[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0928922A - Power feeder for moving object - Google Patents

Power feeder for moving object

Info

Publication number
JPH0928922A
JPH0928922A JP20389595A JP20389595A JPH0928922A JP H0928922 A JPH0928922 A JP H0928922A JP 20389595 A JP20389595 A JP 20389595A JP 20389595 A JP20389595 A JP 20389595A JP H0928922 A JPH0928922 A JP H0928922A
Authority
JP
Japan
Prior art keywords
current collector
power
moving body
strip
current collectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20389595A
Other languages
Japanese (ja)
Other versions
JP3558417B2 (en
Inventor
Haruo Ogasawara
春夫 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taito Corp
Original Assignee
Taito Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taito Corp filed Critical Taito Corp
Priority to JP20389595A priority Critical patent/JP3558417B2/en
Publication of JPH0928922A publication Critical patent/JPH0928922A/en
Application granted granted Critical
Publication of JP3558417B2 publication Critical patent/JP3558417B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power feeder for a moving object which stabilizes the supply of power to moving objects regardless of the positions of the moving objects in a game machine adapted to move the moving objects freely within a field to supply the same with power to the moving objects while allowing smooth running with minimized mechanical resistance against the movement of the moving objects. SOLUTION: A feeder plate is so arranged to have insulating plates and conducting layers laminated alternately. At least one conducting layer forms an anode distributing body while at least the other one conducting layer a cathode distributing body and a surface layer forms strip electrodes 33 and 36. In a current collector carried on a moving object 44, current collecting elements 10 are arranged at a top position of a regular polygon having a specified diameter or at the top position and at the center position thereof so that relative conditions are kept between the surface layer and the strip electrodes 33 and 36 of the feeder plate in whatever direction the moving objects 44 may move. If a specified formula and conditions are satisfied, the current collecting elements 10 always contacting the strip electrodes can be increased as many as possible in the minimum number of them.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、模型の自動車,動
物等の移動体が一定のフィールド内で外部からの電力供
給を受けて移動するゲーム機の給電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device for a game machine in which a moving body such as a model car or animal receives electric power from the outside and moves within a certain field.

【0002】[0002]

【従来の技術】上記ゲーム機において複数の移動体へ給
電する装置が提案されている(実公平5−1190
6)。この装置は、帯状電極を絶縁板の上面と下面に交
叉する方向に敷設し、相隣り合う電極が交互に陽極と陰
極となるように一つおきに貫通孔を設け、これを電気的
に接続することによって一本の帯状電極に複数の電力供
給点を備えたものである。移動体は集電子を帯状電極に
常に接触させて電力供給されるようになっている。この
ような構成を採用することにより、同時に複数の移動体
が同一帯状電極上を走行する場合、電源供給部(端子電
極)より遠方になる移動体ほど、中間の移動体の電力消
費によって電力供給が低下して車速が減速ぎみとなるこ
とを防止している。すなわち、同一電極に複数の移動体
の集電子が集中してもいずれの集電子も距離の差の影響
をほとんど受けることなく電力供給点から略等しい電力
が常に供給され、公平なレース展開を可能にしている。
2. Description of the Related Art A device for supplying power to a plurality of moving bodies in the above-mentioned game machine has been proposed (actual fair 5-190).
6). In this device, strip electrodes are laid on the upper and lower surfaces of an insulating plate in a direction intersecting with each other, and through holes are provided every other electrode so that adjacent electrodes are alternately the anode and the cathode, and they are electrically connected. By doing so, one strip electrode is provided with a plurality of power supply points. The moving body is designed so that the current collector is always brought into contact with the strip electrode to be supplied with electric power. By adopting such a configuration, when a plurality of moving bodies travel on the same strip electrode at the same time, the moving body farther from the power supply unit (terminal electrode) is supplied with power by the power consumption of the intermediate moving body. It is prevented that the vehicle speed decreases and the vehicle speed is decelerating. That is, even if the current collectors of a plurality of moving objects are concentrated on the same electrode, almost all the current collectors are almost unaffected by the difference in distance, and substantially the same power is always supplied from the power supply point, enabling fair race development. I have to.

【0003】ところが、この装置は、複数の電力供給点
を有しているものの電源供給部から複数の移動体まで個
別の配電ルートが形成されず共通配電ルートが形成され
る。この共通配電ルートにおける消費電力は当該ルート
の電気抵抗で決定される。これは、片面の帯状電極と貫
通孔によってもう片面の帯状電極に接続され、この接続
路が複数並設接続されている構成であるから、ある程度
の抵抗が存在し、同時に複数の移動体が同一帯電極上を
走行する場合、電力供給点から略等しい電力が常に供給
されるというものの実際にはまだかなり各移動体に供給
される電力に差があった。
However, although this device has a plurality of power supply points, a common power distribution route is formed without forming an individual power distribution route from the power supply unit to a plurality of moving bodies. The power consumption on this common power distribution route is determined by the electrical resistance of the route. This is a structure in which a strip-shaped electrode on one side and a strip-shaped electrode on the other side are connected by a through hole, and a plurality of these connecting paths are connected side by side. When traveling on the strip electrode, substantially the same electric power is always supplied from the electric power supply point, but actually there is still a considerable difference in the electric power supplied to each moving body.

【0004】さらに上記装置は、帯状電極への集電子の
接触をスプリングによって帯状電極方向に付勢し給電板
に多少の凹凸を生じても接触を維持するようにしている
が、移動体の走行に伴って帯状電極と集電子とを摺動さ
せているので、この接触抵抗は大きく変動し、移動体へ
の供給電圧を不安定にし、移動体をスムーズに走行させ
ることができない。これを緩和させるために複数の集電
子を配置し、常にいくつかの集電子を接触させることに
よって、十分な接触が得られなかった集電子があった場
合でもいずれかの集電子で補うようにしている。
Further, in the above device, the contact of the current collector to the strip electrode is urged toward the strip electrode by the spring so as to maintain the contact even if the power supply plate has some irregularities. Since the strip electrode and the current collector are caused to slide with each other, the contact resistance fluctuates greatly and the supply voltage to the moving body becomes unstable, so that the moving body cannot travel smoothly. In order to alleviate this, by arranging multiple current collectors and keeping some current collectors in contact at all times, even if there is a current collector for which sufficient contact could not be obtained, one of the current collectors will make up for it. ing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、常に接
触している集電子数を多くするために集電子総数を多く
することは、瞬時的に機能しない集電子が多くなって効
率が悪くなリ、集電子総数分の付勢圧による機械抵抗が
かえって増加し移動体をスムーズに走行させることがで
きない。本発明の目的は、上記問題を解決するもので、
給電板を絶縁板と導電層の交互多段積層構造にし、積層
された導電層の少なくとも1つを陽極配電体に、少なく
とも他の1つを陰極配電体に対応させ、最小限の集電子
総数で常に陽極および陰極に接する集電子数を極力多く
することにより、移動体の位置に関係なく各移動体への
電力供給を安定化し、各移動体は同じ電力が得られると
ともに移動体の移動に対し極力機械的抵抗を少なくして
円滑な走行を可能にした移動体への給電装置を提供する
ことにある。
However, if the total number of current collectors is increased in order to increase the number of current collectors that are constantly in contact with each other, the number of current collectors that do not function instantaneously increases, resulting in poor efficiency. The mechanical resistance due to the biasing pressure corresponding to the total number of current collectors increases rather, and the moving body cannot run smoothly. The object of the present invention is to solve the above problems,
The power feeding plate has an alternating multi-stage laminated structure of insulating plates and conductive layers, and at least one of the laminated conductive layers corresponds to an anode current distributor and at least another one corresponds to a cathode current distributor, and a minimum total number of current collectors is required. By increasing the number of current collectors that are always in contact with the anode and cathode as much as possible, the power supply to each mobile unit is stabilized regardless of the position of the mobile unit, and each mobile unit can obtain the same power and move the mobile unit. An object of the present invention is to provide a power supply device for a moving body, which has a low mechanical resistance as much as possible and enables smooth traveling.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に本発明による移動体への給電装置は、ゲーム機のフィ
ールド内を自在に移動する移動体に給電するため、フィ
ールド内の上方または下方に設けられ、交互に陽極,陰
極になるように電源に接続される帯状電極を表面層に形
成した給電板と、各移動体に搭載され、その移動体の移
動に伴い多数の集電子が前記給電板の表面層に押し当て
られて摺動させられることにより、前記給電板の帯状電
極から移動体に電力を供給する集電器とからなる給電装
置において、前記給電板は、絶縁板と導電層を交互に積
層して構成し、少なくとも前記導電層を表面層も含めて
3層以上にし、表面層の導電層の少なくとも1つは、一
定の間隔を隔てて平行に繰り返し配置した帯状電極と
し、他の導電層の少なくとも1つは陽極配電体、さらに
他の導電層の少なくとも1つは陰極配電体として電源に
接続し、前記帯状電極の相隣り合う電極は、交互に陰極
と陽極になるように内壁に導電体を有する複数の貫通孔
によって前記陽極配電体と陰極配電体に接続してある。
また、本発明は、ゲーム機のフィールド内を自在に移動
する移動体に給電するため、フィールド内の上方または
下方に設けられ、交互に陽極,陰極になるように電源に
接続される帯状電極を表面層に形成した給電板と、各移
動体に搭載され、その移動体の移動に伴い多数の集電子
が前記給電板の表面層に押し当てられて摺動させられる
ことにより、前記給電板の帯状電極から移動体に電力を
供給する集電器とからなる給電装置において、必要最小
限の集電子数で前記帯状電極の陽極および陰極にそれぞ
れ予め決められた数以上の集電子を常に接触させるた
め、前記集電器は集電子を正多角形の各頂点に、または
各頂点と中心点に配置して構成され、前記給電板の帯状
電極と集電子は、以下の式および条件およびを
満たしている。 Xn <W, W+2t<Xn <2W+t ただし、W;帯状電極の幅 t;帯状電極間の間隔 Xn ;複数の集電子を結ぶ直線からこれと直交し任意の
集電子までの寸法 条件(i) 最小集電子数は、両極分の常時接触数+ギャ
ップの上に並ぶ集電子数以上であること。 条件(ii) W値未満のXn (Xn <W)はXa と定義
し、このXa は帯電電極間のギャップに落ちる集電子の
数が最も多い場合、そのギャップに落ちた集電子から接
触している集電子が予め決められた数に達するまでの集
電子との間の寸法であり、かつ、Xn の内の最大寸法。
(W+2t)以上のXn (W+2t<Xn )はXb と定
義し、(2W+t)以下のXn (Xn <2W+t)はX
c と定義する。 条件(iii) それぞれの帯状電極に常に接触する集電子の
予め決められた数が奇数の場合、中心位置に1つの集電
子を加える。 条件(iv) 上記式を満たさない場合、他の集電子が接触
できる場合を除く。
In order to achieve the above object, a power supply device for a moving body according to the present invention supplies power to a moving body that freely moves in a field of a game machine, so that it can be moved upward or downward in the field. And a power supply plate having a strip-shaped electrode formed on the surface layer so as to be alternately connected to a power source so as to serve as an anode and a cathode, and mounted on each moving body, and a large number of current collectors are attached as the moving body moves. In a power supply device including a current collector that supplies electric power from a strip electrode of the power supply plate to a moving body by being pressed against a surface layer of the power supply plate, the power supply plate includes an insulating plate and a conductive layer. Are alternately laminated, and at least the conductive layer is made into three or more layers including a surface layer, and at least one of the conductive layers of the surface layer is a strip electrode repeatedly arranged in parallel at a constant interval, Less of other conductive layers At least one is an anode distributor and at least one of the other conductive layers is connected to a power supply as a cathode distributor, and adjacent electrodes of the strip electrodes are electrically conductive to the inner wall so as to alternately serve as a cathode and an anode. A plurality of through-holes having a body are connected to the anode and cathode distributors.
Further, in order to supply electric power to a moving body that freely moves in the field of a game machine, the present invention provides a strip electrode which is provided above or below the field and which is connected to a power source so as to alternately serve as an anode and a cathode. The power supply plate formed on the surface layer and each moving body are mounted, and a large number of current collectors are pressed against the surface layer of the power supply plate and slid along with the movement of the moving body. In a power feeding device including a current collector that supplies electric power from a strip electrode to a moving body, in order to constantly contact a predetermined number or more of current collectors with the anode and cathode of the strip electrode with a minimum required number of collectors. , The current collector is configured by disposing a current collector at each vertex of a regular polygon, or at each vertex and a center point, and the strip electrode and the current collector of the power supply plate satisfy the following formulas and conditions and . X n <W, W + 2t <X n <2W + t where W: width of the strip electrodes t; spacing between the strip electrodes X n ; dimension condition from a straight line connecting a plurality of current collectors to an arbitrary current collector orthogonal thereto ( i) The minimum number of current collectors must be equal to or greater than the number of constant contacts of both poles + the number of current collectors lined up above the gap. Condition (ii) X n (X n <W) less than the W value is defined as X a, and this X a is the current collector that has fallen in the gap between the charging electrodes when the number of the current collectors is the largest. Is the dimension between the current collector and the current collector until it reaches a predetermined number, and is the maximum dimension of X n .
X n (W + 2t <X n ) of (W + 2t) or more is defined as X b, and X n (X n <2W + t) of (2W + t) or less is X.
Define as c . Condition (iii) When the predetermined number of current collectors that are in constant contact with each strip electrode is an odd number, one current collector is added at the center position. Condition (iv) Except when the above formula is not satisfied, other current collectors can come into contact.

【0007】上記構成によれば、移動体の位置に関係な
く各移動体への電力供給を安定化し、各移動体は同じ電
力が得られるとともに移動体の移動に対し極力機械的抵
抗を少なくして円滑な走行が可能になる。
According to the above structure, the power supply to each moving body is stabilized regardless of the position of the moving body, each moving body can obtain the same electric power, and the mechanical resistance against the movement of the moving body is reduced as much as possible. It enables smooth running.

【0008】[0008]

【発明の実施の形態】以下、図面を参照して本発明をさ
らに詳しく説明する。図1は、本発明による移動体への
給電装置を適用したゲーム機の外観斜視図である。この
例は、カーレースゲーム,競馬ゲーム,競艇ゲームなど
であり、環状トラック上を複数の自動車等の模型体2が
自由自在に走行し、ゲームを行うものである。環状トラ
ックの周囲には複数のターミナル3が配設され、このタ
ーミナル3にはモニタ7,操作パネル4,コイン投入口
5,コイン払出口6が付設されている。コインを投入
し、操作パネル4を操作して入賞が予想される模型体2
に投票することによりゲームを行うことができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is an external perspective view of a game machine to which a power supply device for a moving body according to the present invention is applied. This example is a car racing game, a horse racing game, a boat racing game, and the like, in which a plurality of model bodies 2 such as automobiles freely run on an annular track to play a game. A plurality of terminals 3 are arranged around the annular track, and a monitor 7, an operation panel 4, a coin insertion slot 5, and a coin payout slot 6 are attached to the terminal 3. Model body 2 that is expected to win a prize by inserting coins and operating the operation panel 4
You can play the game by voting for.

【0009】図2は、本発明による給電装置を設けた移
動体の側面図である。模型体2の下方にトラックを介し
移動体44が存在し、模型体2と移動体44は、互いに
吸引する方向であってトラックとの間に若干の距離を隔
てた位置にそれぞれ磁石25が設置されている。模型体
2自体は、動力源がないが、前輪が1個以上のキャスタ
(または球体車輪)15、後輪は左右にそれぞれ独立車
輪12があり、動力源を備えている移動体44の進む走
行方向にスムーズに追従するようになっている。トラッ
クは、3層構造になっていて、上層に布製のゲームフィ
ールド8,中層に樹脂製の補強板22,下層に本発明に
係わる給電板11が敷設されている。
FIG. 2 is a side view of a moving body provided with the power feeding device according to the present invention. A moving body 44 exists below the model body 2 via a track. The model body 2 and the moving body 44 are respectively provided with magnets 25 at positions in which they are attracted to each other and are separated from the track by a slight distance. Has been done. The model body 2 itself has no power source, but the front wheels have one or more casters (or spherical wheels) 15, and the rear wheels have independent wheels 12 on the left and right, respectively. It follows the direction smoothly. The truck has a three-layer structure in which an upper layer is a game field 8 made of cloth, a middle layer is a reinforcing plate 22 made of resin, and a lower layer is a power supply plate 11 according to the present invention.

【0010】給電板11の下方には移動体44が走行す
る空間を介し走行路23が敷設され、この走行路23の
下には前後左右方向に一定の間隔あるいはコーナー部に
おいては等角度でXY座標位置を伝える発信器20が設
置された位置発信板21が設けられている。また、さら
に下方にはスペーサを介し補強材24が敷設されてい
る。移動体44は、2個の操舵兼駆動用モータ17,図
示しない赤外線通信手段,位置検出器,制御装置,モー
タドライバ等を備え、前方に1個以上のキャスタ(また
は球体車輪)15,19,後方に左右にそれぞれ独立車
輪13,18で構成される2組の走行手段が設けられて
いる。
A traveling path 23 is laid under the power supply plate 11 via a space in which the moving body 44 travels. Below the traveling path 23, there are fixed intervals in the front, rear, left and right directions, or XY at equal angles at corners. A position transmitting plate 21 is provided on which a transmitter 20 for transmitting the coordinate position is installed. Further, a reinforcing material 24 is laid further below via a spacer. The moving body 44 includes two steering / driving motors 17, an infrared communication means (not shown), a position detector, a controller, a motor driver, etc., and one or more casters (or spherical wheels) 15, 19 in front of the moving body 44. Two sets of traveling means constituted by independent wheels 13 and 18 are provided on the left and right sides respectively.

【0011】この2組の走行手段は、それぞれ天井面お
よび床面に車輪が接触する方向に配置され、その間にト
ーションスプリング26による圧縮弾性をもつ平行リン
ク16が存在する。これによって移動体走行空間を上下
方向に加圧し、また、移動体の前後方向の振動を抑え、
スムーズに走行できるようになっている。また下部後輪
18は操舵兼駆動用モータ17にギア結合し駆動される
が、2個のモータはそれぞれ左右別々の車輪を駆動し、
この回転比を変えることによって自由に操舵できるよう
になっている。上部走行手段の車輪固定部材には上方に
突出する方向に本発明に係わる複数の集電子10が配置
された集電器9が固定され、これに給電板11上の帯状
電極が接触することにより移動体44に電力が供給され
る。
The two sets of traveling means are arranged in the direction in which the wheels come into contact with the ceiling surface and the floor surface, respectively, and the parallel links 16 having compression elasticity by the torsion springs 26 are provided therebetween. As a result, the traveling space of the moving body is pressed in the vertical direction, and vibration in the front-back direction of the moving body is suppressed
You can run smoothly. Further, the lower rear wheel 18 is driven by being gear-coupled to the steering / driving motor 17, but the two motors respectively drive left and right wheels,
It is possible to freely steer by changing this rotation ratio. A current collector 9 having a plurality of current collectors 10 according to the present invention arranged in a direction protruding upward is fixed to a wheel fixing member of the upper traveling means, and a belt-shaped electrode on a power supply plate 11 comes into contact with the current collector 9 to move the same. Power is supplied to the body 44.

【0012】また、移動体44の走行制御についてゲー
ム機本体は、赤外線通信手段によってスタートからゴー
ルまでの一定時間単位の座標データの集合(すなわち、
数分後にX,Yの座標に到着していなければならないと
いう速度とコースデータ)を移動体44に送信する。移
動体44はこの受信信号に基づいて操舵兼駆動用モータ
17を駆動するが、走行路23上の発信器20の発信信
号を位置検出器を介して検出し、これを制御装置にフィ
ードバックすることにより所定の速度で所定のコースを
走行させている。
Regarding the traveling control of the moving body 44, the game machine body uses the infrared communication means to collect a set of coordinate data (that is,
After a few minutes, the speed and course data indicating that the vehicle must have arrived at the X and Y coordinates are transmitted to the mobile unit 44. The moving body 44 drives the steering / driving motor 17 based on this received signal, but detects the transmission signal of the transmitter 20 on the traveling path 23 via the position detector and feeds this back to the control device. Is driving a predetermined course at a predetermined speed.

【0013】図3(a)は、給電板の積層構造の実施例
を示す断面図、(b)はAーA’断面図である。この例
は、4層基板の製造プロセスによって実現されたもの
で、導電層が表皮層となるように3層の絶縁板37と4
層の導電層とが交互に積層されている。表皮導電層の片
面には、電源との接続のための陰極端子電極34と陽極
端子電極35が電線の引き出し易い位置に配置され、他
の片面には幅Wの帯状電極(陽極)33と帯状電極(陰
極)36が間隔tで平行に配置されている。この帯状電
極(陽極)33,帯状電極(陰極)36部分と陰極端子
電極34,陽極端子電極35の所定の位置に給電板11
を貫通する孔32が複数設けられている。
FIG. 3A is a sectional view showing an embodiment of the laminated structure of the power feeding plate, and FIG. 3B is a sectional view taken along the line AA '. This example is realized by a manufacturing process of a four-layer board, and three layers of insulating plates 37 and 4 are formed so that the conductive layer becomes a skin layer.
The conductive layers are alternately stacked. A cathode terminal electrode 34 and an anode terminal electrode 35 for connection with a power source are arranged on one surface of the skin conductive layer at positions where the electric wire can be easily drawn out, and on the other surface, a strip electrode (anode) 33 having a width W and a strip shape are formed. Electrodes (cathodes) 36 are arranged in parallel at intervals t. The feeding plate 11 is provided at predetermined positions of the strip electrode (anode) 33, the strip electrode (cathode) 36, the cathode terminal electrode 34, and the anode terminal electrode 35.
A plurality of holes 32 penetrating through are provided.

【0014】貫通孔32は一般的にビアホールと呼ば
れ、極めて小さい径の孔の内壁に導電体38が形成され
上記帯状電極(陽極)33と陽極端子電極35との間お
よび帯状電極(陰極)36と陰極端子電極34をそれぞ
れ電気的に接続している。貫通孔32の内径に対し集電
子10の接触面の径は大きいので、集電子10は摺動に
対し貫通孔32をスムーズに通過することができる。内
層導電層は貫通孔32によって帯状電極の相隣り合う電
極が交互に異なる極層と接続され、また、陰極端子電極
34と陽極端子電極35が異なる極層と接続されるよう
に、接続しない内層導電層の貫通孔部分に絶縁のための
ギャップ30a,31aを設けてある。したがって、内
層導電層の一つは陰極配電体31に、他の一つは陽極配
電体30になり、相隣り合う帯状電極(陰極)36と帯
状電極(陽極)33は交互に配置されることになる。
The through hole 32 is generally called a via hole, and a conductor 38 is formed on the inner wall of the hole having an extremely small diameter, and the space between the strip electrode (anode) 33 and the anode terminal electrode 35 and the strip electrode (cathode). 36 and the cathode terminal electrode 34 are electrically connected to each other. Since the diameter of the contact surface of the current collector 10 is larger than the inner diameter of the through hole 32, the current collector 10 can smoothly pass through the through hole 32 against sliding. The inner conductive layer is an inner layer which is not connected so that adjacent electrodes of the strip electrodes are alternately connected to different polar layers by the through holes 32, and the cathode terminal electrode 34 and the anode terminal electrode 35 are connected to different polar layers. Gap 30a, 31a for insulation is provided in the through hole portion of the conductive layer. Therefore, one of the inner conductive layers becomes the cathode current distributor 31 and the other becomes the anode current distributor 30, and adjacent strip electrodes (cathodes) 36 and strip electrodes (anode) 33 should be arranged alternately. become.

【0015】なお、図3の例では端子電極に接続するた
めの貫通孔は帯状電極に接続するための貫通孔を兼ねて
いるが、異なる貫通孔を用いても良い。この例では端子
電極に接続するための貫通孔が1本の場合を示している
が、複数でも良い。また端子電極を帯状電極と別の面に
設けたが、帯状電極に直接、電線を接続しても良い。複
数の給電板を並べてフィールド内に設置する場合、給電
板の縁から帯状電極までの寸法を(1/2)tにするこ
とによって複数の給電板をつなぎ合わせたとき、つなぎ
めにできる間隔をtにすることができる。同様に複数の
給電板を並べて設置する場合であって図1のコーナー部
のような場所に設置する給電板を複数に分割する場合、
給電板の2面の表面層を帯状電極とし、片面の帯状電極
から透視方向に他方の帯状電極を見たときその配置を同
一にすることにより、この給電板を2枚使用し、このう
ちの1枚を裏返して対称の位置に帯状電極を直線状にな
るように配置することにより、1枚の給電板で2枚分の
給電板を兼ねることもできる。
In the example of FIG. 3, the through hole for connecting to the terminal electrode also serves as the through hole for connecting to the strip electrode, but different through holes may be used. Although this example shows the case where there is one through hole for connecting to the terminal electrode, a plurality of through holes may be provided. Although the terminal electrode is provided on the surface different from the strip electrode, the electric wire may be directly connected to the strip electrode. When arranging multiple power supply plates side by side in the field, when the size from the edge of the power supply plate to the strip electrode is (1/2) t, when the multiple power supply plates are connected, the space that can be connected is set. can be t. Similarly, when a plurality of power supply plates are installed side by side and the power supply plate installed at a place such as the corner of FIG. 1 is divided into a plurality of power supply plates,
By using the two surface layers of the power feed plate as the strip electrodes, and by arranging the strip electrodes on one side in the perspective direction to look at the other strip electrode in the same arrangement, two power feed plates are used. By inverting one sheet and arranging the strip electrodes linearly at symmetrical positions, one power feeding plate can also serve as two power feeding plates.

【0016】また、必要に応じて配電体の層厚や積層数
を変えることができる。給電板に若干の反りやゆがみが
あっても集電子の付勢圧によって帯状電極への接触は維
持することができるが、反りやゆがみがひどくなる(ひ
どい反りやゆがみとともに耐久性に定める集電子の頭の
磨耗があっても接触を維持させるには集電子移動ストロ
ークは膨大な寸法となるため、このストロークを適度な
値とすると)と接触を維持できなくなる。したがって、
電力の供給が断たれる事態も生じうるので、給電板は極
力、平坦に保たなければならない。しかしながら本発明
によれば、切れ目のない2以上の導電層が積層されるた
め、温度差による反りやゆがみを防止できるとともに剛
性が高いので、そのまま天井面あるいは床面として使用
できる。
Further, the layer thickness and the number of layers of the power distribution body can be changed as required. Even if there is some warpage or distortion in the power supply plate, contact with the strip electrode can be maintained due to the biasing force of the current collector, but the warpage and distortion will be severe (current collector that is determined by durability as well as severe warpage and distortion). In order to maintain contact even if the head is worn, the current collector movement stroke is enormous, so if this stroke is set to an appropriate value), contact cannot be maintained. Therefore,
Since the power supply may be cut off, the power supply plate should be kept as flat as possible. However, according to the present invention, since two or more conductive layers without breaks are laminated, it is possible to prevent warpage and distortion due to a temperature difference and to have high rigidity, so that it can be used as it is as a ceiling surface or a floor surface.

【0017】図4は、集電器の構造を示す側面図であ
る。集電子10は、先端10aが半球状の円柱形状であ
り、上部と下部にフランジ10b,10cが形成されて
いる。上部フランジ10bと集電子支持体40との間に
圧縮スプリング41を介在させ、適当な圧力で集電子の
先端10aを給電板11に接触させている。これにより
給電板11に多少の凹凸があっても常に接触を保つとと
もに小さな接触抵抗を実現し、移動体に安定した電力を
供給している。下部フランジ10cはストッパの役割を
果している。
FIG. 4 is a side view showing the structure of the current collector. The current collector 10 has a columnar shape with a tip 10a having a hemispherical shape, and flanges 10b and 10c are formed on an upper portion and a lower portion. A compression spring 41 is interposed between the upper flange 10b and the current collector support 40, and the tip 10a of the current collector is brought into contact with the power supply plate 11 at an appropriate pressure. As a result, even if the power supply plate 11 has some irregularities, the contact is always maintained, a small contact resistance is realized, and stable power is supplied to the moving body. The lower flange 10c serves as a stopper.

【0018】なお、一般的に帯状電極は必要な電流を流
せる断面積が必要であり、帯状電極と電極間ギャップと
の段差はある程度生じる。また、1枚の給電板は加工
上、最大サイズが限定されるため、1つのフィールドを
構成するには複数の給電板をつなぎ合わせる場合があ
り、このつなぎ目段差もある程度生じる。したがって移
動体が走行し、これらの段差を乗り越えるとき、集電子
の付勢圧力によって1,2本の集電子が引っかかり易く
なる。しかしながら、上記給電板の構造によって主に陽
極配電体,陰極配電体から帯状電極に電力供給するの
で、帯状電極の厚みを薄くできる。それに加えて以下に
述べるように必要最小限の集電子数で常に接触している
集電子数を多くし、総合的に十分な接触抵抗を得られる
程度に1本当たりの集電子の付勢圧を少なくしているの
で集電子の引っ掛かりを抑えることができる。
Generally, the strip electrode needs a cross-sectional area through which a necessary current can flow, and a step between the strip electrode and the inter-electrode gap occurs to some extent. In addition, since the maximum size of one power supply plate is limited due to processing, a plurality of power supply plates may be connected to each other to form one field, and this joint step may be formed to some extent. Therefore, when the moving body travels and climbs over these steps, the urging pressure of the current collectors easily catches one or two current collectors. However, since the power is mainly supplied to the strip electrodes from the anode power distributor and the cathode power distributor by the structure of the power feeding plate, the thickness of the strip electrodes can be reduced. In addition to that, increase the number of current collectors that are always in contact with the minimum required number of current collectors, as described below, so that the energizing pressure of each current collector is sufficient to obtain a sufficient total contact resistance. Since the number is reduced, it is possible to prevent the collector from being caught.

【0019】図5は、給電板の帯状電極と集電子の接触
状態を説明するための図である。図5に示すように集電
器は所定の直径を有する正多角形の頂点位置または頂点
位置と中心位置に集電子10を配置し、所定の式および
条件を満たすことにより移動体44がいかなる方向に走
行しても必要最小限の集電子数で帯状電極33,36に
それぞれ所定の数以上の集電子10が常に接触する。上
記所定の直径とは、帯状電極の幅をW,帯状電極の間の
ギャップをt,複数の集電子を結ぶ直線からこれと直交
し任意の集電子までの寸法をXn とし、mを所定の直径
内に含まれる帯状電極の数とすると、m(W+t)−t
<Xn <m(W+t)+t…(A)のとき集電子が帯状
電極間の1ギャップ上にあり給電できない状態であり、
この(A)式が成り立つ以外の位置に集電子を配置する
ことによって決定される。ただし、この条件を満たさな
い場合であっても他の集電子が接触できるときはこの限
りではない。
FIG. 5 is a diagram for explaining a contact state between the strip-shaped electrode of the power feeding plate and the current collector. As shown in FIG. 5, in the current collector, the current collector 10 is arranged at the apex position or the apex position and the center position of a regular polygon having a predetermined diameter. Even when the vehicle travels, a predetermined number or more of the current collectors 10 are always in contact with the strip electrodes 33 and 36 with the required minimum number of current collectors. The predetermined diameter is W, the width of the strip electrodes is t, the gap between the strip electrodes is t, the dimension from a straight line connecting a plurality of current collectors to an arbitrary current collector orthogonal thereto is X n, and m is a predetermined value. Assuming the number of strip electrodes included in the diameter of m is m (W + t) -t
When <X n <m (W + t) + t ... (A), the current collector is located on one gap between the strip electrodes and cannot be fed.
It is determined by arranging the current collector at a position other than the formula (A). However, this does not apply if another current collector can come into contact even if this condition is not satisfied.

【0020】帯状電極の陽極および陰極に、それぞれが
予め決められた数以上の集電子が接触する条件を満足さ
せ、この条件を必要最小限の集電子総数で構成させるに
は、Xn >2W+3tの条件では給電できる状態である
が、最小角数の正多角形の頂点位置ではW>Xn を満足
しなくなるので条件外とする。すなわちm=3以上は条
件外である。したがって、(A)式にm=1,2を代入
すると、
In order to satisfy the condition that a predetermined number or more of current collectors come into contact with the anode and cathode of the strip electrode, and to configure this condition with the minimum necessary total number of current collectors, X n > 2W + 3t. Under the condition (2), the power can be supplied, but since W> Xn is not satisfied at the vertex position of the regular polygon having the minimum number of angles, it is out of the condition. That is, m = 3 or more is out of the condition. Therefore, substituting m = 1, 2 into the equation (A),

【式1】W<Xn <W+2t…(A)’ 2W+t<Xn <2W+3t…(A)”となり、 この式(A)’,(A)”が成り立つ位置を避けた位置
は、つぎの式となる。 Xn <W, W+2t<Xn <2W+t …(B) このときの関係を図6に示してある。
[Equation 1] W <X n <W + 2t ... (A) ′ 2W + t <X n <2W + 3t ... (A) ”, and the positions other than the positions where the expressions (A) ′ and (A)” are satisfied are as follows. It becomes an expression. Xn <W, W + 2t < Xn <2W + t (B) The relationship at this time is shown in FIG.

【0021】ただし、以下の条件を満足しなければなら
ない。 条件(i) 最小集電子数は両極分の常時接触数+ギャッ
プ上に並ぶ集電子数以上であること。 条件(ii) W値未満のXn (Xn <W)はXa と定義
し、このXa は帯電間のギャップに落ちる集電子の数が
最も多い場合のそのギャップに落ちた集電子から接触し
ている集電子が予め決められた数に達するまでの集電子
との間の寸法であり、かつ、Xn の内の最大寸法によっ
て決定する。(W+2t)以上のXn (W+2t<
n )はXb と定義し、(2W+t)以下のXn (Xn
<2W+t)はXc と定義する。 条件(iii) それぞれの帯状電極に常に接触する集電子の
予め決められた数が奇数の場合、中心位置に1つの集電
子を加える。 条件(iv) 上記(B)式を満たさない場合に他の集電子
が接触できる場合を除く。
However, the following conditions must be satisfied. Condition (i) The minimum number of current collectors must be equal to or greater than the number of constant contacts of both poles + the number of current collectors aligned on the gap. Condition (ii) X n (X n <W) less than the W value is defined as X a, and this X a is calculated from the number of current collectors falling in the gap between the charges It is a dimension between the current collectors in contact with the current collector until reaching a predetermined number, and is determined by the maximum size of X n . X n (W + 2t <more than (W + 2t)
X n ) is defined as X b, and X n (X n ) of (2W + t) or less is defined.
<2W + t) is defined as X c . Condition (iii) When the predetermined number of current collectors that are in constant contact with each strip electrode is an odd number, one current collector is added at the center position. Condition (iv) Except when other current collectors can come into contact when the above formula (B) is not satisfied.

【0022】図7は、具体的な計算結果の例を示す図で
ある。図7(a)(b)は陽極帯状電極および陰極帯状
電極にそれぞれ少なくとも2以上の集電子が常に接触す
る例である。帯状電極の幅をW=8mm,電極間の間隔
をt=1mmとすると、図7(a)に示すように正6角
形の頂点位置に集電子を配置したときが最小角数(2つ
の集電子がギャップに落ちた場合、陽極帯状電極と陰極
帯状電極にそれぞれ2つずつ集電子が接触することが必
要で、2+4=6角形)となり、この頂点位置を結んだ
直径は以下の計算式で求めることができる。
FIG. 7 is a diagram showing an example of a concrete calculation result. FIGS. 7A and 7B are examples in which at least two current collectors are always in contact with the anode strip electrode and the cathode strip electrode, respectively. Assuming that the width of the strip electrodes is W = 8 mm and the interval between the electrodes is t = 1 mm, the minimum angle (two collectors) is obtained when the current collector is arranged at the vertex position of the regular hexagon as shown in FIG. If the electrons fall into the gap, it is necessary to have two current collectors in contact with each of the anode strip electrode and cathode strip electrode, which is 2 + 4 = hexagonal), and the diameter connecting these vertex positions is calculated by the following formula. You can ask.

【式2】Xa <W …(1) Xb >W+2t …(2) Xc <2W+t …(3) 正6角形を形成する円の直径をφとすると、 (1)式は (φ/2)×2 sin {360 /(6×2)}<8 ∴ φ<16 (2)式は (φ/2)×[1+sin {360 /(6×2)}] >8+2 ∴ φ>13.3 (3)式は φ<2×8+1 ∴ φ<17 したがって正6角形の頂点を結んだ直径は13.3mm
<φ<16mmであれば良い。なお、かかる場合に電極
間の間隔をt=1mmではなく2mmとすると16mm
<φ<16mmとなり、答えが矛盾し、上記式を満足す
る直径を求めることができず、この場合は無視する。
[Formula 2] X a <W (1) X b > W + 2t (2) X c <2W + t (3) If the diameter of the circle forming the regular hexagon is φ, then the formula (1) becomes (φ / 2) × 2 sin {360 / (6 × 2)} <8 ∴φ <16 Equation (2) is (φ / 2) × [1 + sin {360 / (6 × 2)}] > 8 + 2 ∴φ> 13. 3 Formula (3) is φ <2 × 8 + 1 ∴φ <17 Therefore, the diameter connecting the vertices of a regular hexagon is 13.3 mm.
It should be <φ <16 mm. In such a case, if the distance between the electrodes is 2 mm instead of t = 1 mm, 16 mm
<Φ <16 mm, the answers are inconsistent, and the diameter that satisfies the above formula cannot be obtained, and in this case, it is ignored.

【0023】つぎに帯状電極の幅をW=8mm,電極間
の間隔をt=2mmとした場合には、図7(b)に示す
ように正7角形の頂点位置に集電子を配置したときが最
小角数(図7(a)でW=8mm,t=2mmとした場
合、答えが矛盾するので、正6角形は成り立たず、1つ
角数の多い7角形が最小角数となる)となり、この頂点
位置を結んだ直径は以下の計算式で求めることができ
る。
Next, when the width of the strip electrodes is W = 8 mm and the interval between the electrodes is t = 2 mm, when the current collector is arranged at the vertex position of the regular heptagon as shown in FIG. 7B. Is the minimum angle (when W = 8 mm and t = 2 mm in Fig. 7 (a), the answer is inconsistent, so a regular hexagon does not hold, and a hexagon with one more angle is the minimum angle) Therefore, the diameter connecting the vertex positions can be calculated by the following formula.

【式3】Xa <W …(4) Xb >W+2t …(5) Xc <2W+t …(6) 正7角形を形成する円の直径をφとすると、 (4)式は (φ/2)×[cos(360/7 ) +cos {(360×1.5)/7 }] <8 ∴ φ<18.9 (5)式は (φ/2)×{1 + cos(360/7 ) }>8+4 ∴ φ>14.8 (6)式は (φ/2)×[1+ cos{360 /(7 ×2 )}] <2×8+2 ∴ φ<18.9 したがって、頂点位置を結んだ直径は、14.8mm<
φ<18.9mmであれば良い。
[Formula 3] X a <W (4) X b > W + 2t (5) X c <2W + t (6) If the diameter of the circle forming the regular heptagon is φ, then equation (4) becomes (φ / 2) × [cos (360/7) + cos {(360 × 1.5) / 7}] <8 ∴φ <18.9 (5) is (φ / 2) × {1 + cos (360/7)} > 8 + 4 ∴φ> 14.8 Equation (6) is (φ / 2) × [1 + cos {360 / (7 × 2)}] <2 × 8 + 2 ∴φ <18.9 Therefore, the diameter connecting the vertex positions Is 14.8 mm <
It should be φ <18.9 mm.

【0024】図7(c)(d)は、陽極および陰極にそ
れぞれ少なくとも3以上の集電子が常に接触する例であ
る。帯状電極の幅をW=8mm,電極間の間隔をt=1
mmとすると、図7(c)に示すように正8角形の頂点
位置と中心位置に集電子を配置したときが最小角数(接
触数が奇数であるので、条件(iii) より中心位置に集電
子があり、正6角形のように中心位置も含めて3個ギャ
ップに落ちた場合、陽極帯状電極と陰極帯状電極にそれ
ぞれ3つずつ集電子が接触することが必要で、結局2+
6=8角形となる)となり、この頂点位置を結んだ直径
は以下の計算式で求めることができる。
FIGS. 7C and 7D are examples in which at least three or more current collectors are always in contact with the anode and the cathode, respectively. The width of the strip electrodes is W = 8 mm, and the distance between the electrodes is t = 1.
mm, the minimum number of angles when the current collectors are arranged at the vertex position and the center position of the regular octagon as shown in FIG. If there are current collectors and they fall into the gap like the regular hexagon including the center position, it is necessary to have three current collectors each contacting the anode strip electrode and the cathode strip electrode, which results in 2+
6 = octagon), and the diameter connecting the vertex positions can be obtained by the following calculation formula.

【式4】Xa <W …(7) Xb >W+2t …(8) Xc <2W+t …(9) ここでXc =2Xa であり、Xc <2Wの条件が成り立
つので、Xc <2W+t…(9) を計算することはない。
正8角形を形成する円の直径をφとすると、 (7)式は (φ/2)<8 ∴ φ<16 (8)式は (φ/2)×2 sin(360 /8)>8+2 ∴ φ<14.1 したがって、頂点位置を結んだ直径は、14.1mm<
φ<16mmであれば良い。なお、かかる場合に電極間
の間隔をt=1mmではなく2mmとすると17mm<
φ<16mmとなり、答えが矛盾し、上記式を満足する
直径を求めることができず、この場合は無視する。
[Formula 4] X a <W (7) X b > W + 2t (8) X c <2W + t (9) Here, X c = 2X a , and the condition of X c <2 W holds, so X c <2W + t ... (9) is never calculated.
If the diameter of the circle forming the regular octagon is φ, then (7) is (φ / 2) <8 ∴φ <16 (8) is (φ / 2) × 2 sin (360/8)> 8 + 2 ∴φ <14.1 Therefore, the diameter connecting the apex positions is 14.1mm <
It should be φ <16 mm. In this case, if the distance between the electrodes is 2 mm instead of t = 1 mm, then 17 mm <
Since φ <16 mm, the answers are inconsistent, and the diameter satisfying the above formula cannot be obtained. In this case, it is ignored.

【0025】つぎに帯状電極の幅をW=8mm,電極間
の間隔をt=2mmとした場合には、図7(d)に示す
ように正9角形の頂点位置と中心位置に集電子を配置し
たときが最小角数(図7(c)でW=8mm,t=2m
mとした場合、答えが矛盾するので、正8角形は成り立
たず、1つ角数の多い9角形が最小角数となる)とな
り、この頂点位置を結んだ直径は以下の計算式で求める
ことができる。
Next, when the width of the strip electrodes is W = 8 mm and the distance between the electrodes is t = 2 mm, current collectors are collected at the apex position and the center position of the regular hexagon as shown in FIG. 7 (d). The minimum number of angles when placed (W = 8 mm, t = 2 m in FIG. 7 (c))
If m, the answer is inconsistent, so a regular octagon does not hold, and a polygon with a large number of ones becomes the minimum number of angles), and the diameter connecting this vertex position should be calculated by the following formula. You can

【式5】Xa <W …(10) Xb >W+2t …(11) Xc <2W+t …(12) 正9角形を形成する円の直径をφとすると、 (10) 式は (φ/2)×cos {360 /(9+2)}<8 ∴ φ<17 (11) 式は (φ/2)×[1+ cos{ (360 ×1.5)/9 }] >8+4 ∴ φ>16 (12) 式は (φ/2)×[1+ cos{360 /(9 ×2 )}] <2×8+2 ∴ φ<18.5 なお、図7(d)の例は、(A)’式に該当する例であ
るが、たとえCの寸法がW≦C≦W+2tになったとし
ても一方の帯状電極にの集電子が、もう一方の帯
状電極に《10》の集電子が接触するので問題はな
い。またDの寸法がW≦D≦W+2tになったとしても
一方の帯状電極にの集電子が、もう一方の帯状電
極に《10》の集電子が接触するので問題はない。こ
れは、条件(iv)に該当する例であり、の集電子に対
するの集電子,の集電子に対するの集電子
の場合は、(B)式の適用を除くものである。したがっ
て、頂点位置を結んだ直径は、16mm<φ<17mm
であれば良い。なお、上記《10》の《》記号は○を意味
するものである。
[Formula 5] X a <W (10) X b > W + 2t (11) X c <2W + t (12) If the diameter of the circle forming the regular hexagon is φ, then equation (10) becomes (φ / 2) × cos {360 / (9 + 2)} <8 ∴φ <17 (11) The formula is (φ / 2) × [1+ cos {(360 × 1.5) / 9}] > 8 + 4 ∴φ> 16 (12) The formula is (φ / 2) × [1 + cos {360 / (9 × 2)}] <2 × 8 + 2 ∴φ <18.5. The example of FIG. 7D corresponds to the formula (A) '. As an example, even if the dimension of C is W ≦ C ≦ W + 2t, there is no problem because the current collector of one strip electrode contacts the current collector of << 10 >> to the other strip electrode. Even if the dimension of D is W ≦ D ≦ W + 2t, there is no problem because the current collector of one strip electrode contacts the current collector of <10> to the other strip electrode. This is an example corresponding to the condition (iv), and in the case of the current collection for the current collection of and the current collection for the current collection of, the application of the formula (B) is excluded. Therefore, the diameter connecting the vertex positions is 16mm <φ <17mm
Is fine. The << symbol in << 10 >> above means ○.

【0026】つぎに(B)式および条件(i)(ii)(iii)(i
v)にしたがって図7(a)(b)(c)(d)のXa ,
b , Xc を決定する方法について説明する。図7
(a)において、Xn <Wを考察すると、この式は条件
(ii) の前段に対応するものである。条件 (ii) の前段
では例えばの集電子がギャップに落ちたときがギャ
ップに最も多く集電子が落ちた場合であり、2つが接触
する集電子はの集電子であり、(でも良い)の
集電子からの最大寸法の集電子は(からはとな
る)となる。したがってXa はとを結ぶ距離とな
る。図7(b)(c)(d)についても同様にしてXa
を決定している。図7(b)の場合には例えばの2
つの集電子が落ちたとき、図7(c)は例えばの
3つの集電子が落ちたとき、図7(d)は例えばの
2つの集電子が落ちたときがギャップに最も多く集電子
が落ちた場合である。
Next, the equation (B) and the conditions (i) (ii) (iii) (i
According to v), X a , in FIGS. 7 (a) (b) (c) (d),
A method of determining Xb and Xc will be described. Figure 7
Considering X n <W in (a), this equation is
It corresponds to the preceding stage of (ii). In the preceding stage of condition (ii), when the current collector of, for example, falls into the gap, the most current collector falls in the gap, and the current collectors that contact two are current collectors of (and may be) The maximum size current collector from the electron is (and becomes). Therefore, X a is the distance connecting and. Similarly for FIGS. 7B, 7C and 7D, X a
Is determined. In the case of FIG. 7B, for example, 2
When two current collectors fall, for example, FIG. 7 (c) shows three current collectors fall, and FIG. 7 (d) shows two current collectors fall, for example. That is the case.

【0027】図7(a)において条件 (ii) の中段では
(W+2t)以上のときXn はXbと定義し、Xn がW
より大きい場合には、の距離をXb とおけば、Xb
が(W+2t)以上であればそれぞれの帯状電極に常に
接触する集電子が2以上になる。よってXb はの距
離である。図7(b)(c)(d)も同様にして決定し
ている。図7(a)において条件 (ii) の後段では(2
W+t)以下のときXn はXcと定義し、Xn がWより
大きい場合には、の距離をXc とおけば、Xc
(2W+t)以下であればそれぞれの帯状電極に常に接
触する集電子が2以上になる。よってXc はの距離
である。図7(b)(c)(d)も同様にして決定して
いる。
In the middle stage of condition (ii) in FIG. 7A, when (W + 2t) or more, X n is defined as X b, and X n is W.
If it is larger than X b , the distance of X b
If (W + 2t) or more, the number of current collectors that are always in contact with each strip electrode is 2 or more. Therefore, X b is the distance of. 7 (b), (c) and (d) are similarly determined. In the latter part of condition (ii) in FIG.
W + t) or less when X n is defined as X c, if X n is greater than W, if put the distance between X c, always in contact with the respective strip electrodes if X c is (2W + t) or less There are more than two current collectors. Therefore, X c is the distance of. 7 (b), (c) and (d) are similarly determined.

【0028】図8は、集電子と移動体電極端子との接続
構造を示す図である。それぞれの集電子の出力は、それ
ぞれ電流方向が逆方向の2つのダイオードに接続され、
このダイオードの正方向同士の出力線を1つにまとめて
陽極とし、ダイオードの逆方向同士の出力線を1つにま
とめて陰極とし、移動体側に電力が供給される。このよ
うに接続してあるので、移動体が移動して集電子の接触
する帯状電極が変わっても極性が変化することなく常に
移動体の陽極側には+電位が、陰極側には−電位が接続
される。各ダイオードはまた給電板上の陽極と陰極が短
絡しないようにする機能も兼ねている。さらに、このダ
イオード回路は整流であるため、給電板に供給する電圧
は直流,交流のいずれを接続しても良い。
FIG. 8 is a diagram showing a connection structure between the current collector and the moving body electrode terminal. The output of each collector is connected to two diodes whose current directions are opposite,
The output lines of the diodes in the positive direction are combined into one, and the output lines of the diodes in the opposite direction are combined into one to form the cathode, and electric power is supplied to the moving body side. Since they are connected in this way, the polarity does not change even if the moving body moves and the strip electrode in contact with the current collector changes, and the positive potential is always on the anode side of the moving body and the negative potential is on the cathode side. Are connected. Each diode also has a function of preventing a short circuit between the anode and the cathode on the power supply plate. Further, since this diode circuit is a rectifier, the voltage supplied to the power supply plate may be either DC or AC.

【0029】[0029]

【発明の効果】以上、説明したように本発明は、従来例
とは異なり、給電板を絶縁板と導電層を交互に積層して
構成し、導電層の少なくとも1つを陽極配電体に、他の
少なくとも1つを陰極配電体とし、これらを介して帯状
電極に電力を供給する構成であるので、配電ルートにお
ける電気抵抗が低くなり、配電ルートにおける無用な電
力消費を少なくすることができるとともに、各移動体へ
の電力供給をほぼ等しくすることができる。例えば、最
低限の積層構造にした場合、すなわち陽極配電体と陰極
配電体をそれぞれ1面ずつ占有した場合、電気抵抗は従
来例に比べおおよそ1/3に抑えることができた。ま
た、主に陽極配電体,陰極配電体によって電力供給する
ため、帯状電極の厚みを薄くすることができるので、集
電子の電極乗り越え段差を小さくし集電子の摺動の抵抗
を少なくでき移動体を円滑に走行させることができる。
As described above, according to the present invention, unlike the conventional example, the power feeding plate is constructed by alternately laminating the insulating plates and the conductive layers, and at least one of the conductive layers is used as the anode current distributor. At least one other is used as a cathode distributor, and power is supplied to the strip electrodes via these, so that the electric resistance in the distribution route is reduced, and unnecessary power consumption in the distribution route can be reduced. , It is possible to make the power supply to each mobile body substantially equal. For example, in the case of the minimum laminated structure, that is, when the anode distributor and the cathode distributor are occupied by one surface, the electrical resistance can be suppressed to about 1/3 of that of the conventional example. In addition, since the power is supplied mainly by the anode and cathode distributors, the thickness of the strip electrodes can be made thin, so that the step difference over the current collector can be reduced and the sliding resistance of the collector can be reduced. Can be run smoothly.

【0030】さらに、複数の給電板を並べてフィールド
内に設置する場合であって半円状のコーナー部の給電板
を複数に分割するとき、導電層を4層以上とし、表およ
び裏の表面層を帯状電極にし一方の帯状電極側の透視方
向から見た他の帯状電極の形状を同一にすれば、1種類
の給電板を2枚使用し、この内の1枚を裏返しで対象の
位置に配置することができ給電板の共通部品化を図るこ
とができ、コストの低減および部品管理が容易になると
いう効果がある。また、多積層構造であるので、従来例
に比較し反り,ゆがみは少なく、剛性も増加し、移動体
への安定な電力供給に寄与できる。
Further, when a plurality of power feed plates are arranged side by side in a field and the power feed plate at the semicircular corner portion is divided into a plurality of parts, the conductive layer is made into four layers or more, and the front and back surface layers are formed. If the strip-shaped electrode is used as the strip-shaped electrode and the shape of the other strip-shaped electrode viewed from the perspective direction on the side of one strip-shaped electrode is the same, two sheets of one type of power supply plate are used and one of them is turned over to the target position. It is possible to arrange the power supply plates, and it is possible to use common parts for the power supply plate, which has the effects of reducing costs and facilitating component management. In addition, since it has a multi-layer structure, it has less warpage and distortion than the conventional example, and has increased rigidity, which can contribute to stable power supply to the moving body.

【0031】本発明は、移動体の姿勢がいかなる場合で
も集電子条件が等しくなる正多角形の頂点位置または頂
点位置と中心位置に集電子を設け、1番過酷な状態、す
なわち複数の集電子が帯状電極間の1ギャップ上にあり
給電できない状態でも、帯状電極の陽極および陰極にそ
れぞれが予め決められた数以上の集電子が接触し、この
条件を必要最小限の集電子総数で実現できる構成にして
あるので、以下のような効果が得られる。すなわち必要
最小限の集電子数で、常に接触している集電子数を多く
できるので、十分な接触を得ることでき、上記多積層構
造の給電板と相まって移動体への電力供給を安定化でき
る。
In the present invention, the current collector is provided at the apex position or the apex position and the central position of the regular polygon where the current collecting conditions are the same regardless of the posture of the moving body, and the most severe condition, that is, a plurality of current collecting devices is provided. Even if power is not supplied due to the fact that there is one gap between the strip electrodes, each of the anode and cathode of the strip electrodes comes into contact with a predetermined number or more of current collectors, and this condition can be realized with the minimum necessary total number of current collectors. Since it is configured, the following effects can be obtained. That is, since the number of current collectors that are constantly in contact can be increased with the minimum required number of current collectors, sufficient contact can be obtained, and the power supply to the moving body can be stabilized in combination with the power supply plate having the multi-layer structure. .

【0032】そして、移動体が走行し、帯状電極の乗り
越え段差あるいは給電板のつなぎ目段差では1,2本の
集電子が引っかかり易くなるが、上述したように給電板
の帯状電極を薄くしているので、段差部の乗り越え抵抗
が少なくなる上、総合的に十分な接触抵抗を得られる程
度に1本あたりの集電子の付勢圧を小さくすることがで
きるので、集電子の引っかかりが少なくなり、移動体を
スムーズに走行させることができるとともに集電子の磨
耗も抑制され耐久性を向上させることができる。また、
最小の集電子数で常に接触している集電子数を多くし、
十分な接触を得ているので、給電板の掃除期間を延長で
き、メンテナンスが簡易になる。
Then, the moving body travels and one or two current collectors are easily caught at the step over the strip electrodes or the joint step between the feed plates, but the strip electrodes on the feed plate are made thin as described above. Therefore, the resistance to jump over the step is reduced, and the biasing pressure of each current collector can be reduced to the extent that a sufficient contact resistance can be obtained overall, so that the current collection is less likely to be caught. It is possible to smoothly move the moving body, suppress abrasion of the current collector, and improve durability. Also,
Increase the number of current collectors that are in constant contact with the minimum number of current collectors,
Since sufficient contact is obtained, the period for cleaning the power supply plate can be extended and maintenance is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による移動体への給電装置を適用したゲ
ーム装置の概略斜視図である。
FIG. 1 is a schematic perspective view of a game device to which a power supply device for a moving body according to the present invention is applied.

【図2】本発明による給電装置を設けた移動体の側面図
である。
FIG. 2 is a side view of a moving body provided with a power supply device according to the present invention.

【図3】(a)は給電板の積層構造の実施例を示す断面
図、(b)はAーA’断面図である。
3A is a sectional view showing an embodiment of a laminated structure of a power feeding plate, and FIG. 3B is a sectional view taken along the line AA ′.

【図4】集電器の構造を示す側面図である。FIG. 4 is a side view showing a structure of a current collector.

【図5】給電板の帯状電極と集電子の接触状態を説明す
るための図である。
FIG. 5 is a diagram for explaining a contact state between a strip electrode of a power supply plate and a current collector.

【図6】必要最小限の集電子数で所定以上の接触する集
電子数を決める式を導き出す方法を説明するための図で
ある。
FIG. 6 is a diagram for explaining a method of deriving an equation that determines the number of current collectors that are in contact with each other at a predetermined number or more with a minimum required number of current collectors.

【図7】6角形〜9角形の各頂点および中心点に集電子
を配置したときの条件を説明するための図である。
FIG. 7 is a diagram for explaining conditions when a current collector is arranged at each vertex and center point of a hexagon to a hexagon.

【図8】集電子と移動体電極端子との接続構造を示す図
である。
FIG. 8 is a diagram showing a connection structure between a current collector and a mobile body electrode terminal.

【符号の説明】[Explanation of symbols]

1…ゲーム機 2…模型体 3…ターミナル 4…操作パネル 5…コイン投入口 6…コイン払出口 7…モニタ 8…ゲームフィールド 9…集電器 10…集電子 11…給電板 12,13,18…独立車輪 14,15,19…キャスタ 16…平行リンク 17…操舵兼駆動用モータ 20…発信器 21…位置発信板 22…補強板 23…走行路 24…補強材 25…磁石 26…トーションスプリング 30…陽極配電体 31…陰極配電体 32…貫通孔 33…帯状電極(陽極) 34…陰極端子電極 35…陽極端子電極 36…帯状電極(陰極) 37…絶縁板 38…導電体 40…集電子支持体 41…圧縮スプリング 43…ダイオード 44…移動体 DESCRIPTION OF SYMBOLS 1 ... Game machine 2 ... Model body 3 ... Terminal 4 ... Operation panel 5 ... Coin slot 6 ... Coin payout slot 7 ... Monitor 8 ... Game field 9 ... Current collector 10 ... Current collector 11 ... Power supply plate 12, 13, 18 ... Independent wheels 14, 15, 19 ... Casters 16 ... Parallel link 17 ... Steering and driving motor 20 ... Transmitter 21 ... Position transmitting plate 22 ... Reinforcing plate 23 ... Traveling path 24 ... Reinforcing material 25 ... Magnet 26 ... Torsion spring 30 ... Anode distributor 31 ... Cathode distributor 32 ... Through hole 33 ... Strip electrode (anode) 34 ... Cathode terminal electrode 35 ... Anode terminal electrode 36 ... Strip electrode (cathode) 37 ... Insulating plate 38 ... Conductor 40 ... Current collector support 41 ... Compression spring 43 ... Diode 44 ... Moving body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ゲーム機のフィールド内を自在に移動す
る移動体に給電するため、フィールド内の上方または下
方に設けられ、交互に陽極,陰極になるように電源に接
続される帯状電極を表面層に形成した給電板と、各移動
体に搭載され、その移動体の移動に伴い多数の集電子が
前記給電板の表面層に押し当てられて摺動させられるこ
とにより、前記給電板の帯状電極から移動体に電力を供
給する集電器とからなる給電装置において、 前記給電板は、絶縁板と導電層を交互に積層して構成
し、少なくとも前記導電層を表面層も含めて3層以上に
し、 表面層の導電層の少なくとも1つは、一定の間隔を隔て
て平行に繰り返し配置した帯状電極とし、他の導電層の
少なくとも1つは陽極配電体、さらに他の導電層の少な
くとも1つは陰極配電体として電源に接続し、 前記帯状電極の相隣り合う電極は、交互に陰極と陽極に
なるように内壁に導電体を有する複数の貫通孔によって
前記陽極配電体と陰極配電体に接続したことを特徴とす
る移動体への給電装置。
1. To supply electric power to a moving body that freely moves in the field of a game machine, a surface is provided with a strip electrode provided above or below the field and connected to a power source so as to alternately serve as an anode and a cathode. The power supply plate formed in layers and mounted on each moving body, and a large number of current collectors are pressed against the surface layer of the power supply plate and slid along with the movement of the moving body, thereby forming a strip shape of the power supply plate. In a power feeding device including a current collector that supplies power from an electrode to a moving body, the power feeding plate is configured by alternately laminating insulating plates and conductive layers, and at least three conductive layers including a surface layer are formed. At least one of the conductive layers of the surface layer is a strip electrode repeatedly arranged in parallel at regular intervals, and at least one of the other conductive layers is at least one of the anode current collector and another conductive layer. Is the cathode distributor Characterized in that adjacent electrodes of the strip-shaped electrodes are connected to the anode power distribution body and the cathode power distribution body by a plurality of through holes each having a conductor on the inner wall so as to alternately serve as a cathode and an anode. The power supply device to the moving body.
【請求項2】 ゲーム機のフィールド内を自在に移動す
る移動体に給電するため、フィールド内の上方または下
方に設けられ、交互に陽極,陰極になるように電源に接
続される帯状電極を表面層に形成した給電板と、各移動
体に搭載され、その移動体の移動に伴い多数の集電子が
前記給電板の表面層に押し当てられて摺動させられるこ
とにより、前記給電板の帯状電極から移動体に電力を供
給する集電器とからなる給電装置において、 必要最小限の集電子数で前記帯状電極の陽極および陰極
にそれぞれ予め決められた数以上の集電子を常に接触さ
せるため、前記集電器は集電子を正多角形の各頂点に、
または各頂点と中心点に配置して構成され、 前記給電板の帯状電極と集電子は、以下の式および条件
およびを満たすことを特徴とする移動体への給
電装置。 Xn <W, W+2t<Xn <2W+t ただし、W;帯状電極の幅 t;帯状電極間の間隔 Xn ;複数の集電子を結ぶ直線からこれと直交し任意の
集電子までの寸法 条件(i) 最小集電子数は、両極分の常時接触数+ギャ
ップの上に並ぶ集電子数以上であること。 条件(ii) W値未満のXn (Xn <W)はXa と定義
し、このXa は帯電電極間のギャップに落ちる集電子の
数が最も多い場合、そのギャップに落ちた集電子から接
触している集電子が予め決められた数に達するまでの集
電子との間の寸法であり、かつ、Xn の内の最大寸法。
(W+2t)以上のXn (W+2t<Xn )はXb と定
義し、(2W+t)以下のXn (Xn <2W+t)はX
c と定義する。 条件(iii) それぞれの帯状電極に常に接触する集電子の
予め決められた数が奇数の場合、中心位置に1つの集電
子を加える。 条件(iv) 上記式を満たさない場合、他の集電子が接触
できる場合を除く。
2. A surface of a strip-shaped electrode, which is provided above or below the field and is connected to a power source so as to alternately serve as an anode and a cathode, in order to supply power to a moving body that freely moves in the field of a game machine. The power supply plate formed in layers and mounted on each moving body, and a large number of current collectors are pressed against the surface layer of the power supply plate and slid along with the movement of the moving body, thereby forming a strip shape of the power supply plate. In a power feeding device consisting of a current collector that supplies electric power from the electrodes to the moving body, in order to constantly contact a predetermined number or more of current collectors with the anode and cathode of the strip electrode with a minimum required number of current collectors, The current collector has a current collector at each vertex of a regular polygon,
Alternatively, the power feeding device for a moving body is configured by being arranged at each apex and a center point, and the strip electrode and the current collector of the power feeding plate satisfy the following equations and conditions and. X n <W, W + 2t <X n <2W + t where W: width of the strip electrodes t; spacing between the strip electrodes X n ; dimension condition from a straight line connecting a plurality of current collectors to an arbitrary current collector orthogonal thereto ( i) The minimum number of current collectors must be equal to or greater than the number of constant contacts of both poles + the number of current collectors lined up above the gap. Condition (ii) X n (X n <W) less than the W value is defined as X a, and this X a is the current collector that has fallen in the gap between the charging electrodes when the number of the current collectors is the largest. Is the dimension between the current collector and the current collector until it reaches a predetermined number, and is the maximum dimension of X n .
X n (W + 2t <X n ) of (W + 2t) or more is defined as X b, and X n (X n <2W + t) of (2W + t) or less is X.
Define as c . Condition (iii) When the predetermined number of current collectors that are in constant contact with each strip electrode is an odd number, one current collector is added at the center position. Condition (iv) Except when the above formula is not satisfied, other current collectors can come into contact.
JP20389595A 1995-07-18 1995-07-18 Power supply device for moving objects Expired - Lifetime JP3558417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20389595A JP3558417B2 (en) 1995-07-18 1995-07-18 Power supply device for moving objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20389595A JP3558417B2 (en) 1995-07-18 1995-07-18 Power supply device for moving objects

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004125112A Division JP3810415B2 (en) 2004-04-21 2004-04-21 Power supply device for moving body

Publications (2)

Publication Number Publication Date
JPH0928922A true JPH0928922A (en) 1997-02-04
JP3558417B2 JP3558417B2 (en) 2004-08-25

Family

ID=16481500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20389595A Expired - Lifetime JP3558417B2 (en) 1995-07-18 1995-07-18 Power supply device for moving objects

Country Status (1)

Country Link
JP (1) JP3558417B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6840837B2 (en) 2001-01-10 2005-01-11 Konami Corporation Racing game machine
US7235013B2 (en) 2000-12-07 2007-06-26 Konami Corporation Game machine using self-propelled members
WO2008020463A2 (en) * 2006-08-17 2008-02-21 Sequoia Automation S.R.L. Quick-recharging energy feeding system for means of transport with electric traction
CN110247056A (en) * 2018-03-30 2019-09-17 宁德时代新能源科技股份有限公司 Current collector, pole piece thereof and electrochemical device
US11005105B2 (en) 2018-09-30 2021-05-11 Contemporary Amperex Technology Co., Limited Current collector, electrode plate and electrochemical device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235013B2 (en) 2000-12-07 2007-06-26 Konami Corporation Game machine using self-propelled members
US6840837B2 (en) 2001-01-10 2005-01-11 Konami Corporation Racing game machine
WO2008020463A2 (en) * 2006-08-17 2008-02-21 Sequoia Automation S.R.L. Quick-recharging energy feeding system for means of transport with electric traction
WO2008020463A3 (en) * 2006-08-17 2008-04-17 Sequoia Automation S R L Quick-recharging energy feeding system for means of transport with electric traction
US7984774B2 (en) 2006-08-17 2011-07-26 Sequoia Automation S.R.L. Quick-recharging energy feeding system for means of transport with electric traction
CN110247056A (en) * 2018-03-30 2019-09-17 宁德时代新能源科技股份有限公司 Current collector, pole piece thereof and electrochemical device
US11005105B2 (en) 2018-09-30 2021-05-11 Contemporary Amperex Technology Co., Limited Current collector, electrode plate and electrochemical device

Also Published As

Publication number Publication date
JP3558417B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
CN110901426B (en) Charging device, unmanned aerial vehicle, charging panel and unmanned aerial vehicle charging system
JPH0580970B2 (en)
US8470084B2 (en) Electric precipitator and high voltage electrode thereof
JP2004148021A (en) Self-traveling cleaner
JPH03123544U (en)
JPH0928922A (en) Power feeder for moving object
CN110774838A (en) Multi-position systematized sensor for tire and tire comprising same
JP3810415B2 (en) Power supply device for moving body
US6791788B2 (en) Segmented power strip for an automated robotic device and method for joining same
US20190198844A1 (en) Conductive sheet for connecting batteries and battery connecting module utilizing the same
JP2000190759A (en) Power supply system for movable body
US9871185B2 (en) Drive device using polymer actuator
CN207071947U (en) Robot and its collision detection mechanism
CN106527451B (en) On-screen interactive robot
JP2006174548A (en) Collector wheel for cordless power transmission
JP2008054438A (en) Floor power supply system
CN1478670A (en) Strip and block type power suplly network
JPS61114178A (en) Matrix array type ultrasonic oscillator
CN113595441B (en) Motor and electronic device
KR20020033299A (en) robot power supply apparatus for robot soccer gaming apparatus
JPH0746706A (en) Current feeding mechanism for movable substance
JP3602451B2 (en) Horse racing game machine with self-propelled body
US20230006321A1 (en) Power storage module
GB2356356A (en) Electric powered vehicle and slotless track.
JP3025508U (en) Static eliminator for pachinko game machines

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040518

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term