to form a thick film, and the film quality is poor, so it is practically put to practical use in industry. However, the chemical reduction plating method is generally called electroless plating.

【0007】一方化学還元めっき法においても、可溶性
の還元剤、pH調整剤、めっき液の安定化剤等を必須材
料とする、いわゆるめっき液の調整と制御が複雑であ
り、数ミクロン又はサブミクロンの微細粉に均一にめっ
き被膜を接着性よく形成することが困難である。比表面
積が小さい球形の銀めっき銅粉を多量に配合した導電性
ペーストの熱処理物は高抵抗になるなどの問題点があ
る。
On the other hand, also in the chemical reduction plating method, the adjustment and control of the so-called plating solution, in which a soluble reducing agent, a pH adjusting agent, a stabilizing agent of the plating solution and the like are essential materials, are complicated, and are several microns or submicrons. It is difficult to uniformly form a plating film on the fine powder with good adhesion. The heat-treated conductive paste containing a large amount of spherical silver-plated copper powder having a small specific surface area has a problem of high resistance.

【0008】[0008]

【発明が解決しようとする課題】請求項1記載の発明
は、安価にそして導電性及び耐マイグレーション性に優
れた導電性ペーストを得るための銀めっき銅粉を提供す
るものである。請求項2記載の発明は、請求項1記載の
発明の効果に加えて、さらに導電性に優れた導電性ペー
ストを得るための銀めっき銅粉を提供するものである。
SUMMARY OF THE INVENTION The invention according to claim 1 provides a silver-plated copper powder for obtaining a conductive paste at low cost and having excellent conductivity and migration resistance. In addition to the effect of the invention described in claim 1, the invention described in claim 2 provides a silver-plated copper powder for obtaining a conductive paste having further excellent conductivity.

【0009】[0009]

【課題を解決するための手段】本発明は、銅粉の表面
に、ポーラスな銀の被膜を形成してなる銀めっき銅粉に
関する。また、本発明は、請求項1記載の発明の構成
に、ポーラスな被膜を形成している銀の割合が銅粉に対
して5〜30重量%である銀めっき銅粉に関する。
The present invention relates to a silver-plated copper powder obtained by forming a porous silver coating on the surface of copper powder. Further, the present invention relates to the silver-plated copper powder according to the first aspect of the invention, wherein the ratio of silver forming the porous film is 5 to 30% by weight based on the copper powder.

【0010】[0010]

【発明の実施の形態】銀の被覆量は、銅粉に対して5〜
30重量%の範囲が好ましく、10〜25重量%の範囲
であることがより好ましく、15〜20重量%の範囲で
あることがさらに好ましい。5重量%未満であると露出
している銅表面が多いため銀をめっきする効果がほとん
どなく、一方30重量%を超えると粉体同士の凝集が極
めて多くなるため導電性や印刷性が悪くなると共に、安
価に製造することが困難となる傾向がある。
BEST MODE FOR CARRYING OUT THE INVENTION The coating amount of silver is 5 to copper powder.
The range of 30 wt% is preferable, the range of 10 to 25 wt% is more preferable, and the range of 15 to 20 wt% is further preferable. If it is less than 5% by weight, there is much exposed copper surface, so there is little effect of silver plating. On the other hand, if it exceeds 30% by weight, the agglomeration of powder particles becomes extremely large, resulting in poor conductivity and printability. At the same time, it tends to be difficult to manufacture at low cost.

【0011】銀めっき銅粉の粒径は、めっき前の銅粉に
対し、粒径が5〜100%大きく、かつ比表面積が50
〜300%大きければ、ポーラスな銀の被膜を形成する
のに好ましい。
The particle size of the silver-plated copper powder is 5 to 100% larger than that of the copper powder before plating, and the specific surface area is 50.
A size of ˜300% is preferable for forming a porous silver film.

【0012】本発明で用いる銅粉の平均粒径は1〜50
μmの範囲が好ましく、1〜30μmの範囲がより好ま
しく、1〜10μmの範囲であることがさらに好まし
い。1μm未満であると粉砕するのに時間を要するため
粉体価格が上がり、まためっき後の沈殿やろ過に手間が
かかる傾向がある。一方50μmを超えると抵抗と印刷
性が著しく悪化する傾向がある。銅粉の形状については
特に制限はないが、銅表面が酸化されておらず、かつ油
脂等の付着がないものを用いることが好ましい。
The average particle size of the copper powder used in the present invention is 1 to 50.
The range of μm is preferable, the range of 1 to 30 μm is more preferable, and the range of 1 to 10 μm is further preferable. If it is less than 1 μm, it takes a long time to pulverize the powder, so that the powder price increases, and precipitation or filtration after plating tends to be troublesome. On the other hand, if it exceeds 50 μm, the resistance and printability tend to be significantly deteriorated. The shape of the copper powder is not particularly limited, but it is preferable to use a copper powder whose copper surface is not oxidized and which is free of oils and fats.

【0013】銀めっきは、置換めっき法で行なうこと
が、みかけ密度が3〜9.5g/cm3のポーラスな銀の被
膜を多量にめっきすることができるので好ましい。置換
めっき法は、例えば所定量の銀を含むめっき液を一気に
投入するなどの方法で、高速度でめっきを調整して行う
ことが好ましい。このような方法でめっきすることによ
り、みかけ密度が3〜9.5g/cm3のポーラスな銀の被
膜を多量にめっきすることができる。
The silver plating is preferably performed by a displacement plating method because a large amount of a porous silver film having an apparent density of 3 to 9.5 g / cm 3 can be plated. In the displacement plating method, it is preferable to adjust the plating at a high speed by, for example, pouring a plating solution containing a predetermined amount of silver all at once. By plating by such a method, a large amount of porous silver film having an apparent density of 3 to 9.5 g / cm 3 can be plated.

【0014】なお銀はみかけ密度が3〜9.5g/cm3
範囲が好ましく、4〜8g/cm3の範囲がより好ましく、
5〜7g/cm3の範囲であることがさらに好ましい。みか
け密度が3g/cm3未満であると導電性が悪くなる傾向が
あり、一方9.5g/cm3を超えるとポーラスな銀の被膜
を形成することができず、導電性及び耐マイグレーショ
ン性を改善することができない傾向がある。
[0014] Note that silver has an apparent density preferably in the range of 3~9.5g / cm 3, more preferably in the range of 4~8g / cm 3,
More preferably, it is in the range of 5 to 7 g / cm 3 . If the apparent density is less than 3 g / cm 3 , the conductivity tends to deteriorate, whereas if it exceeds 9.5 g / cm 3 , a porous silver coating cannot be formed, and the conductivity and migration resistance are reduced. It tends to be impossible to improve.

【0015】本発明において銀めっき銅粉の銀のみかけ
密度ρ(g/cm3)は下記に示す式から求められるが、こ
こで銀めっき銅粉の銅の部分の半径をr′(cm)、銀め
っき銅粉の半径をR(cm)、めっき前の基材銅粉の半径
をr(cm)及び銀めっき量をC(重量%)とする。な
お、上記におけるCは1gの銀めっき銅粉を硝酸に溶解
し、化学定量分析又は原子吸光分析により求め、また銀
めっき銅粉の半径をR及びめっき前の基材銅粉の半径r
は、SEM写真から50個以上選び、粒子1個毎の粒径
を測定し、その平均値を算出することにより求める。
In the present invention, the apparent density ρ (g / cm 3 ) of silver of the silver-plated copper powder is obtained from the following formula, where the radius of the copper portion of the silver-plated copper powder is r ′ (cm). The radius of the silver-plated copper powder is R (cm), the radius of the base copper powder before plating is r (cm), and the silver plating amount is C (% by weight). In addition, C in the above is obtained by dissolving 1 g of silver-plated copper powder in nitric acid and performing chemical quantitative analysis or atomic absorption analysis, and the radius of the silver-plated copper powder is R and the radius r of the base copper powder before plating is r.
Is determined by selecting 50 or more from the SEM photograph, measuring the particle size of each particle, and calculating the average value thereof.

【0016】めっき量がC重量%の場合、When the plating amount is C% by weight,

【数1】 また溶出した銅のモル数とめっきされた銀のモル数が等
しいことから、
[Equation 1] Also, since the number of moles of eluted copper is equal to the number of moles of plated silver,

【数2】 数1及び数2の式にC、r及びRを代入することにより
r′及びρが求められる。
[Equation 2] By substituting C, r and R into the equations of the equations 1 and 2, r ′ and ρ can be obtained.

【0017】導電性ペーストは、上記の銀めっき銅粉の
他にエポキシ樹脂、フェノール樹脂、不飽和ポリエステ
ル樹脂、ヘキサメチレンテトラミン等の結合剤、ブチル
セロソルブ、エチレンカルビトール、カルビトールアセ
テート等の溶剤及び必要に応じてフレーク状銀粉、界面
活性剤、銅の酸化防止剤等を添加して均一に混合して得
られる。結合剤及び溶剤の含有量は導電性ペーストに対
して結合剤が10〜30重量%及び溶剤が10〜30重
量%の範囲であることが好ましい。また銀めっき銅粉の
含有量は導電性ペーストに対して導体の抵抗と経済性か
ら40〜80重量%の範囲であることが好ましい。
In addition to the above silver-plated copper powder, the conductive paste is a binder such as epoxy resin, phenol resin, unsaturated polyester resin, hexamethylenetetramine, butyl cellosolve, ethylene carbitol, carbitol acetate, etc. and necessary. Depending on the requirement, flaky silver powder, a surfactant, a copper antioxidant, etc. are added and uniformly mixed. The content of the binder and the solvent is preferably 10 to 30% by weight of the binder and 10 to 30% by weight of the solvent with respect to the conductive paste. Further, the content of the silver-plated copper powder is preferably in the range of 40 to 80% by weight from the viewpoint of the resistance and economy of the conductor with respect to the conductive paste.

【0018】[0018]

【実施例】以下本発明の実施例を説明する。 実施例1 平均粒径が5.5μm、BET法による比表面積が0.
2m2/gの銅粉(日本アトマイズ加工(株)製)をめっき浴
中に入れ、水で撹拌洗浄した後、洗浄した水を新たな水
と交換し、銅粉を沈殿が生じないように十分撹拌しなが
ら、投入した銀が全て置換めっきされた場合に銅粉に対
して20重量%の銀がめっきされる量のめっき液(Ag
CN20g及びNaCN40gを水1リットルに溶解)
を一気に投入した。30分後、液中に遊離銀イオンが検
出されなくなった時点で撹拌を停止し、デカンテーショ
ンにより廃液を除去し、さらに洗浄、乾燥して銀めっき
銅粉を得た。得られた銀めっき銅粉の銀の被膜のみかけ
密度は3g/cm3、また銀含有量は銅粉に対して19重量
%、平均粒径は6.5μm及び比表面積は0.6m2/gで
あった。上記銀めっき銅粉を50重量部、平均粒径が
8.5μmのフレーク状銀粉(徳力化学研究所製、商品
名TCG−1)50重量部、ノボラック型フェノール樹
脂(群栄化学工業(株)製、商品名PS−2607)15
重量部及びブチルセロソルブ15重量部を加えて均一に
混合して導電性ペーストを得た。
Embodiments of the present invention will be described below. Example 1 The average particle size is 5.5 μm, and the specific surface area according to the BET method is 0.
Put 2m 2 / g of copper powder (Nippon Atomize Co., Ltd.) in the plating bath, wash with stirring with water, and then replace the washed water with fresh water to prevent the copper powder from precipitating. With sufficient stirring, when the added silver is all displacement plated, 20% by weight of silver is plated with respect to the copper powder.
20 g of CN and 40 g of NaCN are dissolved in 1 liter of water)
Was thrown in at a stretch. After 30 minutes, stirring was stopped when free silver ions were no longer detected in the liquid, the waste liquid was removed by decantation, and the product was further washed and dried to obtain a silver-plated copper powder. The apparent density of the silver coating of the obtained silver-plated copper powder was 3 g / cm 3 , the silver content was 19% by weight with respect to the copper powder, the average particle size was 6.5 μm, and the specific surface area was 0.6 m 2 / It was g. 50 parts by weight of the above silver-plated copper powder, 50 parts by weight of flake-shaped silver powder having an average particle size of 8.5 μm (trade name TCG-1 manufactured by Tokuriki Kagaku Kenkyusho), novolac type phenol resin (Gunei Chemical Industry Co., Ltd.) Made, product name PS-2607) 15
Parts by weight and 15 parts by weight of butyl cellosolve were added and uniformly mixed to obtain a conductive paste.

【0019】ついで導電性ペーストを厚さが1.6mmの
紙フェノール積層板上に200メッシュのスクリーンを
通して幅が0.5mm及び長さが100mmのテストパター
ンに印刷し、大気中で150℃で45分間加熱処理し
た。得られたペースト硬化物の比抵抗は95μΩcmであ
った。一方上記とは別に、導電性ペーストをスライドガ
ラス上に幅が2mm及び長さが20mmの配線導体が互いに
3mm間隔となるように6本印刷し、上記と同様の方法で
加熱処理して電極を得た。ついで電極間にイオン交換水
0.05ccを滴下して10Vの直流電圧を印加し、経過
時間と漏洩電流を測定することによって耐マイグレーシ
ョン性を評価した。その結果、200μAの漏洩電流が
流れるまでに要した時間は30分であった。
Then, the conductive paste was printed on a 1.6 mm-thick paper phenol laminate through a 200-mesh screen to form a test pattern having a width of 0.5 mm and a length of 100 mm. Heat treatment was performed for a minute. The specific resistance of the obtained paste cured product was 95 μΩcm. On the other hand, separately from the above, 6 pieces of the conductive paste are printed on the slide glass so that the wiring conductors having a width of 2 mm and a length of 20 mm are spaced from each other by 3 mm, and the electrodes are heat-treated in the same manner as above. Obtained. Next, 0.05 cc of ion-exchanged water was dropped between the electrodes, a direct current voltage of 10 V was applied, and the elapsed time and leakage current were measured to evaluate migration resistance. As a result, the time required for the leakage current of 200 μA to flow was 30 minutes.

【0020】実施例2 平均粒径が45μm、BET法による比表面積が0.0
7m2/gの銅粉(日本アトマイズ加工(株)製)を用い、銀
めっき量(理論値)を銅粉に対して5重量%とする以外
は実施例1と同様の工程を経て銀の被膜のみかけ密度が
4.5g/cm3、また銀含有量が銅粉に対して5重量%
(実測値)、平均粒径が50μm及び比表面積が0.1
1m2/gの銀めっき銅粉を得た。上記銀めっき銅粉を50
重量部、平均粒径が8.5μmのフレーク状銀粉(徳力
化学研究所製、商品名TCG−1)50重量部、ノボラ
ック型フェノール樹脂(群栄化学工業(株)製、商品名P
S−2607)12重量部及びブチルセロソルブ10重
量部を加えて均一に混合して導電性ペーストを得た。
Example 2 The average particle size is 45 μm, and the specific surface area according to the BET method is 0.0.
Using 7 m 2 / g of copper powder (manufactured by Japan Atomized Co., Ltd.), the silver plating amount (theoretical value) was set to 5% by weight with respect to the copper powder, and the same steps as in Example 1 were followed to obtain silver. The apparent density of the coating is 4.5g / cm 3 , and the silver content is 5% by weight with respect to the copper powder.
(Measured value), average particle size is 50 μm, and specific surface area is 0.1
1 m 2 / g of silver-plated copper powder was obtained. 50 of the above silver-plated copper powder
50 parts by weight of flake-shaped silver powder having an average particle size of 8.5 μm (manufactured by Tokuriki Kagaku Kenkyusho, trade name TCG-1), novolac type phenol resin (manufactured by Gunei Chemical Industry Co., Ltd., trade name P)
S-2607) 12 parts by weight and butyl cellosolve 10 parts by weight were added and uniformly mixed to obtain a conductive paste.

【0021】ついで該導電性ペーストを実施例1で用い
た厚さが1.6mmの紙フェノール積層板上に150メッ
シュのスクリーンを通して幅が2mm及び長さが50mmの
テストパターンに印刷し、大気中で150℃で45分間
加熱処理した。得られたペースト硬化物の比抵抗は12
0μΩcmであった。また、導電性ペーストをスライドガ
ラス上に実施例1と同様の方法で電極を形成し、耐マイ
グレーション性を評価した。その結果、200μAの漏
洩電流が流れるまでに要した時間は15分であった。
Then, the conductive paste was printed on a 1.6 mm-thick paper phenol laminate used in Example 1 through a 150-mesh screen to form a test pattern having a width of 2 mm and a length of 50 mm, which was then exposed to the atmosphere. At 150 ° C. for 45 minutes. The specific resistance of the obtained paste cured product is 12
It was 0 μΩcm. Further, an electrode was formed on the slide glass with the conductive paste in the same manner as in Example 1, and the migration resistance was evaluated. As a result, the time required for the leakage current of 200 μA to flow was 15 minutes.

【0022】実施例3 平均粒径が5.5μm、BET法による比表面積が0.
2m2/gの銅粉(日本アトマイズ加工(株)製)を用い、め
っき量(理論値)を銅粉に対して30重量%とする以外
は実施例1と同様の工程を経て、銀の被膜のみかけ密度
が5g/cm3、また銀含有量が銅粉に対して28重量%
(実測値)、平均粒径が9.5μm及び比表面積が0.
9m2/gの銀めっき銅粉を得た。上記銀めっき銅粉を50
重量部、平均粒径が8.5μmのフレーク状銀粉(徳力
化学研究所製、商品名TCG−1)50重量部、ノボラ
ック型フェノール樹脂(群栄化学工業(株)製、商品名P
S−2607)12重量部及びブチルセロソルブ10重
量部を加えて均一に混合して導電性ペーストを得た。
Example 3 The average particle size was 5.5 μm, and the specific surface area according to the BET method was 0.
Using 2 m 2 / g of copper powder (manufactured by Nippon Atomize Co., Ltd.), the plating amount (theoretical value) was set to 30% by weight with respect to the copper powder, and the same process as in Example 1 was followed to obtain silver The apparent density of the coating is 5g / cm 3 , and the silver content is 28% by weight based on the copper powder.
(Actually measured value), the average particle size is 9.5 μm, and the specific surface area is 0.
9 m 2 / g of silver-plated copper powder was obtained. 50 of the above silver-plated copper powder
50 parts by weight of flake-shaped silver powder having an average particle size of 8.5 μm (manufactured by Tokuriki Kagaku Kenkyusho, trade name TCG-1), novolac type phenol resin (manufactured by Gunei Chemical Industry Co., Ltd., trade name P)
S-2607) 12 parts by weight and butyl cellosolve 10 parts by weight were added and uniformly mixed to obtain a conductive paste.

【0023】ついで該導電性ペーストを実施例1で用い
た厚さが1.6mmの紙フェノール積層板上に200メッ
シュのスクリーンを通して幅が0.5mm及び長さが10
0mmのテストパターンに印刷し、大気中で150℃で4
5分間加熱処理した。得られたペースト硬化物の比抵抗
は85μΩcmであった。また、導電性ペーストをスライ
ドガラス上に実施例1と同様の方法で電極を形成し、耐
マイグレーション性を評価した。その結果、200μA
の漏洩電流が流れるまでに要した時間は20分であっ
た。
Then, the conductive paste was passed through a screen of 200 mesh on the paper phenol laminate having a thickness of 1.6 mm used in Example 1 and having a width of 0.5 mm and a length of 10 mm.
Printed on a 0mm test pattern and 4 at 150 ℃ in air.
Heat treatment was performed for 5 minutes. The specific resistance of the obtained paste cured product was 85 μΩcm. Further, an electrode was formed on the slide glass with the conductive paste in the same manner as in Example 1, and the migration resistance was evaluated. As a result, 200 μA
It took 20 minutes for the leakage current to flow.

【0024】実施例4 平均粒径が3.5μm、BET法による比表面積が0.
3m2/gの銅粉(日本アトマイズ加工(株)製)をめっき浴
中に入れ、水で撹拌洗浄した後、洗浄した水を新たな水
と交換し、銅粉を沈殿が生じないように十分撹拌しなが
ら、投入した銀が全て置換めっきされた場合に銅粉に対
して15重量%の銀がめっきされる量のめっき液(KA
g(CN)220g及びNaCN20gを水1リットル
に溶解)を30分かけて投入した。30分後、液中に遊
離銀イオンが検出されなくなった時点で撹拌を停止し、
デカンテーションにより廃液を除去し、さらに洗浄、乾
燥して銀めっき銅粉を得た。得られた銀めっき銅粉の銀
の被膜のみかけ密度は9.5g/cm3、また銀含有量は銅
粉に対して15重量%、平均粒径は5.5μm及び比表
面積は0.9m2/gであった。上記銀めっき銅粉を50重
量部、平均粒径が8.5μmのフレーク状銀粉(徳力化
学研究所製、商品名TCG−1)50重量部、ノボラッ
ク型フェノール樹脂(群栄化学工業(株)製、商品名PS
−2607)12重量部及びブチルセロソルブ10重量
部を加えて均一に混合して導電性ペーストを得た。
Example 4 The average particle size is 3.5 μm, and the specific surface area by the BET method is 0.
Put 3m 2 / g of copper powder (Nippon Atomize Co., Ltd.) into the plating bath, wash with stirring with water, and then replace the washed water with fresh water to prevent precipitation of copper powder. With sufficient stirring, when the added silver is all displacement plated, 15% by weight of silver is plated with respect to the copper powder.
20 g of g (CN) 2 and 20 g of NaCN were dissolved in 1 liter of water) were added over 30 minutes. After 30 minutes, stirring is stopped when free silver ions are no longer detected in the solution,
The waste liquid was removed by decantation, further washed and dried to obtain silver-plated copper powder. The apparent density of the silver coating of the obtained silver-plated copper powder was 9.5 g / cm 3 , the silver content was 15% by weight relative to the copper powder, the average particle size was 5.5 μm, and the specific surface area was 0.9 m. It was 2 / g. 50 parts by weight of the above silver-plated copper powder, 50 parts by weight of flake-shaped silver powder having an average particle size of 8.5 μm (trade name TCG-1 manufactured by Tokuriki Kagaku Kenkyusho), novolac type phenol resin (Gunei Chemical Industry Co., Ltd.) Made, product name PS
-2607) 12 parts by weight and butyl cellosolve 10 parts by weight were added and uniformly mixed to obtain a conductive paste.

【0025】ついで該導電性ペーストを厚さが1.6mm
の紙フェノール積層板上に200メッシュのスクリーン
を通して幅が0.5mm及び長さが100mmのテストパタ
ーンに印刷し、大気中で150℃で45分間加熱処理し
た。得られたペースト硬化物の比抵抗は85μΩcmであ
った。また、導電性ペーストをスライドガラス上に実施
例1と同様の方法で電極を形成し、耐マイグレーション
性を評価した。その結果、200μAの漏洩電流が流れ
るまでに要した時間は35分であった。
Then, the conductive paste is applied to a thickness of 1.6 mm.
A test pattern having a width of 0.5 mm and a length of 100 mm was printed on a paper-phenolic laminated sheet of No. 3 through a 200-mesh screen and heat-treated at 150 ° C. for 45 minutes in the atmosphere. The specific resistance of the obtained paste cured product was 85 μΩcm. Further, an electrode was formed on the slide glass with the conductive paste in the same manner as in Example 1, and the migration resistance was evaluated. As a result, the time required for the leakage current of 200 μA to flow was 35 minutes.

【0026】比較例1 平均粒径が8.5μmのフレーク状銀粉(徳力化学研究
所製、商品名TCG−1)100重量部に、ノボラック
型フェノール樹脂(群栄化学工業(株)製、商品名PS−
2607)12重量部及びブチルセロソルブ10重量部
を加えて均一に混合して導電性ペーストを得た。ついで
該導電性ペーストを厚さが1.6mmの紙フェノール積層
板上に200メッシュのスクリーンを通して幅が0.5
mm及び長さが100mmのテストパターンに印刷し、大気
中150℃で45分間加熱処理した。得られたペースト
硬化物の比抵抗は85μΩcmであった。また、導電性ペ
ーストをスライドガラス上に実施例1と同様の方法で電
極を形成し、耐マイグレーション性を評価した。その結
果、200μAの漏洩電流が流れるまでに要した時間は
1分と極めて短かった。
Comparative Example 1 100 parts by weight of flake-shaped silver powder having an average particle size of 8.5 μm (manufactured by Tokuriki Kagaku Kenkyusho, trade name TCG-1) was added to a novolac type phenol resin (manufactured by Gunei Chemical Industry Co., Ltd. Name PS-
2607) 12 parts by weight and butyl cellosolve 10 parts by weight were added and uniformly mixed to obtain a conductive paste. Then, the conductive paste was passed through a 200-mesh screen to a width of 0.5 on a paper-phenolic laminate having a thickness of 1.6 mm.
A test pattern having a size of 100 mm and a length of 100 mm was printed, and heat-treated in air at 150 ° C. for 45 minutes. The specific resistance of the obtained paste cured product was 85 μΩcm. Further, an electrode was formed on the slide glass with the conductive paste in the same manner as in Example 1, and the migration resistance was evaluated. As a result, the time required for the leakage current of 200 μA to flow was as short as 1 minute.

【0027】比較例2 平均粒径が5.5μm、BET法による比表面積が0.
2m2/gの銅粉(日本アトマイズ加工(株)製)をめっき浴
中に入れ、水で撹拌洗浄した後、洗浄した水を新たな水
と交換し、銅粉を沈殿が生じないように十分撹拌しなが
ら、投入した銀が全て置換めっきされた場合に銅粉に対
して20重量%の銀がめっきされる量のめっき液(Ag
CN20g及びNaCN40gを水1リットルに溶解)
を1時間かけてゆっくり投入した。その後撹拌を停止
し、デカンテーションにより廃液を除去し、さらに洗
浄、乾燥して銀めっき銅粉を得た。得られためっき粉の
実際の銀の被膜のみかけ密度は10g/cm3、また銀含有
量は銅粉に対して13重量%にとどまり、平均粒径は
6.0μm及び比表面積は0.25m2/gであった。上記
銀めっき銅粉を50重量部、平均粒径が8.5μmのフ
レーク状銀粉(徳力化学研究所製、商品名TCG−1)
50重量部、ノボラック型フェノール樹脂(群栄化学工
業(株)製、商品名PS−2607)15重量部及びブチ
ルセロソルブ15重量部を加えて均一に混合して導電性
ペーストを得た。
Comparative Example 2 The average particle size was 5.5 μm, and the specific surface area according to the BET method was 0.
Put 2m 2 / g of copper powder (Nippon Atomize Co., Ltd.) in the plating bath, wash with stirring with water, and then replace the washed water with fresh water to prevent the copper powder from precipitating. With sufficient stirring, when the added silver is all displacement plated, 20% by weight of silver is plated with respect to the copper powder.
20 g of CN and 40 g of NaCN are dissolved in 1 liter of water)
Was slowly added over 1 hour. Then, the stirring was stopped, the waste liquid was removed by decantation, and further washed and dried to obtain a silver-plated copper powder. The actual density of the silver coating of the obtained plating powder was 10 g / cm 3 , the silver content was only 13% by weight with respect to the copper powder, the average particle diameter was 6.0 μm and the specific surface area was 0.25 m. It was 2 / g. 50 parts by weight of the above silver-plated copper powder, flaky silver powder having an average particle size of 8.5 μm (TCG-1 manufactured by Tokuriki Kagaku Kenkyusho)
50 parts by weight, 15 parts by weight of novolac type phenol resin (trade name PS-2607 manufactured by Gunei Chemical Industry Co., Ltd.) and 15 parts by weight of butyl cellosolve were added and uniformly mixed to obtain a conductive paste.

【0028】ついで該導電性ペーストを厚さが1.6mm
の紙フェノール積層板上に200メッシュのスクリーン
を通して幅が0.5mm及び長さが100mmのテストパタ
ーンに印刷し、大気中150℃で45分間加熱処理し
た。得られたペースト硬化物の比抵抗は200μΩcmと
高かった。また、導電性ペーストをスライドガラス上に
実施例1と同様の方法で電極を形成し、耐マイグレーシ
ョン性を評価した。その結果、200μAの漏洩電流が
流れるまでに要した時間は5分と短かった。
Then, the conductive paste is applied to a thickness of 1.6 mm.
A test pattern having a width of 0.5 mm and a length of 100 mm was printed on a paper-phenolic laminate of No. 1 through a 200-mesh screen and heat-treated in the air at 150 ° C. for 45 minutes. The specific resistance of the obtained paste cured product was as high as 200 μΩcm. Further, an electrode was formed on the slide glass with the conductive paste in the same manner as in Example 1, and the migration resistance was evaluated. As a result, the time required for the leakage current of 200 μA to flow was as short as 5 minutes.

【0029】比較例3 平均粒径が5.5μm、BET法による比表面積が0.
2m2/gの銅粉(日本アトマイズ加工(株)製)をめっき浴
中に入れ、水で撹拌洗浄した後、洗浄した水を新たな水
と交換し、銅粉を沈殿が生じないように十分撹拌しなが
ら、投入した銀が全て置換めっきされた場合に銅粉に対
して40重量%の銀がめっきされる量のめっき液(Ag
CN20g及びNaCN40gを水1リットルに溶解)
を一気に投入した。20分後、液中に遊離銀イオンがま
だ検出される時点で撹拌を停止し、デカンテーションに
より廃液を除去し、さらに洗浄、乾燥して銀めっき銅粉
を得た。得られた銀めっき銅粉の銀の被膜のみかけ密度
は2.5g/cm3、また銀含有量は銅粉に対して35重量
%、平均粒径は13μm及び比表面積は0.9m2/gであ
った。以下実施例1と同様の工程を経て導電性ペースト
を得た。得られたペースト硬化物の比抵抗は190μΩ
cmであった。また実施例1と同様の方法で耐マイグレー
ション性を評価した結果、200μAの漏洩電流が流れ
るまでに要した時間は10分であった。
Comparative Example 3 The average particle size was 5.5 μm, and the specific surface area according to the BET method was 0.
Put 2m 2 / g of copper powder (Nippon Atomize Co., Ltd.) in the plating bath, wash with stirring with water, and then replace the washed water with fresh water to prevent the copper powder from precipitating. With sufficient stirring, 40% by weight of silver is plated with respect to the copper powder when all of the added silver is displacement plated.
20 g of CN and 40 g of NaCN are dissolved in 1 liter of water)
Was thrown in at a stretch. After 20 minutes, the stirring was stopped when free silver ions were still detected in the solution, the waste solution was removed by decantation, and further washed and dried to obtain silver-plated copper powder. The apparent density of the silver coating of the obtained silver-plated copper powder was 2.5 g / cm 3 , the silver content was 35% by weight with respect to the copper powder, the average particle size was 13 μm, and the specific surface area was 0.9 m 2 / It was g. A conductive paste was obtained through the same steps as in Example 1 below. The specific resistance of the obtained paste cured product is 190 μΩ
cm. As a result of evaluating the migration resistance by the same method as in Example 1, the time required for the leakage current of 200 μA to flow was 10 minutes.

【0030】[0030]

【発明の効果】請求項1における銀めっき銅粉は、高価
な銀粉の使用量を少なくでき、導電性及び耐マイグレー
ション性に優れた導電性ペーストを提供することができ
る。請求項2における銀めっき銅粉は、請求項1におけ
る効果を奏し、さらに導電性に優れた導電性ペーストを
提供することができる。
The silver-plated copper powder according to claim 1 can reduce the amount of expensive silver powder used, and can provide a conductive paste having excellent conductivity and migration resistance. The silver-plated copper powder according to claim 2 has the effect of claim 1, and can provide a conductive paste having excellent conductivity.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅粉の表面に、ポーラスな銀の被膜を形
成してなる銀めっき銅粉。
1. A silver-plated copper powder obtained by forming a porous silver coating on the surface of copper powder.
【請求項2】 ポーラスな被膜を形成している銀の割合
が銅粉に対して5〜30重量%である請求項1記載の銀
めっき銅粉。
2. The silver-plated copper powder according to claim 1, wherein the proportion of silver forming the porous film is 5 to 30% by weight based on the copper powder.
JP8645496A 1996-04-09 1996-04-09 Silver-plated copper powder Pending JPH09282935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8645496A JPH09282935A (en) 1996-04-09 1996-04-09 Silver-plated copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8645496A JPH09282935A (en) 1996-04-09 1996-04-09 Silver-plated copper powder

Publications (1)

Publication Number Publication Date
JPH09282935A true JPH09282935A (en) 1997-10-31

Family

ID=13887395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8645496A Pending JPH09282935A (en) 1996-04-09 1996-04-09 Silver-plated copper powder

Country Status (1)

Country Link
JP (1) JPH09282935A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306028A (en) * 2007-06-08 2008-12-18 Smk Corp Printed circuit board
CN101964218A (en) * 2009-07-24 2011-02-02 藤仓化成株式会社 The preparation method of conductive paste and conductive paste
KR101403371B1 (en) * 2013-12-31 2014-06-03 충남대학교산학협력단 Manufacturing method of metal particle and metal particle using thereof, and conductive paste and shielding electromagnetic wave containing the same
CN104205243A (en) * 2012-03-23 2014-12-10 株式会社昌星 Electrode paste composition for solar cell
JP6063095B2 (en) * 2014-06-25 2017-01-18 タツタ電線株式会社 Sulfur removing material, purification column using the same, and pretreatment method for organic substance analysis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306028A (en) * 2007-06-08 2008-12-18 Smk Corp Printed circuit board
CN101964218A (en) * 2009-07-24 2011-02-02 藤仓化成株式会社 The preparation method of conductive paste and conductive paste
CN101964218B (en) 2009-07-24 2012-08-29 藤仓化成株式会社 Conductive slurry and its preparation method
CN104205243A (en) * 2012-03-23 2014-12-10 株式会社昌星 Electrode paste composition for solar cell
KR101403371B1 (en) * 2013-12-31 2014-06-03 충남대학교산학협력단 Manufacturing method of metal particle and metal particle using thereof, and conductive paste and shielding electromagnetic wave containing the same
JP6063095B2 (en) * 2014-06-25 2017-01-18 タツタ電線株式会社 Sulfur removing material, purification column using the same, and pretreatment method for organic substance analysis

Similar Documents

Publication Publication Date Title
KR100480863B1 (en) Copper fine powder and method for preparing the same
US5951918A (en) Composite electroconductive powder, electroconductive paste, process for producing electroconductive paste, electric circuit and process for producing electric circuit
JP4894266B2 (en) Conductive powder surface treatment method, conductive powder and conductive paste
US5840432A (en) Electroconductive paste
EP1560227A1 (en) Conductive paste
JPS60149671A (en) Formation of electroconductive coating
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JPH09282935A (en) Silver-plated copper powder
JP2003342621A (en) Method for manufacturing copper powder and copper powder obtained thereby
JP3598631B2 (en) Conductive paste, method for producing the same, electric circuit device using conductive paste, and method for producing the same
JPH01201486A (en) Ag plated powder for electrically conductive paint having superior migration resistance
JPH10134636A (en) Conductive powder, conductive paste, and electric circuit using conductive paste
JPH08148035A (en) Conductive material and conductive paste using this conductive material
JP2000322933A (en) Conductive paste and its manufacture
JP3618441B2 (en) Conductive metal composite powder and manufacturing method thereof
JP2000285733A (en) Method for producing conductive powder, conductive paste and electronic component using the same
JPS62179566A (en) Electrically conductive resin composition
JP4074369B2 (en) Method for producing flake copper alloy powder for conductive paste
JPH08138437A (en) Conductive material and conductive paste using it
JPH11310806A (en) Production of copper-silver composite powder for electrically conductive paste
JPH0982133A (en) Manufacture of conductive powder
JPH0945132A (en) Conducting paste
JPH08161929A (en) Conductive material and conductive paste using it
JP3396640B2 (en) Copper fine powder for solventless thermosetting conductive paste for via holes and solventless thermosetting conductive paste for via holes
JPH03152803A (en) Solderable conductive paste