[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09287850A - Absorption type cold/hot heat generating device - Google Patents

Absorption type cold/hot heat generating device

Info

Publication number
JPH09287850A
JPH09287850A JP8100817A JP10081796A JPH09287850A JP H09287850 A JPH09287850 A JP H09287850A JP 8100817 A JP8100817 A JP 8100817A JP 10081796 A JP10081796 A JP 10081796A JP H09287850 A JPH09287850 A JP H09287850A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
temperature
water
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8100817A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamada
哲也 山田
Noboru Kobayashi
昇 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Yazaki Corp
Original Assignee
Osaka Gas Co Ltd
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Yazaki Corp filed Critical Osaka Gas Co Ltd
Priority to JP8100817A priority Critical patent/JPH09287850A/en
Publication of JPH09287850A publication Critical patent/JPH09287850A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize control of capacity during cooling operation. SOLUTION: This absorption type cold/hot heat generating device comprises an outdoor machine 100 to control an amount of a water refrigerant flowing from a condenser 4 to a water refrigerant storage chamber 6B of a vaporizer 6 by a water refrigerant proportional valve 11 located in a water refrigerant line 11A; a refrigerant liquid pipe 50 for a secondary refrigerant connected to the lower end of a vaporizing coil 6A in the vaporizer 6 and one or more indoor machines 52 and 53 through a U-shaped piping arranged in a position lower than those of indoor machines 52 and 53 ; a refrigerant pump 57 arranged in a U-shaped piping at the lower end of the refrigerant liquid pipe 50; and a refrigerant gas pipe 51 connected to the upper end of the vaporizing coil 6A and the respective indoor machines 52 and 53. A control means 59 is provided to detect the opening of the valve of the water refrigerant proportional valve 11 by a vaporizer temperature sensor 17 for the vaporizer 6 and finely open the valve at a vaporizer temperature during cooling rated operation and close at a low grade to the high temperature side higher than the temperature of the vaporizer so that the valve opening is controlled in two stages in proportion to the temperature of the vaporizer, and open the valve at a steep grade to the low temperature side lower than the temperature of the vaporizer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空調装置に係り、
特に凝縮器から蒸発器への水冷媒量を制御する水冷媒比
例弁の弁開度を2段階に制御し、低負荷時の冷房の立上
り時間を短縮するのに好適な吸収式冷温熱発生装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner,
In particular, an absorption type cold / heat generating device that is suitable for controlling the valve opening of a water-refrigerant proportional valve for controlling the amount of water-refrigerant from a condenser to an evaporator in two stages and shortening the rise time of cooling at low load Regarding

【0002】[0002]

【従来の技術】従来の吸収式冷温熱発生装置において
は、空調装置に用いられるもので図4に示すように、冷
温熱を発生する吸収冷温水機(室外機)100と、この
吸収冷温水機100に冷却水管40,41で接続され冷
却水を冷却するクーリングタワー42と、冷却水管41
に介装され冷却水をクーリングタワー42から吸収冷温
水機100に循環させる冷却水循環ポンプ14と、吸収
冷温水機100に冷温水管43,44で接続され空調対
象空間に配置されて空間の空気との熱交換を行う図示し
ない空調用室内機(室内機)と、冷温水管43に介装さ
れ冷温水管43,44に充填された二次冷媒を吸収冷温
水機100と空調用室内機との間に循環させる冷温水循
環ポンプ15とを含んで構成されている。
2. Description of the Related Art In a conventional absorption type cold / hot heat generator, which is used for an air conditioner, as shown in FIG. 4, an absorption cold / hot water generator (outdoor unit) 100 and an absorption cold / hot water generator are provided. Cooling tower 42, which is connected to the machine 100 by cooling water pipes 40 and 41 to cool the cooling water, and a cooling water pipe 41
Between the cooling water circulation pump 14 which is installed in the cooling tower 42 and circulates the cooling water from the cooling tower 42 to the absorption chiller-heater 100, and the air in the space which is connected to the absorption chiller-heater 100 by the cold-water pipes 43 and 44 and arranged in the air-conditioned space. An air conditioning indoor unit (indoor unit) (not shown) that performs heat exchange and a secondary refrigerant that is interposed in the cold / hot water pipe 43 and filled in the cold / hot water pipes 43, 44 is absorbed between the cold / hot water unit 100 and the indoor unit for air conditioning. It is configured to include a cold / hot water circulation pump 15 for circulation.

【0003】そして空調用室内機に対して、クーリング
タワー42と併せて通常、室外機と呼ばれる吸収冷温水
機100は、燃料を燃焼させその熱で希溶液を加熱する
高温再生器1と、この高温再生器1で加熱された希溶液
から冷媒蒸気と中間濃溶液とを分離する分離器2と、分
離された冷媒蒸気を熱源として中間濃溶液を加熱してさ
らに二次冷媒蒸気を発生させる低温再生器3と、低温再
生器3を通過した冷媒蒸気及び低温再生器3で発生した
二次冷媒蒸気を冷却して凝縮液化させ液冷媒を生成する
凝縮器4と、凝縮器4で生成された液冷媒を内装した冷
媒分配器6Bから同じく内装した蒸発コイル上に滴下蒸
発させ蒸発コイル中の二次冷媒を冷却する蒸発器6と、
蒸発器6で蒸発した冷媒蒸気を濃溶液に吸収させ希溶液
を生成する吸収器5と、希溶液を加圧し低温溶液熱交換
器8及び高温溶液熱交換器7の被加熱流体側を経て高温
再生器1に送りこむ溶液循環ポンプ9と、分離器2の底
部と蒸発器6の底部を冷暖切換弁10を介して連通する
管路10Aと、低温溶液熱交換器8の加熱流体出側を吸
収器5の上部に接続する濃溶液管8Aと、濃溶液管8A
と吸収器5の下部を溶液バイパス弁13を介して接続す
る管路13Aと、濃溶液管8Aと蒸発器5に内装された
水冷媒貯蔵室6Bを凍結防止弁12を介して連通する管
路12Aと、水冷媒貯蔵室6Bに装着され水冷媒貯蔵室
6B内の冷媒の温度を検知する蒸発器温度センサ17
と、凝縮器4から水冷媒貯蔵室6Bに液冷媒を導く水冷
媒管路11Aと、水冷媒管路11Aに介在する水冷媒比
例弁11とを含んで構成されている。
In addition to the cooling tower 42, the absorption chiller-heater 100, which is usually called an outdoor unit for the air conditioning indoor unit, includes a high temperature regenerator 1 for burning fuel and heating the dilute solution with the heat, and this high temperature regenerator. A separator 2 that separates a refrigerant vapor and an intermediate concentrated solution from a dilute solution heated by a regenerator 1, and a low temperature regeneration that heats the intermediate concentrated solution using the separated refrigerant vapor as a heat source to further generate a secondary refrigerant vapor. , A condenser 4 that cools and condenses and liquefies the refrigerant vapor that has passed through the low-temperature regenerator 3 and the secondary refrigerant vapor that has occurred in the low-temperature regenerator 3 to produce a liquid refrigerant, and the liquid produced in the condenser 4. An evaporator 6 that cools the secondary refrigerant in the evaporation coil by dropping and evaporating the refrigerant from the refrigerant distributor 6B on the evaporation coil that is also installed,
The absorber 5 that absorbs the refrigerant vapor evaporated in the evaporator 6 into a concentrated solution to generate a dilute solution, and the dilute solution is pressurized to pass through the heated fluid side of the low temperature solution heat exchanger 8 and the high temperature solution heat exchanger 7 to reach a high temperature. The solution circulation pump 9 which feeds into the regenerator 1, the pipe line 10A which connects the bottom of the separator 2 and the bottom of the evaporator 6 via the cooling / heating switching valve 10 and the heating fluid outlet side of the low temperature solution heat exchanger 8 are absorbed. Concentrated solution pipe 8A connected to the upper part of the vessel 5 and concentrated solution pipe 8A
And a line 13A for connecting the lower part of the absorber 5 via a solution bypass valve 13, and a line for communicating the concentrated solution pipe 8A with a water refrigerant storage chamber 6B installed in the evaporator 5 via an antifreezing valve 12. 12A and an evaporator temperature sensor 17 attached to the water-refrigerant storage chamber 6B for detecting the temperature of the refrigerant in the water-refrigerant storage chamber 6B.
And a water-refrigerant conduit 11A for guiding the liquid refrigerant from the condenser 4 to the water-refrigerant storage chamber 6B, and a water-refrigerant proportional valve 11 interposed in the water-refrigerant conduit 11A.

【0004】また、分離器2で分離された中間濃溶液が
高温溶液熱交換器7の加熱流体側を経て低温再生器3に
導かれ、低温再生器3で冷媒を蒸発させて濃溶液となっ
たのち、低温溶液熱交換器8の加熱流体側を経て濃溶液
管8Aに導かれるように管路が構成されている。吸収器
5及び凝縮器4にはそれぞれ冷却水コイルが内装され、
吸収器5の冷却水コイルの出口は凝縮器4の冷却水コイ
ルの入り口に接続されていて、吸収器5の冷却水コイル
の入り口は冷却水管41に、凝縮器4の冷却水コイルの
出口は冷却水管40に、それぞれ接続されている。冷温
水管43は蒸発器6の蒸発コイルの入り側に、冷温水管
44は蒸発器6の蒸発コイルの出側に、それぞれ接続さ
れ、冷温水管44の蒸発コイル出口近傍には二次冷媒の
温度を検知する冷水出口温度センサ16が装着されてい
る。
Further, the intermediate concentrated solution separated by the separator 2 is guided to the low temperature regenerator 3 via the heating fluid side of the high temperature solution heat exchanger 7, and the refrigerant is evaporated in the low temperature regenerator 3 to become a concentrated solution. After that, the pipe line is configured so as to be guided to the concentrated solution pipe 8A via the heating fluid side of the low temperature solution heat exchanger 8. Each of the absorber 5 and the condenser 4 is internally provided with a cooling water coil,
The outlet of the cooling water coil of the absorber 5 is connected to the inlet of the cooling water coil of the condenser 4, the inlet of the cooling water coil of the absorber 5 is the cooling water pipe 41, and the outlet of the cooling water coil of the condenser 4 is Each is connected to the cooling water pipe 40. The cold / hot water pipe 43 is connected to the inlet side of the evaporator coil of the evaporator 6, and the cold / hot water pipe 44 is connected to the outlet side of the evaporator coil of the evaporator 6. A cold water outlet temperature sensor 16 to be detected is mounted.

【0005】室内機と室外機との間で循環して熱を搬送
する二次冷媒として、相変化をしない流体、一般に液体
が用いられてきたが、近年、二次冷媒に相変化を行わせ
ることにより、単位流量あたりの熱搬送量を増加させる
ものが考案されている。図5はそのような構成の例を示
すもので、図4に示す構成のうち、冷温水管43,44
に代えて冷媒液管50及び冷媒ガス管51が蒸発コイル
の下端及び上端にそれぞれ接続されている。冷媒液管5
0及び冷媒ガス管51の他端は、蒸発コイルよりも下方
に配置された複数の室内機52,53の数だけ分岐され
ており、冷媒液管50の分岐端は、室内機52,53に
それぞれ内装された熱交換器の下側入り口に膨張弁5
4,55を介して接続され、冷媒ガス管51の分岐端
は、熱交換器の上側入り口にそれぞれ接続されている。
冷媒液管50と蒸発コイルとの接続部近傍には、二次冷
媒の温度を検出して電気信号としてコントローラ59に
出力する冷媒液温度センサ21が装着されている。
As the secondary refrigerant that circulates between the indoor unit and the outdoor unit and conveys heat, a fluid that does not change phase, generally a liquid, has been used, but in recent years, the secondary refrigerant is caused to change phase. As a result, a device that increases the amount of heat transfer per unit flow rate has been devised. FIG. 5 shows an example of such a configuration. Among the configurations shown in FIG. 4, the cold / hot water pipes 43, 44 are provided.
Instead, a refrigerant liquid pipe 50 and a refrigerant gas pipe 51 are connected to the lower end and the upper end of the evaporation coil, respectively. Refrigerant liquid pipe 5
0 and the other end of the refrigerant gas pipe 51 are branched by the number of the plurality of indoor units 52, 53 arranged below the evaporation coil, and the branched end of the refrigerant liquid pipe 50 is divided into the indoor units 52, 53. Expansion valve 5 at the lower entrance of each heat exchanger
4, 55, and the branch ends of the refrigerant gas pipes 51 are connected to the upper inlets of the heat exchangers, respectively.
A refrigerant liquid temperature sensor 21 that detects the temperature of the secondary refrigerant and outputs it as an electric signal to the controller 59 is mounted near the connection between the refrigerant liquid pipe 50 and the evaporation coil.

【0006】冷媒液管50は、途中に室内機52,53
よりも低位置に配置された部分があり、そこに冷媒液を
加圧して蒸発コイルに送りこむ冷媒ポンプ57が装着さ
れている。冷媒ポンプ57の吐出側には、逆止弁58が
設けられ、この逆止弁58の出側と冷媒ポンプ57の吸
い込み側とは、冷暖切換弁56を介して接続されてい
る。相変化する二次冷媒(以下単に冷媒ともいう)とし
て、HFC−134aが冷媒液管に充填されている。他
の構成は図3の説明と同じであるので、説明は省略す
る。
The refrigerant liquid pipe 50 is connected to the indoor units 52 and 53 on the way.
There is a portion arranged at a lower position than that, and a refrigerant pump 57 that pressurizes the refrigerant liquid and sends it to the evaporation coil is attached thereto. A check valve 58 is provided on the discharge side of the refrigerant pump 57, and the outlet side of the check valve 58 and the suction side of the refrigerant pump 57 are connected via a cooling / heating switching valve 56. A refrigerant liquid pipe is filled with HFC-134a as a secondary refrigerant (hereinafter, also simply referred to as a refrigerant) that undergoes a phase change. Since the other configurations are the same as those in the description of FIG. 3, the description thereof will be omitted.

【0007】図5に示す空調装置の冷房時の動作は次の
通りである。冷房時には、冷暖切換弁56は開かれてい
る。冷媒蒸気(HFC−134a)は、蒸発器6の蒸発
コイルで冷却凝縮されて冷媒液となり、重力により、冷
媒液管50を下方に流れ、膨張弁54,55を経て各室
内機52,53の熱交換器に流入する。熱交換器に流入
した冷媒液は、空調対象空間の空気の熱を奪って蒸発
し、冷媒蒸気となって冷媒ガス管51を経て上昇し蒸発
器6の蒸発コイルに流入する。室外機は冷房モードで運
転されているから、蒸発器6の蒸発コイルは、その表面
に滴下される水冷媒の蒸発により冷却され、蒸発コイル
に流入してきた冷媒蒸気(HFC−134a)は、凝縮
液化する。この凝縮液化により、蒸発コイル内部の圧力
が低下し、室内機の熱交換器で蒸発した冷媒蒸気は蒸発
器に吸引される。蒸発コイル内部で凝縮液化した冷媒液
は重力で室内機に流入するから、冷房時の冷媒(HFC
−134a)は、自然循環し、ポンプによる冷媒の駆動
を行う必要がない。
The operation of the air conditioner shown in FIG. 5 during cooling is as follows. The cooling / heating switching valve 56 is opened during cooling. The refrigerant vapor (HFC-134a) is cooled and condensed by the evaporator coil of the evaporator 6 to become a refrigerant liquid, flows downward through the refrigerant liquid pipe 50 by gravity, passes through expansion valves 54 and 55, and flows through the indoor units 52 and 53. Flow into heat exchanger. The refrigerant liquid that has flowed into the heat exchanger evaporates by taking the heat of the air in the air-conditioned space, becomes a refrigerant vapor, rises through the refrigerant gas pipe 51, and flows into the evaporation coil of the evaporator 6. Since the outdoor unit is operated in the cooling mode, the evaporation coil of the evaporator 6 is cooled by the evaporation of the water refrigerant dropped on its surface, and the refrigerant vapor (HFC-134a) flowing into the evaporation coil is condensed. Liquefy. Due to this condensation and liquefaction, the pressure inside the evaporating coil decreases, and the refrigerant vapor evaporated in the heat exchanger of the indoor unit is sucked into the evaporator. Since the refrigerant liquid condensed and liquefied inside the evaporation coil flows into the indoor unit by gravity, the refrigerant during cooling (HFC
-134a) circulates naturally and there is no need to drive the refrigerant by a pump.

【0008】冷房運転が開始されると、前記のように、
蒸発コイル内部の圧力が低下し、冷媒ガス管内の飽和冷
媒蒸気が圧力差により蒸発コイル内に流入する。蒸発コ
イル内で凝縮して生成された冷媒液は、冷媒液管50内
を自重で流下し、冷媒液のヘッド(液柱)が上昇してく
る。冷媒の自然循環が成立するためには、(冷媒の液ヘ
ッド)−(冷媒ガスヘッド)が冷媒循環経路の全圧力損
失以上であればよい。つまり、次式を満足する液ヘッド
が形成されるまでは冷媒の自然循環は開始されない。こ
のことは、冷房運転開始時点で蒸発器6に供給される熱
負荷が少ないことを意味する。
When the cooling operation is started, as described above,
The pressure inside the evaporation coil decreases, and the saturated refrigerant vapor in the refrigerant gas pipe flows into the evaporation coil due to the pressure difference. The refrigerant liquid generated by condensation in the evaporation coil flows down in the refrigerant liquid pipe 50 by its own weight, and the head (liquid column) of the refrigerant liquid rises. In order for the natural circulation of the refrigerant to be established, it is sufficient that (refrigerant liquid head)-(refrigerant gas head) is equal to or more than the total pressure loss of the refrigerant circulation path. That is, the natural circulation of the refrigerant is not started until the liquid head satisfying the following equation is formed. This means that the heat load supplied to the evaporator 6 at the start of the cooling operation is small.

【0009】[0009]

【数1】 [Equation 1]

【0010】暖房時には、冷暖切換弁56は閉じられて
いる。冷媒液(HFC−134a)は、蒸発器6の蒸発
コイルで加熱されて冷媒蒸気となり、冷媒ガス管51を
下方に流れ、各室内機52,53の熱交換器に流入す
る。熱交換器に流入した冷媒蒸気は、空調対象空間の空
気に熱を奪われて凝縮液化し、冷媒液となって冷媒液管
を下方に流れて冷媒ポンプ57入り側に流入する。冷媒
液は冷媒ポンプ57で加圧され、蒸発器6の蒸発コイル
に流入して前記のサイクルを繰り返す。このとき、室外
機は暖房モードで運転され、蒸発器6には分離器2で分
離された高温の溶液が導かれ、蒸発コイルはこの熱によ
り加熱される。
During heating, the cooling / heating switching valve 56 is closed. The refrigerant liquid (HFC-134a) is heated by the evaporation coil of the evaporator 6 to become refrigerant vapor, flows through the refrigerant gas pipe 51 downward, and flows into the heat exchangers of the indoor units 52, 53. The refrigerant vapor that has flowed into the heat exchanger is deprived of heat by the air in the air-conditioned space, condensed and liquefied, becomes a refrigerant liquid, flows downward through the refrigerant liquid pipe, and flows into the refrigerant pump 57 inlet side. The refrigerant liquid is pressurized by the refrigerant pump 57, flows into the evaporation coil of the evaporator 6, and repeats the above cycle. At this time, the outdoor unit is operated in the heating mode, the high-temperature solution separated by the separator 2 is guided to the evaporator 6, and the evaporator coil is heated by this heat.

【0011】冷房定格運転条件は、冷却水入口温度32
℃、冷水出口温度7℃及び蒸発器温度6℃である。この
条件で冷房能力を100%出力するようにするが、水冷
媒の濃度調整機構が装着され、溶液の濃度が設定されて
いる。通常、冷却水温度32℃で最大水冷媒量を貯蔵
し、冷却水温度が低下するごとに水冷媒を導出して溶液
を希釈する。水冷媒比例弁11は、蒸発器温度を蒸発器
温度センサ17により検出し、図6及び図7に示すよう
に、蒸発器温度6〜2℃間で比例的に弁開度を全閉より
全開に制御し水冷媒量を調整している。これは全負荷時
は最大溶液濃度として吸収能力を確保し、かつ冷却水低
温時及び部分負荷運転時は、吸収能力増大による水冷媒
の凍結及び溶液の晶析等の負荷側の凍結を防止するた
め、溶液を希釈して吸収能力の増大を押さえ、部分負荷
時の必要水冷媒量を供給することにより、安定した運転
を行いかつ無効冷媒を少なくするものである。
Cooling water inlet temperature 32
C., cold water outlet temperature 7 ° C. and evaporator temperature 6 ° C. Under this condition, 100% of the cooling capacity is output, but the concentration adjustment mechanism of the water refrigerant is installed and the concentration of the solution is set. Usually, the maximum amount of water refrigerant is stored at a cooling water temperature of 32 ° C., and the water refrigerant is drawn out and the solution is diluted every time the cooling water temperature decreases. The water-refrigerant proportional valve 11 detects the evaporator temperature by the evaporator temperature sensor 17, and proportionally opens the valve opening from fully closed to the evaporator temperature of 6 to 2 ° C. as shown in FIGS. 6 and 7. Control to adjust the amount of water refrigerant. This ensures absorption capacity as the maximum solution concentration at full load, and prevents freezing of the load side such as freezing of the water refrigerant and solution crystallization due to increased absorption capacity at low cooling water temperature and partial load operation. Therefore, by diluting the solution to suppress the increase in absorption capacity and supplying the necessary amount of water refrigerant at the time of partial load, stable operation is performed and the amount of ineffective refrigerant is reduced.

【0012】冷房運転開始時には常に冷温水ポンプは運
転されており、冷房立上り時に水冷媒が水冷媒貯蔵室に
溜るまで蒸発器側へ供給しなくても蒸発器温度は下がっ
ていくが、通常、凍結防止弁12が作動する温度(1
℃)まで低下しないため、立上り時間としては問題にな
らない。しかし二次冷媒による自然循環方式では、冷房
時に二次冷媒の搬送動力がないため、立上り時の蒸発器
側への負荷が少ない。すなわち冷房運転開始後、冷媒ガ
ス管内のガス及び冷媒液管中の気泡ガスを蒸発器内へ吸
引し、凝縮させるが、その後、室内機の電子膨張弁が開
いて室内機で蒸発したガスが室外機へ流れ出すまでの
間、図8に示すように、負荷がないので室外機の蒸発器
温度はLT1(1℃)まで低下し、凍結防止弁12を作
動させ、水冷媒回路に溶液を混入させるため、今度は急
激に温度上昇(14℃前後)し、大きな変動を伴う挙動
が起きる。これにより蒸発器能力がなくなり、圧力変動
も大きくなるため、二次冷媒の自然循環がスムーズにい
かなくなる。つまり冷媒液温度と蒸発器温度の追従性が
悪い。
The cold / hot water pump is always operated at the start of the cooling operation, and the evaporator temperature decreases even if the water refrigerant is not supplied to the evaporator side until the water refrigerant accumulates in the water refrigerant storage chamber at the time of cooling start-up. Temperature at which the antifreezing valve 12 operates (1
Since it does not decrease to ℃), there is no problem as the rise time. However, in the natural circulation system using the secondary refrigerant, since there is no power for carrying the secondary refrigerant during cooling, the load on the evaporator side during startup is small. That is, after the start of the cooling operation, the gas in the refrigerant gas pipe and the bubble gas in the refrigerant liquid pipe are sucked into the evaporator and condensed, but after that, the electronic expansion valve of the indoor unit opens and the gas evaporated in the indoor unit is stored outdoors. As shown in FIG. 8, the temperature of the evaporator of the outdoor unit drops to LT1 (1 ° C.) until it flows into the machine, and the antifreezing valve 12 is operated to mix the solution into the water refrigerant circuit. Therefore, this time, the temperature rapidly rises (around 14 ° C.), and the behavior accompanied by a large fluctuation occurs. As a result, the capacity of the evaporator is lost and the pressure fluctuation is increased, so that the natural circulation of the secondary refrigerant cannot be performed smoothly. That is, the followability between the refrigerant liquid temperature and the evaporator temperature is poor.

【0013】[0013]

【発明が解決しようとする課題】従来の吸収式冷温熱発
生装置にあっては、二次冷媒による自然循環方式では、
冷房時に二次冷媒の搬送動力がないため、冷房運転開始
後、冷媒ガス管内のガス及び冷媒液管中の気泡ガスを蒸
発器内へ吸引し凝縮させるが、その後、室内機の電子膨
張弁が開いて室内機で蒸発したガスが室外機へ流れ出す
までの間、室外機の蒸発器温度は1℃まで低下し、凍結
防止弁を作動させ、水冷媒回路に溶液を混入させるた
め、今度は急激に温度上昇し、大きな変動を伴う挙動が
起きる。これにより圧力変動も大きくなるので、二次冷
媒の自然循環がスムーズにいかなくなる問題がある。
In the conventional absorption type cold / heat generating device, the natural circulation system using the secondary refrigerant is
Since there is no power to carry the secondary refrigerant during cooling, after the cooling operation starts, the gas in the refrigerant gas pipe and the bubble gas in the refrigerant liquid pipe are sucked into the evaporator and condensed, but then the electronic expansion valve of the indoor unit The temperature of the evaporator in the outdoor unit drops to 1 ° C until the gas evaporated in the indoor unit flows out to the outdoor unit, the freeze prevention valve is activated, and the solution is mixed in the water refrigerant circuit. The temperature rises and the behavior with large fluctuations occurs. As a result, the pressure fluctuation also becomes large, which causes a problem that the natural circulation of the secondary refrigerant cannot be performed smoothly.

【0014】本発明の目的は、室内機と室外機との間に
相変化する二次冷媒を冷房時に自然循環させ、冷房運転
時の能力制御を安定させることのできる吸収式冷温熱発
生装置を提供することにある。
An object of the present invention is to provide an absorption type cold / heat generating device capable of naturally circulating a secondary refrigerant that changes in phase between an indoor unit and an outdoor unit during cooling to stabilize capacity control during cooling operation. To provide.

【0015】[0015]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る吸収式冷温熱発生装置は、再生器、凝
縮器、吸収器及び蒸発器を含み、凝縮器より蒸発器へ流
入する水冷媒量を水冷媒管路に設けられた水冷媒比例弁
により制御する室外機と、蒸発器の蒸発コイルの下端よ
り低位置の少なくとも一つの室内機へ接続された相変化
する二次冷媒の冷媒液管と、冷媒液管の下端に配置され
た冷媒ポンプと、蒸発コイルの上端よりそれぞれの室内
機へ接続された冷媒ガス管とを備えた吸収式冷温熱発生
装置において、水冷媒比例弁の弁開度を、冷房定格運転
時の蒸発器温度で微開するとともに蒸発器温度に比例し
て2段階に制御するように、蒸発器温度より高温側へ低
い勾配で閉し、蒸発器温度より低温度側へ急勾配で開す
る制御手段を具備した構成とする。
In order to achieve the above-mentioned object, an absorption type cold / heat generating device according to the present invention includes a regenerator, a condenser, an absorber and an evaporator, and flows from the condenser to the evaporator. An outdoor unit that controls the amount of water refrigerant to be controlled by a water-refrigerant proportional valve provided in the water-refrigerant conduit, and a phase-change secondary refrigerant connected to at least one indoor unit lower than the lower end of the evaporation coil of the evaporator. In the absorption type cold / hot heat generating device including the refrigerant liquid pipe, the refrigerant pump arranged at the lower end of the refrigerant liquid pipe, and the refrigerant gas pipe connected to the respective indoor units from the upper end of the evaporation coil, the water-refrigerant proportional The valve opening degree of the valve is slightly opened at the evaporator temperature during the cooling rated operation, and is controlled in two stages in proportion to the evaporator temperature. Equipped with control means that opens steeply toward the lower temperature side Configured to have.

【0016】そして室外機に含まれる凝縮器と蒸発器と
の間に水冷媒量を制御する水冷媒比例弁を設け、蒸発器
の蒸発コイルに相変化する二次冷媒を自然循環させるよ
うに、蒸発器より低位置の少なくとも一つの室内機へ冷
媒液管と冷媒ガス管とを接続した吸収式冷温熱発生装置
において、水冷媒比例弁の弁開度を、冷房定格運転時の
蒸発器温度で微開するとともに高温側又は低温側へ蒸発
器温度に比例して2段階に制御する制御手段を具備した
構成でもよい。
Further, a water-refrigerant proportional valve for controlling the amount of water-refrigerant is provided between the condenser and the evaporator included in the outdoor unit so that the secondary refrigerant that changes in phase naturally circulates in the evaporation coil of the evaporator. In an absorption type cold / heat generating device in which a refrigerant liquid pipe and a refrigerant gas pipe are connected to at least one indoor unit located at a position lower than the evaporator, the valve opening of the water-refrigerant proportional valve is set to the evaporator temperature during the cooling rated operation. It may be configured such that the control means is provided so as to be slightly opened and controlled in two stages in proportion to the temperature of the evaporator, toward the high temperature side or the low temperature side.

【0017】また冷房定格運転時の蒸発器温度は、6℃
に設定され、水冷媒比例弁の弁開度は、6℃で5%に微
開されるとともに、高温側の12℃で0%に全閉され、
かつ低温側の2℃で100%に全開される構成でもよ
い。ことを特徴とする請求項1又は2記載の吸収式冷温
熱発生装置。
The evaporator temperature during the cooling rated operation is 6 ° C.
The valve opening of the water-refrigerant proportional valve is slightly opened to 5% at 6 ° C, and fully closed to 0% at 12 ° C on the high temperature side.
Further, it may be configured to be fully opened to 100% at 2 ° C. on the low temperature side. The absorption-type cold / hot heat generator according to claim 1 or 2, characterized in that.

【0018】さらに空調装置においては、前記いずれか
一つの吸収式冷温熱発生装置を備えてなる構成とする。
Further, the air conditioner is configured to include any one of the absorption type cold / heat generating devices described above.

【0019】[0019]

【発明の実施の形態】本発明の一実施例を図1を参照し
ながら説明する。図1に示すように、高温再生器1及び
低温再生器3等の再生器、分離器2、凝縮器4、吸収器
5、蒸発器6、高温溶液熱交換器7及び低温溶液熱交換
器8等の機器を含み、凝縮器4より蒸発器6の水冷媒貯
蔵室6Bへ流入する水冷媒量を水冷媒管路11Aに設け
られた水冷媒比例弁11により制御する室外機100
と、蒸発器6内の蒸発コイル6Aの下端と室内機52,
53より低位置に設けたU字状配管を経由して一つ以上
の室内機52,53に接続された二次冷媒の冷媒液管5
0と、冷媒液管50の下端のU字状配管に配置された冷
媒ポンプ57と、蒸発コイル6Aの上端とそれぞれの室
内機52,53とに接続された冷媒ガス管51とを備え
た吸収式冷温熱発生装置であって、水冷媒比例弁11の
弁開度を、蒸発器6の蒸発器温度センサ17で検出して
冷房定格運転時の蒸発器温度で微開するとともに蒸発器
温度に比例して2段階に制御するように、蒸発器温度よ
り高温側へ低い勾配で閉し、蒸発器温度より低温側へ急
勾配で開する制御手段(コントローラ)59を具備した
構成とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, a regenerator such as a high temperature regenerator 1 and a low temperature regenerator 3, a separator 2, a condenser 4, an absorber 5, an evaporator 6, a high temperature solution heat exchanger 7 and a low temperature solution heat exchanger 8 An outdoor unit 100 that includes devices such as the above and controls the amount of water refrigerant flowing into the water refrigerant storage chamber 6B of the evaporator 6 from the condenser 4 by the water refrigerant proportional valve 11 provided in the water refrigerant conduit 11A.
And the lower end of the evaporation coil 6A in the evaporator 6 and the indoor unit 52,
Refrigerant liquid pipe 5 for secondary refrigerant connected to one or more indoor units 52, 53 via a U-shaped pipe provided at a position lower than 53.
0, a refrigerant pump 57 arranged in the U-shaped pipe at the lower end of the refrigerant liquid pipe 50, and a refrigerant gas pipe 51 connected to the upper end of the evaporation coil 6A and the respective indoor units 52, 53 In this system, the valve opening of the water-refrigerant proportional valve 11 is detected by the evaporator temperature sensor 17 of the evaporator 6, and the temperature is slightly opened at the evaporator temperature during the cooling rated operation and the evaporator temperature is set. In order to control in two steps in proportion to each other, a control means (controller) 59 that closes at a temperature lower than the evaporator temperature at a lower gradient and opens at a temperature lower than the evaporator temperature at a steep gradient is provided.

【0020】そして図2に示すように、冷房定格運転時
の蒸発器温度は、6℃に設定され、水冷媒比例弁11の
弁開度は、6℃で5%に微開されるとともに、高温側の
12℃で0%に全閉され、かつ低温側の2℃で100%
に全開されるものとする。
As shown in FIG. 2, the evaporator temperature during the cooling rated operation is set to 6 ° C., the valve opening of the water-refrigerant proportional valve 11 is slightly opened to 5% at 6 ° C., and Fully closed to 0% at 12 ° C on the high temperature side and 100% at 2 ° C on the low temperature side
Shall be fully opened.

【0021】一方、二次冷媒自然循環系は、冷媒ポンプ
57とそれぞれの室内機52,53との間の冷媒液管5
0にその管内の液面を検出する液位レベルスイッチ70
を設け、冷媒ガス管51に蒸発コイル6Aの上端より突
出する立上り部51Aを形成し、立上り部51Aと冷媒
液管50との間にバイパス管64A,64Bを設け、バ
イパス管64A,64Bに立上り部51Aへ近接させて
冷媒電磁弁60を配置し、暖房時に、冷媒電磁弁60を
全開に制御するとともに、低負荷〜停止運転では負荷が
少ないため、室内機52,53の膨張弁54,55の弁
開度が小さくなり、冷媒液量が絞られるための液面低下
による液位レベルスイッチ70の作動又は室外機100
の高温再生器1での燃焼停止で冷媒ポンプ57を停止
し、冷房時に、冷媒電磁弁60を高負荷運転で全閉し、
かつ低負荷運転又は停止運転で全開にする制御手段(ポ
ンプコントローラ)71とを備えるものとする。
On the other hand, the secondary refrigerant natural circulation system includes the refrigerant liquid pipe 5 between the refrigerant pump 57 and the respective indoor units 52, 53.
A liquid level switch 70 for detecting the liquid level in the pipe at 0
Is provided, a rising portion 51A protruding from the upper end of the evaporation coil 6A is formed in the refrigerant gas pipe 51, bypass pipes 64A, 64B are provided between the rising portion 51A and the refrigerant liquid pipe 50, and rising pipes 64A, 64B are provided. The refrigerant electromagnetic valve 60 is arranged close to the portion 51A, the refrigerant electromagnetic valve 60 is controlled to be fully opened during heating, and the load is small in the low load to the stopped operation. Therefore, the expansion valves 54, 55 of the indoor units 52, 53 Of the liquid level switch 70 or the outdoor unit 100 due to the decrease in the liquid level due to the reduction in the amount of the refrigerant liquid.
When the combustion in the high temperature regenerator 1 is stopped, the refrigerant pump 57 is stopped, and the refrigerant electromagnetic valve 60 is fully closed under high load operation during cooling.
In addition, a control means (pump controller) 71 for fully opening in a low load operation or a stopped operation is provided.

【0022】以上のように、水冷媒比例弁11の仕様を
変更し、2段階の比例域を有する制御とする。図2及び
図3はその実施例であり、蒸発器温度2〜6℃間で弁開
度の比例線の勾配を変える。この場合、6℃は、いわゆ
る設計(定格)条件であり、このポイントで弁開度を開
き過ぎると溶液の希釈が大きくなり、設計値の能力確保
に問題を生じる。試験値としては5%程度の弁開度が望
ましい。蒸発器温度6〜12℃間はゆるやかな比例勾配
線になり、12℃以上で水冷媒比例弁11は全閉とな
る。これにより従来と異なり、蒸発器温度12℃以下の
状態でも常に水冷媒が蒸発器に供給されることにより、
6〜12℃間での蒸発器温度の低下を緩和しかつ冷媒液
温度の蒸発器温度への追随性もよくなる。冷媒液温度変
動が少なくなるため、安定した運転となり、二次側の制
御がよくなり、自然循環サイクルを促進できる。そのた
め低負荷時の冷房立上り時間が短縮される。またLT1
作動により凍結防止弁が働いても蒸発器温度6〜12℃
間は水冷媒を供給するので冷凍能力の復帰が早くなり、
凍結防止弁作動時の冷凍能力復帰時間が短縮される。
As described above, the specifications of the water-refrigerant proportional valve 11 are changed so that the control has a two-step proportional range. FIG. 2 and FIG. 3 are examples thereof, in which the slope of the proportional line of the valve opening is changed between the evaporator temperature of 2 to 6 ° C. In this case, 6 ° C. is a so-called design (rating) condition, and if the valve opening is excessively opened at this point, the solution is diluted too much, which causes a problem in securing the capacity of the designed value. A valve opening of about 5% is desirable as a test value. A gentle proportional gradient line is formed between the evaporator temperatures of 6 to 12 ° C, and the water-refrigerant proportional valve 11 is fully closed at 12 ° C or higher. As a result, unlike the conventional method, the water refrigerant is always supplied to the evaporator even when the evaporator temperature is 12 ° C or lower,
The decrease in the evaporator temperature between 6 and 12 ° C. is alleviated, and the refrigerant liquid temperature can follow the evaporator temperature well. Since the fluctuation of the temperature of the refrigerant liquid is reduced, stable operation is achieved, the control on the secondary side is improved, and the natural circulation cycle can be promoted. Therefore, the cooling rise time at a low load is shortened. Also LT1
Even if the anti-freezing valve works due to operation, the evaporator temperature is 6-12 ° C.
Since water refrigerant is supplied during the period, the refrigerating capacity returns faster,
The freezing capacity recovery time is shortened when the antifreezing valve is activated.

【0023】[0023]

【発明の効果】本発明によれば、凝縮器と蒸発器との間
の水冷媒比例弁の弁開度を2段階制御し、冷房定格運転
時の蒸発器温度で微開し高温側へ低い勾配で閉するよう
にするため、低負荷時の冷房立上り時間が短縮されると
もに、凍結防止弁作動時の冷凍能力復帰時間が短縮され
る効果がある。
According to the present invention, the valve opening ratio of the water-refrigerant proportional valve between the condenser and the evaporator is controlled in two stages, and the valve is slightly opened at the evaporator temperature during the rated cooling operation and lowered toward the high temperature side. Since the valve is closed at a gradient, the cooling rise time at a low load can be shortened and the refrigerating capacity recovery time at the time of activation of the antifreezing valve can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】図1に示す実施例の蒸発器温度と水冷媒比例弁
開度との関係を示す図である。
FIG. 2 is a diagram showing a relationship between an evaporator temperature and a water-refrigerant proportional valve opening degree in the embodiment shown in FIG.

【図3】図1に示す実施例の蒸発器温度と水冷媒温度と
の関係を説明する図である。
FIG. 3 is a diagram illustrating a relationship between an evaporator temperature and a water refrigerant temperature in the embodiment shown in FIG.

【図4】従来の室外機を示す図である。FIG. 4 is a diagram showing a conventional outdoor unit.

【図5】従来の技術を示す図である。FIG. 5 is a diagram showing a conventional technique.

【図6】従来の技術の動作を説明する図である。FIG. 6 is a diagram illustrating the operation of the conventional technique.

【図7】従来の技術の動作を説明する図である。FIG. 7 is a diagram illustrating an operation of a conventional technique.

【図8】従来の技術の動作を説明する図である。FIG. 8 is a diagram illustrating an operation of a conventional technique.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 分離器 3 低温再生器 4 凝縮器 5 吸収器 6 蒸発器 6B 水冷媒貯蔵室 7 高温溶液熱交
換器 8 低温溶液熱交換器 8A 濃溶液管 9 溶液循環ポンプ 10 冷暖切換弁 10A 管路 11 水冷媒比例
弁 11A 水冷媒管路 12 凍結防止弁 12A 管路 13 溶液バイパ
ス弁 13A 管路 14 冷却水循環
ポンプ 15 冷温水循環ポンプ 16 冷水出口温
度センサ 17 蒸発器温度センサ 21 冷媒液温度
センサ 22 溶液バイパス弁 40,41 冷却
水管 42 クーリングタワー 42A 送風機 50 冷媒液管 51 冷媒ガス管 51A 立上り部 52,53 室内
機 54,55 膨張弁 56 冷暖切換弁 57 冷媒ポンプ 58 逆止弁 59 コントローラ 60 冷媒電磁弁 64A,64B バイパス管 70 液面レベル
スイッチ 100 室外機
1 High Temperature Regenerator 2 Separator 3 Low Temperature Regenerator 4 Condenser 5 Absorber 6 Evaporator 6B Water Refrigerant Storage Room 7 High Temperature Solution Heat Exchanger 8 Low Temperature Solution Heat Exchanger 8A Concentrated Solution Pipe 9 Solution Circulation Pump 10 Cooling / heating Switching Valve 10A Pipeline 11 Water-refrigerant proportional valve 11A Water-refrigerant pipeline 12 Freezing prevention valve 12A Pipeline 13 Solution bypass valve 13A Pipeline 14 Cooling water circulation pump 15 Cold / hot water circulation pump 16 Cold water outlet temperature sensor 17 Evaporator temperature sensor 21 Refrigerant liquid temperature sensor 22 Solution bypass valve 40,41 Cooling water pipe 42 Cooling tower 42A Blower 50 Refrigerant liquid pipe 51 Refrigerant gas pipe 51A Rising part 52,53 Indoor unit 54,55 Expansion valve 56 Cooling / heating switching valve 57 Refrigerant pump 58 Check valve 59 Controller 60 Refrigerant solenoid valve 64A, 64B Bypass pipe 70 Liquid level switch 100 Outdoor unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 再生器、凝縮器、吸収器及び蒸発器を含
み、前記凝縮器より前記蒸発器へ流入する水冷媒量を水
冷媒管路に設けられた水冷媒比例弁により制御する室外
機と、前記蒸発器の蒸発コイルの下端より低位置の少な
くとも一つの室内機へ接続された相変化する二次冷媒の
冷媒液管と、該冷媒液管の下端に配置された冷媒ポンプ
と、前記蒸発コイルの上端よりそれぞれの室内機へ接続
された冷媒ガス管とを備えた吸収式冷温熱発生装置にお
いて、前記水冷媒比例弁の弁開度を、冷房定格運転時の
蒸発器温度で微開するとともに該蒸発器温度に比例して
2段階に制御するように、前記蒸発器温度より高温側へ
低い勾配で閉し、前記蒸発器温度より低温側へ急勾配で
開する制御手段を具備したことを特徴とする吸収式冷温
熱発生装置。
1. An outdoor unit including a regenerator, a condenser, an absorber, and an evaporator, wherein the amount of water refrigerant flowing from the condenser to the evaporator is controlled by a water refrigerant proportional valve provided in a water refrigerant conduit. A refrigerant liquid pipe of a phase-changing secondary refrigerant connected to at least one indoor unit at a position lower than the lower end of the evaporation coil of the evaporator, and a refrigerant pump arranged at the lower end of the refrigerant liquid pipe, In an absorption-type cold / hot heat generator equipped with a refrigerant gas pipe connected to each indoor unit from the upper end of the evaporation coil, the valve opening of the water-refrigerant proportional valve is slightly opened at the evaporator temperature during cooling rated operation. In addition, a control means for closing the evaporator at a temperature lower than the evaporator temperature with a lower gradient and opening the temperature with a steeper gradient to the temperature lower than the evaporator temperature is provided so as to control in two stages in proportion to the evaporator temperature. An absorption type cold / heat generating device characterized by the above.
【請求項2】 室外機に含まれる凝縮器と蒸発器との間
に水冷媒量を制御する水冷媒比例弁を設け、前記蒸発器
の蒸発コイルに相変化する二次冷媒を自然循環させるよ
うに、前記蒸発器より低位置の少なくとも一つの室内機
へ冷媒液管と冷媒ガス管とを接続した吸収式冷温熱発生
装置において、前記水冷媒比例弁の弁開度を、冷房定格
運転時の蒸発器温度で微開するとともに高温側又は低温
側へ前記蒸発器温度に比例して2段階に制御する制御手
段を具備したことを特徴とする吸収式冷温熱発生装置。
2. A water-refrigerant proportional valve for controlling the amount of water-refrigerant is provided between a condenser and an evaporator included in the outdoor unit so that a secondary refrigerant that changes phase is naturally circulated in an evaporation coil of the evaporator. In the absorption type cold / heat generating device in which the refrigerant liquid pipe and the refrigerant gas pipe are connected to at least one indoor unit at a position lower than the evaporator, the valve opening degree of the water-refrigerant proportional valve is set in the cooling rated operation. An absorption-type cold / hot heat generator characterized by comprising a control means that opens slightly at the evaporator temperature and controls in two stages to a high temperature side or a low temperature side in proportion to the evaporator temperature.
【請求項3】 冷房定格運転時の蒸発器温度は、6℃に
設定され、水冷媒比例弁の弁開度は、前記6℃で5%に
微開されるとともに、高温側の12℃で0%に全閉さ
れ、かつ低温側の2℃で100%に全開されることを特
徴とする請求項1又は2記載の吸収式冷温熱発生装置。
3. The evaporator temperature during cooling rated operation is set to 6 ° C., the valve opening of the water-refrigerant proportional valve is slightly opened to 5% at 6 ° C., and at the high temperature side of 12 ° C. The absorption type cold / heat generating device according to claim 1 or 2, which is fully closed to 0% and fully opened to 2% at a low temperature of 2 ° C.
【請求項4】 請求項1、2又は3のいずれか1項記載
の吸収式冷温熱発生装置を備えてなることを特徴とする
空調装置。
4. An air conditioner comprising the absorption-type cold / heat generating device according to claim 1. Description:
JP8100817A 1996-04-23 1996-04-23 Absorption type cold/hot heat generating device Pending JPH09287850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8100817A JPH09287850A (en) 1996-04-23 1996-04-23 Absorption type cold/hot heat generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8100817A JPH09287850A (en) 1996-04-23 1996-04-23 Absorption type cold/hot heat generating device

Publications (1)

Publication Number Publication Date
JPH09287850A true JPH09287850A (en) 1997-11-04

Family

ID=14283906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8100817A Pending JPH09287850A (en) 1996-04-23 1996-04-23 Absorption type cold/hot heat generating device

Country Status (1)

Country Link
JP (1) JPH09287850A (en)

Similar Documents

Publication Publication Date Title
US4665711A (en) Heat pump systems
JP3003554B2 (en) Absorption heat pump
JP3448680B2 (en) Absorption air conditioner
JP3602116B2 (en) Heat pump water heater
JPH09287850A (en) Absorption type cold/hot heat generating device
JP3393398B2 (en) Absorption type cold heat generator
JP2001099474A (en) Air conditioner
JP3451539B2 (en) Absorption type cold heat generator
JP3383898B2 (en) Absorption type cold heat generator
JP3559919B2 (en) Absorption type cold and hot heat generator
JP3289235B2 (en) Absorption type cold heat generator
JP3175040B2 (en) Absorption type cold heat generator
JP3407182B2 (en) Absorption type cold heat generator
JP3451538B2 (en) Absorption type cold heat generator
JPH11257782A (en) Absorption cold heat generator
JP3289236B2 (en) Absorption type cold heat generator
JP3448681B2 (en) Absorption type cold heat generator
JP2618192B2 (en) Absorption refrigeration cycle device
JP4201418B2 (en) Control method of absorption chiller / heater
JP3084650B2 (en) Absorption chiller / heater and its control method
JP3594453B2 (en) Operating method of air conditioner
KR100219910B1 (en) Absorption type air conditioner
JP3434279B2 (en) Absorption refrigerator and how to start it
JP3363057B2 (en) Absorption air conditioner
JP3407181B2 (en) Absorption type cold heat generator