[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09287580A - Screw compressor and operation method thereof - Google Patents

Screw compressor and operation method thereof

Info

Publication number
JPH09287580A
JPH09287580A JP9033598A JP3359897A JPH09287580A JP H09287580 A JPH09287580 A JP H09287580A JP 9033598 A JP9033598 A JP 9033598A JP 3359897 A JP3359897 A JP 3359897A JP H09287580 A JPH09287580 A JP H09287580A
Authority
JP
Japan
Prior art keywords
pressure
compressor
rotation speed
screw compressor
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9033598A
Other languages
Japanese (ja)
Other versions
JP3262011B2 (en
Inventor
Masakazu Aoki
優和 青木
Hiroyuki Matsuda
洋幸 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03359897A priority Critical patent/JP3262011B2/en
Publication of JPH09287580A publication Critical patent/JPH09287580A/en
Application granted granted Critical
Publication of JP3262011B2 publication Critical patent/JP3262011B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce power of a compressor and generation of drain in an oil separator by reducing the discharge pressure of a screw compressor at no load operation, when the capacity of a screw compressor is controlled corresponding to its load by closing a suction throttle valve. SOLUTION: When the discharge pressure of a pressure sensor 18 reaches the set pressure in an operation range in which the discharge air quantity is under 30% of the specification discharge air quantity, rotating speed of a compressor is held at the set lower limit rotating speed. Further, a solenoid valve 21 is opened, and a suction throttle valve 2 is closed. In addition, discharge pressure of the compressor is reduced so as to change to the capacity control of no load operation. Hereby, the pressure at the discharge port 4 of the compressor is reduced, and the consumed power can be remarkably reduced. By reducing the discharge pressure, an oil feed quantity to the compressor rotor 3 part can be also reduced. Because pressure in an oil separator 5 is also reduced at no load operation, possibility of generation of drain is also reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、インバータを用い
て駆動電動機の回転数を変化させ、圧縮機の容量を調整
するスクリュー圧縮機の運転方法及びスクリュー圧縮機
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw compressor operating method and a screw compressor in which the rotational speed of a drive motor is changed by using an inverter to adjust the capacity of the compressor.

【0002】[0002]

【従来の技術】従来のスクリュー圧縮機においては、特
開平7−35079号公報に記載の様に、圧縮機はその
吸入口に吸込み絞り弁を有しており、この吸込絞り弁を
インバータの回転数信号に応じて開閉する電磁弁で開閉
していた。
2. Description of the Related Art In a conventional screw compressor, as described in Japanese Patent Application Laid-Open No. 7-35079, the compressor has a suction throttle valve at its suction port, and this suction throttle valve rotates the inverter. It was opened and closed by a solenoid valve that opens and closes according to several signals.

【0003】[0003]

【発明が解決しようとする課題】上記従来の技術におい
ては、吸込み絞り弁を閉塞して低負荷時の容量制御して
いたので、次の点について十分には考慮されていなかっ
た。低負荷時に圧縮機の回転数を低下させた状態で吸込
絞り弁を全閉しているが: 1.動力の低減が不十分である。 2.圧縮機の吐出圧力は仕様圧力のまま、吸込圧力が低
下するため全負荷時に比較して給油量が増加する。低速
回転時に給油量が増加すると運転動力、必要駆動トルク
の増大を招き、低速回転域で駆動トルクが低下するイン
バータ駆動機では、インバータのトリップ等が生じる恐
れがある。 3.圧縮機の吐出圧力が仕様圧力かそれより上昇した状
態で圧縮機の仕事量が軽減されるため、相対的に上オイ
ルクーラの能力が上昇して圧縮機への給油温度が低下す
る。これに伴い、圧縮機の吐出温度が低下し、オイルセ
パレータ内でのドレンの発生の可能性が高くなる。
In the above-mentioned prior art, the suction throttle valve is closed to control the capacity at the time of low load, so that the following points have not been fully taken into consideration. Although the suction throttle valve is fully closed with the compressor rotating at a low load: Power reduction is insufficient. 2. The discharge pressure of the compressor stays at the specified pressure, but the suction pressure decreases, so the amount of oil supply increases compared to at full load. When the amount of oil supply increases at low speed rotation, operating power and required drive torque increase, and in an inverter drive machine in which the drive torque decreases in the low speed rotation range, there is a risk of inverter trips and the like. 3. Since the work of the compressor is reduced when the discharge pressure of the compressor is at or above the specified pressure, the capacity of the upper oil cooler is relatively increased and the oil supply temperature to the compressor is lowered. Along with this, the discharge temperature of the compressor is lowered, and the possibility of occurrence of drain inside the oil separator increases.

【0004】ところで、低負荷時の動力を改善するため
に、(a)吸込絞り弁を全閉にしてオイルセパレータ内
の圧力を開放する状態と、(b)吸込絞り弁を全開にす
る状態との、2つの状態(a),(b)を繰り返す方法
も提案されている。しかし、この方法においては、
(a),(b)の状態に移行するための圧力マージンが
必要であり、そのため設定圧力より低下する恐れを生じ
る。そして、制御圧力が確保されている時でも吸込絞り
弁や電磁弁の動作頻度が増加するので、これらの弁の耐
久性を低下させる恐れがある。
By the way, in order to improve power under a low load, (a) a state in which the suction throttle valve is fully closed to release the pressure in the oil separator, and (b) a state in which the suction throttle valve is fully opened. There is also proposed a method of repeating the two states (a) and (b). But in this way,
A pressure margin is required to shift to the states of (a) and (b), which may cause a pressure drop below the set pressure. Further, even when the control pressure is secured, the frequency of operation of the suction throttle valve and the solenoid valve increases, which may reduce the durability of these valves.

【0005】本発明の目的は、圧縮機の信頼性を維持向
上させながら圧縮機の動力を低減するとともに、オイル
セパレータ内でのドレンの発生を低減することにある。
It is an object of the present invention to reduce the power of the compressor while maintaining and improving the reliability of the compressor, and to reduce the generation of drain in the oil separator.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、インバータを用いた電動機により駆動される変速運
転が可能なスクリュー圧縮機の運転方法において、圧縮
機の回転数を変化させて負荷の変化に対応する回転数制
御方法と、この回転数制御方法で用いる下限回転数に圧
縮機の回転数を設定するとともに、スクリュー圧縮機の
吸込側に設けられた吸込絞り弁を閉じてスクリュー圧縮
機の負荷に対応して容量制御する容量制御方法とを備
え、無負荷運転時には容量制御方法においてスクリュー
圧縮機の吐出圧力を減圧するようにしたものである。
In order to achieve the above object, in a method of operating a screw compressor which is driven by an electric motor using an inverter and is capable of variable speed operation, the rotational speed of the compressor is changed to reduce the load. A rotation speed control method corresponding to the change and the rotation speed of the compressor is set to the lower limit rotation speed used in this rotation speed control method, and the suction throttle valve provided on the suction side of the screw compressor is closed to close the screw compressor. And a capacity control method for controlling the capacity in accordance with the load, and the discharge pressure of the screw compressor is reduced in the capacity control method during no-load operation.

【0007】そして好ましくは、少なくとも無負荷運転
が所定時間以上継続したとき、および容量制御方法にお
ける無負荷運転と負荷運転との時間比率が所定割合を越
えたときのいずれか一方の運転になったときに、スクリ
ュー圧縮機を停止するようにした。また好ましくは、負
荷が減少して回転数を一定にして吸込み絞り弁を閉塞
し、さらに、圧縮機の吐出圧力を減圧して回転数制御領
域から無負荷運転の容量制御領域に入った際に、制御の
上限圧力P1を回転数制御領域での設定圧力P0に対し、
1>P0となるように制御した。さらに好ましくは、圧
縮機の圧力が低下して圧縮機が再起動したときに、負荷
が減少しても所定時間(t1)圧縮機の運転を継続し、
所定時間(t1)経過後は圧縮機を停止させるようにし
た。
[0007] Preferably, at least one of the no-load operation is continued for a predetermined time or more, and the time ratio between the no-load operation and the load operation in the capacity control method exceeds a predetermined rate. At some point, the screw compressor was stopped. Further, preferably, when the load is reduced to keep the rotation speed constant and the suction throttle valve is closed, and further, the discharge pressure of the compressor is reduced to enter the capacity control area of the no-load operation from the rotation speed control area. , The upper limit pressure P 1 of the control to the set pressure P 0 in the rotation speed control region,
Control was performed so that P 1 > P 0 . More preferably, when the pressure of the compressor is reduced and the compressor is restarted, the operation of the compressor is continued for a predetermined time (t 1 ) even if the load is reduced,
The compressor was stopped after a lapse of a predetermined time (t 1 ).

【0008】上記目的を達成するための本発明の第2の
態様は、軸受により回転可能に支持された雄雌一対のロ
ータを有し、このロータを駆動する電動機と、電動機を
制御するインバータとを備え、吸込み側に流量を調整す
る吸込み絞り弁を設けたスクリュー圧縮機において、電
動機の回転数をインバータにより変化させてスクリュー
圧縮機の容量を制御する回転数制御手段と、この回転数
制御手段に設定された最低回転数で圧縮機を駆動すると
ともに、吸込み絞り弁を閉塞する制御を行う容量制御手
段とを備えたものである。
A second aspect of the present invention for achieving the above object has a pair of male and female rotors rotatably supported by bearings, an electric motor for driving the rotors, and an inverter for controlling the electric motors. In a screw compressor provided with a suction throttle valve for adjusting the flow rate on the suction side, a rotation speed control means for controlling the capacity of the screw compressor by changing the rotation speed of the electric motor by an inverter, and this rotation speed control means. And a capacity control means for controlling the suction throttle valve to be closed while driving the compressor at the minimum rotation speed set to.

【0009】そして好ましくは、容量制御手段は、前記
圧縮機の吐出圧力の上限値をP1、前記圧縮機の吐出圧
力の下限値をP2、設定圧力をP0にしたときに、P1
0で、P2=<P0に制御するものである。また好まし
くは、回転数制御手段は、負荷の減少により圧縮機が自
動停止する際に、設定圧力P0に対しP3>P0となるP3
まで圧力を上昇してから停止させる様に制御するもので
ある。さらに好ましくは、回転数制御手段は、圧縮機を
再起動させる圧力をP4とするとき、P4>=P0となる
よう制御するものである。また好ましくは、圧縮機の吐
出圧を検出する吐出圧検出手段を圧縮機の吐出側に設け
るとともに、容量制御手段の設定圧力(P0)と、回転
数制御手段の圧力の上限値(P1)と下限値(P2)と、
自動停止前の圧力の上限値(P3)と、自動停止後の再
起動圧力(P4)を記憶する記憶手段と、吐出圧検出手
段により検出された検出圧力とインバータの駆動周波数
に応じて回転数制御手段及び容量制御手段の作動を切り
換える切り換え手段と、記憶手段に記憶されたP0
1、P2、P3、P4の値を変更可能にする入力手段とを
設けたものである。
Preferably, the capacity control means sets P 1 to the upper limit value of the discharge pressure of the compressor, P 2 the lower limit value of the discharge pressure of the compressor, and P 1 when the set pressure is P 0. >
At P 0 , P 2 = <P 0 is controlled. Also preferably, the rotational speed control means, when the compressor is automatically stopped by a reduction in the load, it becomes to the set pressure P 0 with P 3> P 0 P 3
It is controlled so that the pressure rises up to and then stops. More preferably, the rotation speed control means controls so that P 4 > = P 0 when the pressure for restarting the compressor is P 4 . Further, preferably, a discharge pressure detection means for detecting the discharge pressure of the compressor is provided on the discharge side of the compressor, and the set pressure (P 0 ) of the capacity control means and the upper limit value (P 1 ) of the rotational speed control means are set. ) And the lower limit (P 2 ),
According to the storage means for storing the upper limit value (P 3 ) of the pressure before the automatic stop and the restart pressure (P 4 ) after the automatic stop, the detected pressure detected by the discharge pressure detection means and the drive frequency of the inverter. Switching means for switching the operations of the rotation speed control means and the capacity control means, and P 0 stored in the storage means,
An input means for changing the values of P 1 , P 2 , P 3 , and P 4 is provided.

【0010】さらに好ましくは、容量制御手段の設定圧
力(P0)に基づいて、P1〜P4の4つの設定圧力を自
動的に演算し、設定する圧力設定手段を設けたものであ
る。
More preferably, pressure setting means for automatically calculating and setting four setting pressures P 1 to P 4 based on the setting pressure (P 0 ) of the capacity control means is provided.

【0011】このように構成した本発明においては、例
えば、圧縮機の定格吐出空気量の100%から30%の
範囲で電動機をインバータを用いて制御し、圧縮機の回
転数を変化させて容量制御する。空気の使用量が30%
以下に低下したときには、圧縮機の回転数を30%負荷
時の回転数(下限回転数)に固定し、吸込み絞り弁を閉
塞すると同時に、圧縮機の吐出圧力を減圧する。圧縮機
への空気の流入が遮断されると同時に圧縮機の吐出側の
圧力が低下するので、消費動力が著しく低減される。3
0%以下の負荷領域ではこの無負荷運転と、下限回転数
での負荷運転を繰り返し行って容量を調整する。
In the present invention thus constructed, for example, the electric motor is controlled by using an inverter in the range of 100% to 30% of the rated discharge air amount of the compressor, and the rotational speed of the compressor is changed to change the capacity. Control. Air consumption is 30%
When it decreases below, the rotation speed of the compressor is fixed to the rotation speed at 30% load (lower limit rotation speed), the suction throttle valve is closed, and at the same time, the discharge pressure of the compressor is reduced. Since the pressure on the discharge side of the compressor is reduced at the same time when the inflow of air into the compressor is cut off, the power consumption is significantly reduced. 3
In the load region of 0% or less, this no-load operation and the load operation at the lower limit rotation speed are repeatedly performed to adjust the capacity.

【0012】また、例えば無負荷運転が10分間続いた
場合に圧縮機を自動停止する。または例えば10%以下
の負荷領域では圧縮機を自動停止するように設定する。
また、負荷が減少し、例えば空気の使用量が30%以下
に低下したときに圧縮機の回転数を設定値(下限回転
数)に保持し、さらに空気の使用量が減少したときにも
下限周波数での運転を継続する。そして、吸込み絞り弁
を閉塞して、圧縮機の吐出圧力を減圧する。この無負荷
運転の容量制御領域に入り、回転数制御領域での設定圧
力をP0としたとき、P1>P0となる圧力P1に圧縮機の
吐出圧力が到達すれば、吸込み絞り弁を閉塞するととも
に、圧縮機の吐出圧力を減圧して無負荷運転に入るよう
にしている。また、圧縮機に自動停止機能があるときに
も、上記方法を実施する。
Further, for example, when no load operation continues for 10 minutes, the compressor is automatically stopped. Alternatively, for example, the compressor is set to automatically stop in a load region of 10% or less.
In addition, when the load decreases, for example, when the air usage decreases to 30% or less, the rotation speed of the compressor is maintained at the set value (lower limit rotation speed), and when the air usage decreases, the lower limit is also maintained. Continue operation at the frequency. Then, the suction throttle valve is closed to reduce the discharge pressure of the compressor. When the discharge pressure of the compressor reaches the pressure P 1 where P 1 > P 0 when the set pressure in the rotation speed control region is set to P 0 and enters the capacity control region of this no-load operation, the suction throttle valve Is closed, and the discharge pressure of the compressor is reduced to start no-load operation. The above method is also performed when the compressor has an automatic stop function.

【0013】さらに、無負荷運転から負荷運転に復帰さ
せる圧力P2(下限圧力)を、上記設定圧力P0以上の圧
力にする。そして、空気使用量が圧縮機の定格吐出空気
量の100%から30%の場合には回転数を制御し、設
定圧力P0付近で一定圧力となるように運転する。一
方、空気使用量が30%以下の場合には、P1>P2>=
0となるP1とP2の圧力間で、空気使用量に応じて無
負荷運転と下限回転数での負荷運転を繰り返す。
Further, the pressure P 2 (lower limit pressure) for returning from the no-load operation to the load operation is set to a pressure equal to or higher than the set pressure P 0 . When the amount of air used is 100% to 30% of the rated discharge air amount of the compressor, the number of revolutions is controlled and the compressor is operated so as to have a constant pressure near the set pressure P 0 . On the other hand, when the amount of air used is 30% or less, P 1 > P 2 > =
Between the pressures of P 1 and P 2, which are P 0 , the no-load operation and the load operation at the lower limit rotation speed are repeated according to the amount of air used.

【0014】空気使用量がさらに減少して、圧縮機が自
動停止する条件が整ったときには、下限回転数における
負荷運転の期間を設け、前述した設定圧力P0に対しP3
>P0となるP3まで圧力が上昇してから圧縮機を停止さ
せる。空気の消費が始まって圧力がP4>=P0となるP
4まで低下すると、圧縮機を再起動させる。
When the amount of air used further decreases and the condition for automatically stopping the compressor is satisfied, a period of load operation at the lower limit rotation speed is provided and P 3 is set with respect to the set pressure P 0 described above.
After the pressure rises to P 3 where> P 0 , the compressor is stopped. When the consumption of air begins and the pressure becomes P 4 > = P 0 , P
When it drops to 4, restart the compressor.

【0015】なお、圧力センサーを用いて、前記P1
2、P3、P4等の圧力を検出するとともに、各設定圧
力を記憶装置に記憶させてもよい。各設定圧力P1〜P4
は、圧力P0が設定されると自動的に演算装置により演
算され、設定されるものであってもよい。また、設定値
を手動で変更する入力手段を備えていてもよい。これに
より、各設定圧力を適正に設定できるとともに設定値の
変更が容易になる。
A pressure sensor is used to detect the P 1 ,
The pressures of P 2 , P 3 , P 4, etc. may be detected and each set pressure may be stored in the storage device. Each set pressure P 1 ~ P 4
May be automatically calculated and set by a calculation device when the pressure P 0 is set. Moreover, you may provide the input means which changes a setting value manually. As a result, each set pressure can be properly set and the set value can be easily changed.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を、い
くつかの実施例について図面を用いて説明する。図1
に、本発明の実施例に係るスクリュー圧縮機装置の模式
図を示す。吸込フィルター1から吸込まれた空気は吸込
絞り弁2を経た後スクリュー圧縮機のロータ3間で圧縮
され、吐出口4から吐出される。圧縮により発生した圧
縮熱を冷却するため、および潤滑とシールのために、ス
クリュー圧縮機12のロータ3部に潤滑油が注入され
る。吐出口4から潤滑油とともに吐出された圧縮空気
は、オイルセパレータタンク5内に流入し、オイルセパ
レータエレメント6で潤滑油と分離され、吐出配管7か
ら逆止弁8、調圧弁9を順次通って、アフタクーラ10
に流入し、このアフタークーラ10において冷却された
後、図示しない外部装置へ吐出される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, some embodiments of the present invention will be described with reference to the drawings. FIG.
FIG. 1 shows a schematic diagram of a screw compressor device according to an embodiment of the present invention. The air sucked from the suction filter 1 passes through the suction throttle valve 2 and is then compressed between the rotors 3 of the screw compressor and discharged from the discharge port 4. Lubricating oil is injected into the rotor 3 part of the screw compressor 12 in order to cool the compression heat generated by the compression and for lubrication and sealing. The compressed air discharged from the discharge port 4 together with the lubricating oil flows into the oil separator tank 5, is separated from the lubricating oil by the oil separator element 6, and is sequentially passed from the discharge pipe 7 through the check valve 8 and the pressure regulating valve 9. , Aftercooler 10
And is cooled in the aftercooler 10 and then discharged to an external device (not shown).

【0017】一方、潤滑油はオイルセパレータタンク5
内で圧縮空気と分離され、オイルセパレータタンク5の
底部からオイルクーラ11へと導かれる。オイルクーラ
11で冷却された潤滑油と、オイルクーラを経由しない
無冷却の潤滑油とが温調弁13内で混合され、スクリュ
ー圧縮機12を潤滑する。オイルクーラ11及びアフタ
ークーラ10は、冷却ファン14の冷却風で冷却され
る。
On the other hand, the lubricating oil is the oil separator tank 5
It is separated from the compressed air inside and is guided to the oil cooler 11 from the bottom of the oil separator tank 5. Lubricating oil cooled by the oil cooler 11 and uncooled lubricating oil not passing through the oil cooler are mixed in the temperature control valve 13 to lubricate the screw compressor 12. The oil cooler 11 and the aftercooler 10 are cooled by the cooling air from the cooling fan 14.

【0018】スクリュー圧縮機のロータ3軸と電動機1
6軸とは回転をベルト15により連結される。電動機1
6は、インバータ17により可変速運転が可能になって
いる。逆止弁8の下流側には圧力センサー18が設けら
れ、スクリュー圧縮機12から吐出される圧力を検出し
ている。この圧力センサー18の出力信号は、入出力部
19へ入力される。制御装置部20aは、記憶手段とP
ID機能を有している。そして、記憶された設定圧力と
圧力センサー18が検出した圧力とを比較し、検出圧力
が目標圧力P0となるような周波数をインバータ17に
与え、電動機16の回転数を変化させる。この記憶手段
および制御装置部20aに記憶されている各種の圧力設
定値は、目標圧力P0を設定するだけで自動的に適正な
値に設定される。また、制御装置部20aに接続された
設定入力手段および表示部20bを用いて、設定値を変
更することが可能な構成となっている。さらに、設定入
力手段および表示部20bには表示手段(LEDや液晶
素子等)が併設されており、圧力の設定値や運転周波数
を表示する。
Three shafts of a screw compressor rotor and an electric motor 1
The rotation is connected to the six axes by a belt 15. Electric motor 1
The inverter 6 can be operated at a variable speed by the inverter 17. A pressure sensor 18 is provided on the downstream side of the check valve 8 to detect the pressure discharged from the screw compressor 12. The output signal of the pressure sensor 18 is input to the input / output unit 19. The control unit 20a includes a storage unit and a P
It has an ID function. Then, the stored set pressure is compared with the pressure detected by the pressure sensor 18, and the inverter 17 is provided with a frequency at which the detected pressure becomes the target pressure P 0, and the rotation speed of the electric motor 16 is changed. The various pressure set values stored in the storage means and the control unit 20a are automatically set to proper values only by setting the target pressure P 0 . Further, the setting value can be changed by using the setting input unit and the display unit 20b connected to the control device unit 20a. Further, the setting input means and the display section 20b are provided with a display means (LED, liquid crystal element, etc.) so as to display the set value of pressure and the operating frequency.

【0019】スクリュー圧縮機12の上流側に設けられ
る吸込絞り弁2の弁板2aは、ピストン2bが電磁弁2
1側から圧力を受けると閉方向に動作する。つまり、電
磁弁21が開となると、オイルセパレータ5内の高圧力
が吸込絞り弁2へと導かれ、このピストン2bへ圧力が
付加される。さらに、オイルセパレータ5内の空気の一
部は、電磁弁21が開となると同時に放気配管22を経
由して吸込絞り弁2の吸込側へと放気される。このと
き、オリフィス23で流量が調整される。配管22の代
わりに、直接大気へ放気する構成にしても良い。なお、
電磁弁21は、記憶手段および制御装置部20aにおい
て自動または手動で設定された設定圧力と、この記憶手
段および制御装置部20aに入力される入出力部19か
らの圧力信号とを比較した結果に基づいて開閉される。
In the valve plate 2a of the suction throttle valve 2 provided on the upstream side of the screw compressor 12, the piston 2b has a solenoid valve 2
When it receives pressure from the 1 side, it operates in the closing direction. That is, when the solenoid valve 21 is opened, the high pressure in the oil separator 5 is guided to the suction throttle valve 2, and the pressure is applied to the piston 2b. Further, a part of the air in the oil separator 5 is discharged to the suction side of the suction throttle valve 2 via the discharge pipe 22 at the same time when the electromagnetic valve 21 is opened. At this time, the flow rate is adjusted by the orifice 23. Instead of the pipe 22, a structure may be used in which air is directly discharged to the atmosphere. In addition,
The solenoid valve 21 compares the set pressure, which is automatically or manually set in the storage means and control device section 20a, with the pressure signal from the input / output section 19 input to the storage means and control device section 20a. It is opened and closed based on.

【0020】このように構成したスクリュー圧縮機装置
の作用について、以下に述べる。インバータを用いた電
動機により油冷式スクリュー圧縮機を駆動すれば、使用
空気量の減少に伴い圧縮機12の回転数を低下させるこ
とが可能になり、他の容量制御方式に比べて、大きな動
力低減効果が得られる。このことは従来よく知られてい
るが、吐出空気量の全領域で回転数制御を行うと、次の
ようなデメリットを招来する。
The operation of the screw compressor device thus constructed will be described below. If the oil-cooled screw compressor is driven by an electric motor that uses an inverter, the rotation speed of the compressor 12 can be reduced as the amount of air used decreases, and the power consumption is greater than that of other capacity control systems. A reduction effect can be obtained. This is well known in the art, but if the rotation speed is controlled in the entire region of the discharge air amount, the following disadvantages will be brought about.

【0021】すなわち、低回転数または小空気量域で、
吸込み絞り弁等を使用した容量制御を併用することが必
要であり、さらに、(1)低回転数になると、電動機1
6と一体的に設けられた冷却ファン16aの回転数も同
時に低下し、電動機を冷却できず、電動機コイル温度が
所定温度範囲を越える、(2)圧縮機12への給油をオ
イルセパレータ5とスクリュー圧縮機12の内部の差圧
を利用して行うため、低回転数になってスクリュー圧縮
機の吐出し空気量が大幅に減少しても給油量は減少せ
ず、スクリュー圧縮機内部で油の液圧縮が発生し過負荷
状態となる、という不具合を生じる。
That is, in the low rotation speed or small air amount range,
It is necessary to also use capacity control using a suction throttle valve, etc., and further, (1) when the rotational speed becomes low, the electric motor 1
6, the rotation speed of the cooling fan 16a integrally provided with 6 also decreases, the electric motor cannot be cooled, and the electric motor coil temperature exceeds a predetermined temperature range. (2) Oil supply to the compressor 12 and the oil separator 5 and the screw Since the differential pressure inside the compressor 12 is used, the oil supply amount does not decrease even if the rotation speed becomes low and the discharge air amount of the screw compressor significantly decreases. There is a problem that liquid compression occurs and an overload state occurs.

【0022】これらの不具合を回避するには、電動機を
冷却するために専用モータで駆動されたファンを設け
る、低回転数域での給油量を調整するための弁を設け
る、等種々の方法が考えられるが、構造が複雑となり現
実的でない。
In order to avoid these problems, various methods such as providing a fan driven by a dedicated motor for cooling the electric motor and providing a valve for adjusting the amount of oil supply in the low rotational speed range are available. It is conceivable, but the structure is complicated and unrealistic.

【0023】そこで、特開平7−35079号公報に記
載のものにおいては、小空気量域では、回転数制御によ
る容量制御を行わず、設定された下限回転数になると同
時に吸込み絞り弁2を閉じて無負荷運転状態としてい
た。しかしこの方式は従来方式に比較して省エネ効果は
期待できるが、未だ不十分であった。そこで、本発明で
は、図1に示したように機器を構成してスクリュー圧縮
機の容量を制御している。その詳細フローを図4に示
す。
Therefore, in the one disclosed in Japanese Patent Laid-Open No. 7-35079, the capacity control by the rotation speed control is not performed in the small air amount range, and the suction throttle valve 2 is closed at the same time as the set lower limit rotation speed is reached. I was in a no-load operation state. However, although this method can be expected to save energy compared to the conventional method, it is still insufficient. Therefore, in the present invention, the device is configured as shown in FIG. 1 to control the capacity of the screw compressor. The detailed flow is shown in FIG.

【0024】仕様吐出空気量に対して約30%から10
0%の空気量の運転範囲では、インバータにより電動機
16の駆動周波数を変え、回転数制御する。一方、吐出
空気量が仕様吐出空気量の30%以下の運転範囲になる
と、圧力センサー18で検出した圧縮機の吐出圧力が記
憶手段および制御出力部に記憶された設定圧力P1に到
達している場合には、回転数制御における設定下限回転
数にスクリュー圧縮機の回転数を保持する。そして、電
磁弁21を開き、吸込み絞り弁2を閉塞する。また、圧
縮機3の吐出圧力を減圧して無負荷運転の容量制御に切
り換える。これにより、圧縮機12の吐出口4における
圧力が低下し、従来技術に対して、大幅に消費動力を低
減することが可能になる。
About 30% to 10% of the specified discharge air amount
In the operating range of 0% air amount, the drive frequency of the electric motor 16 is changed by the inverter to control the rotation speed. On the other hand, when the discharge air amount reaches the operating range of 30% or less of the specified discharge air amount, the discharge pressure of the compressor detected by the pressure sensor 18 reaches the set pressure P 1 stored in the storage means and the control output unit. If so, the rotation speed of the screw compressor is held at the lower limit rotation speed set in the rotation speed control. Then, the solenoid valve 21 is opened to close the suction throttle valve 2. Further, the discharge pressure of the compressor 3 is reduced to switch to capacity control for no-load operation. As a result, the pressure at the discharge port 4 of the compressor 12 is lowered, and the power consumption can be significantly reduced as compared with the conventional technique.

【0025】この場合の吐出空気量比に対する消費動力
の比を図2に示す。図2中A線は従来方式による消費動
力特性、B線は本発明の一実施例による消費動力特性で
ある。吐出空気量比が0%近傍では、従来に比して消費
動力が半分程度にまで低減している。
FIG. 2 shows the ratio of power consumption to discharge air amount ratio in this case. In FIG. 2, line A is the power consumption characteristic of the conventional method, and line B is the power consumption characteristic of the embodiment of the present invention. When the discharge air amount ratio is near 0%, the power consumption is reduced to about half of the conventional power consumption.

【0026】吐出圧力を低減したので、圧縮機ロータ3
部への給油量も減少させることができ、潤滑油が液圧縮
されたときに発生するトルクの異常な増大を起こす恐れ
がない。また、スクリュー圧縮機を低負荷で運転すると
給油温度が低下してオイルセパレータ5内にドレンが発
生しやすくなるが、無負荷運転時にはオイルセパレータ
5内の圧力も低下するため、ドレンの発生の可能性が少
なくなる。
Since the discharge pressure is reduced, the compressor rotor 3
The amount of oil supplied to the parts can also be reduced, and there is no risk of an abnormal increase in the torque generated when the lubricating oil is liquid-compressed. In addition, when the screw compressor is operated under a low load, the oil supply temperature is lowered and drainage is likely to occur in the oil separator 5, but the pressure in the oil separator 5 is also reduced during no-load operation, so drainage can occur. Less likely.

【0027】さらに、圧縮機の回転数をこの設定下限回
転数に保持し、吸込み絞り弁2を閉塞状態にして運転し
た結果、圧縮機3の吐出圧力が低下する無負荷運転の時
間と、設定下限回転数に圧縮機の回転数を保持し、吸込
み絞り弁2を開いて運転する負荷運転の時間とを記憶手
段および制御出力部に内蔵されたタイマー手段で判定す
る。前者の割合が例えば10%以下の負荷、あるいは例
えば、前者の運転時間が連続して3分間を超えた場合、
圧縮機を停止させる。さらに、停止中にも圧力センサー
18で圧力を監視し続け、記憶手段および制御装置部に
記憶された設定圧力P4まで圧力が低下した時には圧縮
機を再起動させる。このように圧縮機の運転を制御すれ
ば、消費動力特性は図2中にC線で示したようになり、
さら空気消費量が少ない運転領域での動力の低減が可能
になる。
Furthermore, as a result of maintaining the rotation speed of the compressor at this lower limit rotation speed and operating the suction throttle valve 2 in the closed state, the discharge pressure of the compressor 3 decreases and the setting time is set to no load. The rotation speed of the compressor is held at the lower limit rotation speed, and the time of load operation in which the suction throttle valve 2 is opened and the operation is determined by the storage means and the timer means incorporated in the control output unit. If the load of the former is, for example, 10% or less, or if the operating time of the former exceeds 3 minutes in a row,
Stop the compressor. Further, the pressure sensor 18 continues to monitor the pressure even during the stop, and the compressor is restarted when the pressure is reduced to the set pressure P 4 stored in the storage means and the control unit. If the operation of the compressor is controlled in this way, the power consumption characteristic becomes as shown by the line C in FIG.
Further, it is possible to reduce power in an operating region where the air consumption is small.

【0028】なお上記実施例では、消費空気量が減少
し、圧縮機の回転数が設定下限回転数となったとき、回
転数制御領域での目標設定圧力P0と無負荷運転(以
降、回転数を一定にして吸込み絞り弁2を閉塞すると同
時に、圧縮機3の吐出圧力を減圧する運転状態を無負荷
運転と称する。)を開始する上限圧力P1が同じであ
り、空気使用量が制御方式の切り換え点に一致する場合
に電磁弁21において不安定なON−OFF指令が発生
し、吸込み絞り弁2のハンチングをおこす可能性があ
る。
In the above embodiment, when the amount of air consumed is reduced and the number of revolutions of the compressor reaches the set lower limit number of revolutions, the target set pressure P 0 in the number of revolutions control region and no-load operation (hereinafter referred to as rotation (The operation state in which the number of discharges of the compressor 3 is reduced at the same time as closing the suction throttle valve 2 with a constant number is referred to as no-load operation.) The upper limit pressure P 1 is the same, and the air consumption is controlled. When the switching point of the method is matched, an unstable ON-OFF command may be generated in the solenoid valve 21, and hunting of the suction throttle valve 2 may occur.

【0029】一般的な一定速型の電動機駆動スクリュー
圧縮機においては、吸込み絞り弁のみを閉塞する容量制
御を行わない場合には、圧縮機の仕様圧力P0*と無負荷
運転に入る設定上限圧力P1*とを同じ圧力に設定してい
る。なぜなら仕様圧力における全負荷運転状態のとき
に、電動機が許容最大出力となるように設計するからで
ある。つまり、無負荷運転の開始の設定上限圧力P1*を
仕様圧力P0*より高くすると電動機が過負荷状態になる
し、他方、無負荷運転の開始の設定上限圧力P1*を仕様
圧力P0*より低くすると、仕様圧力に到達しないうちに
無負荷運転に入るという不具合が生じるためである。
In a general constant speed electric motor driven screw compressor, when the capacity control for closing only the suction throttle valve is not performed, the specified pressure P 0 * of the compressor and the set upper limit for no load operation are set. The pressure P 1 * is set to the same pressure. This is because the electric motor is designed to have an allowable maximum output when operating under full load at the specified pressure. That is, if the set upper limit pressure P 1 * at the start of no-load operation is made higher than the specified pressure P 0 *, the electric motor becomes overloaded, while the set upper limit pressure P 1 * at the start of the no-load operation becomes the specified pressure P 0. * Because if it is lower than the specified pressure, there will be a problem that the operation will start without load before the specified pressure is reached.

【0030】一方、本発明においては、インバータによ
る回転数制御領域の下限回転数で無負荷運転を開始して
いるので、一定速電動機駆動の圧縮機の制限がなく、回
転数制御領域での目標設定圧力P0、(即ち一定速電動
機駆動の圧縮機の場合の仕様圧力)に対して無負荷運転
の開始圧力P1を高く設定しても、電動機の過負荷等の
問題はなんら発生しない。そこで本発明においては、P
1>P0となるようにP1を設定する。例えばP0が0.6
9Mpaの場合には、P1を0.79Mpaとする。このよう
に設定することにより、回転数制御領域と下限回転数で
の一定速制御との間に時間遅れを持たせることができ、
前述したハンチングが発生する恐れがない。
On the other hand, in the present invention, since the no-load operation is started at the lower limit rotation speed of the rotation speed control region by the inverter, there is no limitation of the compressor driven by the constant speed electric motor, and the target in the rotation speed control region is set. Even if the starting pressure P 1 for no-load operation is set higher than the set pressure P 0 (that is, the specification pressure in the case of a compressor driven by a constant speed electric motor), no problem such as overload of the electric motor occurs. Therefore, in the present invention, P
Set P 1 so that 1 > P 0 . For example, P 0 is 0.6
In the case of 9 Mpa, P 1 is set to 0.79 Mpa. By setting in this way, a time delay can be provided between the rotation speed control region and the constant speed control at the lower limit rotation speed,
There is no risk of hunting as described above.

【0031】なお、設定圧力によっては、圧縮機に適合
する制御条件を外れ、不都合を生じる恐れがある。そこ
で、目標設定圧力P0を入力すると自動的に適正値を演
算し、P1〜P4を決定する方法を用いる。このP1〜P4
の決定方法の一例を以下に示す。今、圧力P0がP0
0.69MPaであったとする。この状態で低負荷にな
ったら、最高圧力を0.098MPa上昇させて、P1
=P0+0.098=0.79MPaという演算を行わ
せる。ここで、安全弁の吹き出し圧力は0.93MPa
であるから、制御上限圧力はこの吹き出し圧力以下とい
う条件を満足している。次に、停止可能な圧力P2の条
件は、P2>=P1である。つまり、P1=P2まではロ
−ド運転し、P1=P2になったらアンロ−ド運転に切り
替えるから、このアンロ−ド運転への切り替わり時から
0に圧力が降下するまでの時間を計算し、この時間が
所定時間以上であれば停止させ、所定時間以内であれば
ロ−ド運転となるように制御装置を作動させる。ロ−ド
運転へ復帰させる圧力P3は、P3=<P0である。ま
た、運転停止後に再起動させるための圧力P4は、P4
0−0.098MPa=0.59MPaとする。
Depending on the set pressure, the control condition suitable for the compressor may be deviated, which may cause inconvenience. Therefore, when the target set pressure P 0 is input, an appropriate value is automatically calculated to determine P 1 to P 4 . This P 1 ~ P 4
An example of the determination method of is shown below. Now, the pressure P 0 is P 0 =
It is assumed to be 0.69 MPa. If the load becomes low in this state, increase the maximum pressure by 0.098 MPa to P 1
= P 0 + 0.098 = 0.79 MPa is calculated. Here, the blowout pressure of the safety valve is 0.93 MPa.
Therefore, the control upper limit pressure satisfies the condition that it is less than or equal to this blowing pressure. Next, the condition for the stoppable pressure P 2 is P 2 > = P 1 . That is, until P1 = P2 is b - de driving, unload Once become P 1 = P 2 - from switch to de operation, the unload - a from when switching to de operation until the pressure drops to P 0 time If this time is calculated and the time is longer than a predetermined time, it is stopped, and if it is within the predetermined time, the controller is operated so that the road operation is performed. The pressure P 3 for returning to the load operation is P 3 = <P 0 . Further, the pressure P 4 for restarting after the operation stop is P 4 =
And P 0 -0.098MPa = 0.59MPa.

【0032】このように各圧力P0〜P4を設定した場
合、P0=0.83MPa以上になると、P1=(P0
0.098)>0.93MPaとなり、安全弁の吹き出
し圧力を超えてしまう。そこで、P1=P0+(0.07
/P0)MPaで表されるような各仕様に適合した経験
式を圧縮機の制御装置が有する記憶手段に記憶させてお
く。つまり、各圧縮機の圧力設定にあわせて、仕様に応
じた式を演算式を記憶させることにより、P0の入力の
みで、各設定圧力を自動的に決定できる。なお、この実
施例では各設定圧力間の関係を演算式で与えたが、離散
的な値を補間して用いても良い。また、この関係式を記
憶手段に記憶させているが、フロッピーディスクのよう
な外部記憶手段に記憶させたものを用いてもよい。
When the respective pressures P 0 to P 4 are set in this way, when P 0 = 0.83 MPa or more, P 1 = (P 0 +
0.098)> 0.93 MPa, which exceeds the blowout pressure of the safety valve. Therefore, P 1 = P 0 + (0.07
/ P 0 ) MPa The empirical formulas suitable for the respective specifications are stored in the storage means of the compressor control device. That is, each set pressure can be automatically determined only by inputting P 0 by storing an arithmetic expression according to the specification according to the pressure setting of each compressor. In this embodiment, the relationship between the set pressures is given by an arithmetic expression, but discrete values may be interpolated and used. Further, although this relational expression is stored in the storage means, it may be stored in an external storage means such as a floppy disk.

【0033】ところで、従来、一定速電動機を用いた場
合には、吸込み絞り弁や電磁弁の開閉動作に起因する圧
力差の発生が避けられなかった。たとえば最低限必要な
圧力が0.59Mpaであっても、0.69Mpaと
0.59Mpaの間で負荷運転と、無負荷運転を繰り返し
ていた。一方、インバータを用いた回転数制御方式で
は、PID制御により圧力を一定にして回転数を変化さ
せることが可能になり、最低限必要な圧力0.59Mp
aを回転数制御領域での目標設定圧力P0とすることで
無駄に高い圧力まで昇圧する必要がなく、省電力効果が
得られる。しかし回転数を制御しない低負荷領域での無
負荷運転中に、例えば0.59Mpaと0.49Mpa
の間に圧力を制御し、圧力が0.59Mpa以下に低下
するとこの効果も半減する。すなわち、圧力が0.59
Mpa以下に低下すると支障のある場合には結局P0
低下させることができない。
By the way, conventionally, when a constant-speed electric motor is used, it is unavoidable that a pressure difference is generated due to the opening / closing operation of the suction throttle valve and the electromagnetic valve. For example, even if the minimum required pressure was 0.59 MPa, the load operation and the no-load operation were repeated between 0.69 MPa and 0.59 MPa. On the other hand, in the rotation speed control method using the inverter, it becomes possible to change the rotation speed while keeping the pressure constant by the PID control, and the minimum required pressure is 0.59 Mp.
By setting a as the target set pressure P 0 in the rotation speed control region, it is not necessary to unnecessarily increase the pressure to a high pressure, and the power saving effect can be obtained. However, during no-load operation in the low load region where the rotation speed is not controlled, for example, 0.59 Mpa and 0.49 Mpa
This effect is halved when the pressure is controlled during the period and the pressure drops to 0.59 MPa or less. That is, the pressure is 0.59
In the case where there is a hindrance when it is reduced to Mpa or less, P 0 cannot be reduced after all.

【0034】そこで、無負荷運転に入った後に圧縮空気
が消費されて吐出圧力が低下するのを、圧力センサー1
8で検出する。また、負荷運転に復帰するときの圧力
(下限圧力)P2を、回転数制御領域での目標設定圧力
0と同じか、それ以上の圧力とする。これにより回転
数制御領域から空気使用量がさらに減少したときにも、
常に回転数制御領域での目標設定圧力より高い圧力で運
転が可能になる。また、制御圧力を上昇させても、低負
荷領域であるから運転動力の増加は非常に小さくて済
む。
Therefore, the pressure sensor 1 indicates that the compressed air is consumed and the discharge pressure decreases after the no load operation is started.
Detect at 8. Further, the pressure (lower limit pressure) P 2 when returning to the load operation is set equal to or higher than the target set pressure P 0 in the rotation speed control region. Due to this, even when the air usage amount further decreases from the rotation speed control area,
The operation can always be performed at a pressure higher than the target set pressure in the rotation speed control area. Further, even if the control pressure is increased, the increase of the driving power is very small because it is in the low load region.

【0035】次に本発明の変形例を示す。この変形例
は、負荷が減少した場合の制御についてである。負荷が
減少した場合には、上記したタイマー機能により、自動
停止と自動再起動が行われる。このとき、圧縮機の自動
停止条件が整ったら一旦強制的に負荷運転を行い、圧縮
機の吐出圧力を一旦回転数制御領域での目標設定圧力P
0に対しP3>P0となるP3まで圧力を上昇させ、次いで
圧縮機を停止させる。また、圧縮機を再起動させる圧力
4を回転数制御領域での目標設定圧力P0に対しP4
=P0に設定する。これにより、一定回転数に保持する
低負荷領域においても圧縮機を安定に制御できる。すな
わち本変形例によれば、回転数制御領域での目標設定圧
力をあらゆる負荷領域において維持できるため、圧縮機
を最低限必要な圧力で運転できるという上記したインバ
ータによる回転数制御の省電力効果を最大限に発揮でき
る。
Next, a modification of the present invention will be shown. This modification is about control when the load is reduced. When the load decreases, the timer function described above causes automatic stop and automatic restart. At this time, if the automatic stop condition of the compressor is satisfied, the load operation is forcibly performed once, and the discharge pressure of the compressor is temporarily set to the target set pressure P in the rotational speed control region.
0 to raise the pressure to P 3 which is a P 3> P 0, and then stops the compressor. Further, the pressure P 4 for restarting the compressor is P 4 > with respect to the target set pressure P 0 in the rotation speed control region.
= P 0 . As a result, the compressor can be stably controlled even in the low load region in which the rotation speed is kept constant. That is, according to this modification, since the target set pressure in the rotation speed control region can be maintained in all load regions, the power saving effect of the rotation speed control by the above-described inverter that the compressor can be operated at the minimum necessary pressure can be achieved. You can maximize it.

【0036】なお上記実施例においては、制御圧力の設
定値は記憶手段20aに格納されており、表示及び入力
手段20bを用いて必要なときに表示できる。また、こ
れらの設定値は制御圧力P0を入力すると自動的に演算
され、決定されるようになっているが、表示及び入力手
段20bを用いても容易に行える。例えば、圧力により
最高圧力を制限する例では、上述の5個の制御圧力
0、P1、P2、P3、P4を、 P1=P3=P0+(0.07/P0)Mpa P2=P4=P0 の式を用いて設定し、予め記憶手段に格納し、通常はP
0だけを変化させる。この場合、運転圧力を簡単に変更
できる。
In the above embodiment, the set value of the control pressure is stored in the storage means 20a and can be displayed when necessary using the display and input means 20b. Although these set values are automatically calculated and determined when the control pressure P 0 is input, they can be easily performed by using the display and input means 20b. For example, in the example in which the maximum pressure is limited by the pressure, the above-mentioned five control pressures P 0 , P 1 , P 2 , P 3 , P 4 are set as P 1 = P 3 = P 0 + (0.07 / P 0 ) Mpa P 2 = P 4 = P 0 It is set using the equation and stored in advance in the storage means.
Change only 0 . In this case, the operating pressure can be easily changed.

【0037】なお、手動で各設定圧力を決めることが出
来ることは言うまでもない。例えば、P1=P2=P3
0+X,P4=P0−Yとして、X,Yの値を表示装置
に表示される時々刻々の値を見ながら、制御盤面上に設
けた入力スイッチ等を用いて入力する。ここで、0.0
01>XまたはY>0.098であるる。
Needless to say, each set pressure can be manually determined. For example, P 1 = P 2 = P 3 =
With P 0 + X, P 4 = P 0 -Y, the values of X and Y are input using an input switch or the like provided on the surface of the control panel while watching the momentary values displayed on the display device. Where 0.0
01> X or Y> 0.098.

【0038】また、自動再起動後からカウントを開始す
るタイマーを記憶手段及び制御装置部20aに設け、負
荷が減少しても所定時間t1の間圧縮機を停止させず、
この時間t1経過後もなお圧縮機の負荷条件が前記自動
停止条件を満足している時に圧縮機を自動停止させる。
これにより、圧縮機が頻繁に運転、停止を繰り返すこと
に起因する、油温が十分に上昇する前に圧縮機が停止し
てオイルセパレータ5内にドレンが発生することを防止
できる。
Further, a timer for starting counting after the automatic restart is provided in the storage means and the control device section 20a, and the compressor is not stopped for a predetermined time t 1 even if the load is reduced,
After this time t 1 , the compressor is automatically stopped when the load condition of the compressor still satisfies the automatic stop condition.
As a result, it is possible to prevent the compressor from stopping before the oil temperature rises sufficiently to cause drainage in the oil separator 5 due to the compressor being repeatedly operated and stopped.

【0039】上述したスクリュー圧縮機の制御法を用い
たときの空気使用量と圧力の変化の例を図3に、またス
クリュー圧縮機の運転制御のフローの一例を図4に示
す。本発明では、インバータを使用した回転数制御と、
容量制御を組み合わせるスクリュー圧縮機及びその運転
方法において、容量制御運転中に吸込み絞り弁のみを閉
塞して容量制御する従来方法の運転領域が全くないこれ
により、動力の低減とドレンの発生を低減できる。
FIG. 3 shows an example of changes in the air usage and pressure when the above-described screw compressor control method is used, and FIG. 4 shows an example of the operation control flow of the screw compressor. In the present invention, rotation speed control using an inverter,
In the screw compressor combined with capacity control and its operation method, there is no operation area of the conventional method in which capacity control is performed by closing only the suction throttle valve during capacity control operation.Therefore, it is possible to reduce power consumption and generation of drainage. .

【0040】以上述べたように、本実施例によれば、制
御設定圧力を入力することで、低負荷時の容量制御にお
いて、圧力設定が容易になり、圧力条件による機械の不
都合がない。また、入力値を変更及び確認できる機能を
備えているので、常に圧縮機の運転状態を把握でき、圧
縮機運転における信頼性を向上できる。
As described above, according to the present embodiment, by inputting the control set pressure, it becomes easy to set the pressure in the capacity control under low load, and there is no inconvenience of the machine due to the pressure condition. Further, since the input value can be changed and confirmed, the operating state of the compressor can be always grasped, and the reliability in the operation of the compressor can be improved.

【0041】[0041]

【発明の効果】本発明によれば、スクリュー圧縮機の負
荷が低負荷で、圧縮機の回転数を低下させて運転する場
合、 (1)動力の低減効果が大となる。
According to the present invention, when the load of the screw compressor is low and the screw compressor is operated at a reduced rotation speed, (1) the power reduction effect is great.

【0042】(2)必要駆動トルクが増大せず、インバ
ータ駆動圧縮機においてインバータのトリップが生じな
い。
(2) The required drive torque does not increase and the inverter drive compressor does not trip the inverter.

【0043】(3)圧縮機の吐出圧力も低下するので、
オイルセパレータ内でドレンが発生する恐れが無い。
(3) Since the discharge pressure of the compressor also drops,
There is no risk of drainage inside the oil separator.

【0044】(4)さらに負荷が低下して圧縮機を停止
させても、回転数制御に必要な圧力を確保できるので、
回転数制御の設定圧力を低下させることができ、理想近
くまで動力を軽減できる。
(4) Even if the load is further reduced and the compressor is stopped, the pressure required for the rotation speed control can be secured.
The set pressure for rotation speed control can be lowered, and power can be reduced to near ideal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るスクリュー圧縮機装置
の模式図である。
FIG. 1 is a schematic diagram of a screw compressor device according to an embodiment of the present invention.

【図2】消費動力の特性を示すグラフである。FIG. 2 is a graph showing characteristics of power consumption.

【図3】空気使用量と圧力の変化の一例を示すグラフで
ある。
FIG. 3 is a graph showing an example of changes in air usage and pressure.

【図4】運転制御の一例のフローチャートである。FIG. 4 is a flowchart of an example of operation control.

【符号の説明】[Explanation of symbols]

2……吸込絞り弁、5……オイルセパレータ、6……オ
イルセパレータエレメント、8……逆止弁、9……調圧
弁、16……電動機、17……インバータ、18……圧
力センサー、19……入出力部、20a……記憶手段及
び制御装置部、20b……表示及び設定入力手段部、2
1……電磁弁。
2 ... Suction throttle valve, 5 ... Oil separator, 6 ... Oil separator element, 8 ... Check valve, 9 ... Pressure regulating valve, 16 ... Electric motor, 17 ... Inverter, 18 ... Pressure sensor, 19 ...... Input / output unit, 20a ...... Storage means and control device section, 20b ...... Display and setting input section, 2
1 ... Solenoid valve.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】インバータを用いた電動機により駆動され
る変速運転が可能なスクリュー圧縮機の運転方法におい
て、 前記圧縮機の回転数を変化させて負荷の変化に対応する
回転数制御方法と、この回転数制御方法で用いる下限回
転数に前記圧縮機の回転数を設定するとともに、前記ス
クリュー圧縮機の吸込側に設けられた吸込絞り弁を閉じ
て前記スクリュー圧縮機の負荷に対応して容量制御する
容量制御方法とを備え、無負荷運転時には前記容量制御
方法において前記スクリュー圧縮機の吐出圧力を減圧す
ることを特徴とするスクリュー圧縮機の運転方法。
1. A method of operating a screw compressor driven by an electric motor using an inverter, which is capable of variable speed operation, and a method of controlling the number of revolutions corresponding to a change in load by changing the number of revolutions of the compressor, While setting the rotation speed of the compressor to the lower limit rotation speed used in the rotation speed control method, the suction throttle valve provided on the suction side of the screw compressor is closed to control the capacity corresponding to the load of the screw compressor. The method for controlling a screw compressor, wherein the discharge pressure of the screw compressor is reduced in the capacity control method during no-load operation.
【請求項2】少なくとも前記無負荷運転が所定時間以上
継続したとき、および前記容量制御方法における無負荷
運転と負荷運転との時間比率が所定割合を越えたときの
いずれか一方の運転になったときに、前記スクリュー圧
縮機を停止することを特徴とする請求項1に記載のスク
リュー圧縮機の運転方法。
2. At least one of the operation when the no-load operation continues for a predetermined time or more and when the time ratio between the no-load operation and the load operation in the capacity control method exceeds a predetermined ratio. The method of operating a screw compressor according to claim 1, wherein the screw compressor is stopped at times.
【請求項3】負荷が減少して回転数を一定にして吸込み
絞り弁を閉塞し、さらに、圧縮機の吐出圧力を減圧して
回転数制御領域から無負荷運転の容量制御領域に入った
際に、制御の上限圧力P1を前記回転数制御領域での設
定圧力P0に対し、P1>P0に制御することを特徴とす
る請求項1に記載のスクリュー圧縮機の運転方法。
3. When the load is reduced to keep the rotation speed constant and the suction throttle valve is closed, and further, the discharge pressure of the compressor is reduced to enter the capacity control area of the no-load operation from the rotation speed control area. The operating method of the screw compressor according to claim 1 , wherein the control upper limit pressure P 1 is controlled to P 1 > P 0 with respect to the set pressure P 0 in the rotation speed control region.
【請求項4】軸受により回転可能に支持された雄雌一対
のロータを有し、該ロータを駆動する電動機と、該電動
機を制御するインバータとを備え、吸込み側に流量を調
整する吸込み絞り弁を設けたスクリュー圧縮機におい
て、 前記電動機の回転数をインバータにより変化させて前記
スクリュー圧縮機の容量を制御する回転数制御手段と、
この回転数制御手段に設定された最低回転数で前記スク
リュー圧縮機を駆動するとともに、前記吸込み絞り弁を
閉塞する制御を行う容量制御手段とを備えたことを特徴
とするスクリュー圧縮機。
4. A suction throttle valve having a pair of male and female rotors rotatably supported by bearings, comprising an electric motor for driving the rotor and an inverter for controlling the electric motor, and adjusting the flow rate on the suction side. In the screw compressor provided with, a rotation speed control means for controlling the capacity of the screw compressor by changing the rotation speed of the electric motor by an inverter,
A screw compressor comprising: a capacity control unit that drives the screw compressor at a minimum rotation speed set in the rotation speed control unit and controls to close the suction throttle valve.
【請求項5】前記容量制御手段は、前記圧縮機の吐出圧
力の上限値をP1、前記圧縮機の吐出圧力の下限値を
2、設定圧力をP0にしたときに、P1>P0で、P2
<P0に制御することを特徴とする請求項4に記載のス
クリュー圧縮機。
5. When the upper limit of the discharge pressure of the compressor is P 1 , the lower limit of the discharge pressure of the compressor is P 2 , and the set pressure is P 0 , P 1 > At P 0 , P 2 =
The screw compressor according to claim 4, wherein the screw compressor is controlled to <P 0 .
【請求項6】前記回転数制御手段は、負荷の減少により
圧縮機が自動停止する際に、前記設定圧力P0に対しP3
>P0となるP3まで圧力を上昇してから停止させる様に
制御することを特徴とする請求項5に記載のスクリュー
圧縮機。
6. The rotation speed control means sets P 3 with respect to the set pressure P 0 when the compressor automatically stops due to a decrease in load.
The screw compressor according to claim 5, wherein the screw compressor is controlled so that the pressure is increased to P 3 where> P 0 and then stopped.
【請求項7】前記回転数制御手段は、前記圧縮機を再起
動させる圧力をP4とするとき、P4>=P0となるよう
制御することを特徴とする請求項6に記載のスクリュー
圧縮機。
7. The screw according to claim 6, wherein the rotation speed control means controls so that P 4 > = P 0 when the pressure for restarting the compressor is P 4. Compressor.
【請求項8】前記圧縮機の吐出圧を検出する吐出圧検出
手段を圧縮機の吐出側に設けるとともに、前記容量制御
手段の設定圧力(P0)と、前記回転数制御手段の圧力
の上限値(P1)と下限値(P2)と、自動停止前の圧力
の上限値(P3)と、自動停止後の再起動圧力(P4)を
記憶する記憶手段と、前記吐出圧検出手段により検出さ
れた検出圧力と前記インバータの駆動周波数に応じて前
記回転数制御手段及び前記容量制御手段の作動を切り換
える切り換え手段と、前記記憶手段に記憶されたP0
1、P2、P3、P4の値を変更可能にする入力手段とを
設けたことを特徴とする請求項4に記載のスクリュー圧
縮機。
8. A discharge pressure detection means for detecting the discharge pressure of the compressor is provided on the discharge side of the compressor, and the set pressure (P 0 ) of the capacity control means and the upper limit of the pressure of the rotational speed control means. A storage means for storing the value (P 1 ) and the lower limit value (P 2 ), the upper limit value (P 3 ) of the pressure before the automatic stop, and the restart pressure (P 4 ) after the automatic stop, and the discharge pressure detection. Switching means for switching the operations of the rotation speed control means and the capacity control means in accordance with the detected pressure detected by the means and the drive frequency of the inverter, and P 0 stored in the storage means,
The screw compressor according to claim 4, further comprising: an input unit that can change the values of P 1 , P 2 , P 3 , and P 4 .
【請求項9】前記容量制御手段の設定圧力(P0)と、
前記回転数制御手段の圧力の上限値(P1)と下限値
(P2)と、自動停止前の圧力の上限値(P3)と、自動
停止後の再起動圧力(P4)を記憶する記憶手段と、前
記容量制御手段の設定圧力(P0)に基づいて各設定圧
力(P1,P2,P3,P4)を演算設定する圧力設定手段
とを備えたことを特徴とする請求項4に記載のスクリュ
ー圧縮機。
9. A set pressure (P 0 ) of the capacity control means,
The upper limit value (P 1 ) and the lower limit value (P 2 ) of the pressure of the rotation speed control means, the upper limit value (P 3 ) of the pressure before the automatic stop, and the restart pressure (P 4 ) after the automatic stop are stored. Storage means and pressure setting means for calculating and setting the set pressures (P 1 , P 2 , P 3 , P 4 ) based on the set pressure (P 0 ) of the capacity control means. The screw compressor according to claim 4.
【請求項10】前記圧縮機の圧力が低下して圧縮機が再
起動したときに、負荷が減少しても所定時間(t1)圧
縮機の運転を継続し、所定時間(t1)経過後は圧縮機
を停止させることを特徴とする請求項2に記載のスクリ
ュー圧縮機の運転方法。
When 10. A compressor pressure of the compressor is reduced is restarted, the load continues to operate for a predetermined time (t 1) compressor be reduced, the predetermined time (t 1) has elapsed The method of operating the screw compressor according to claim 2, further comprising stopping the compressor.
JP03359897A 1996-02-19 1997-02-18 Operating method of screw compressor and screw compressor Expired - Lifetime JP3262011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03359897A JP3262011B2 (en) 1996-02-19 1997-02-18 Operating method of screw compressor and screw compressor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3031696 1996-02-19
JP8-30316 1996-02-19
JP03359897A JP3262011B2 (en) 1996-02-19 1997-02-18 Operating method of screw compressor and screw compressor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001064314A Division JP3914713B2 (en) 1996-02-19 2001-03-08 Screw compressor operating method and screw compressor

Publications (2)

Publication Number Publication Date
JPH09287580A true JPH09287580A (en) 1997-11-04
JP3262011B2 JP3262011B2 (en) 2002-03-04

Family

ID=26368643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03359897A Expired - Lifetime JP3262011B2 (en) 1996-02-19 1997-02-18 Operating method of screw compressor and screw compressor

Country Status (1)

Country Link
JP (1) JP3262011B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104666A (en) * 1998-09-29 2000-04-11 Hitachi Ltd Load measuring diagnosis device in air compressor and air compressor equipped therewith
DE10047940A1 (en) * 2000-06-02 2001-12-13 Hitachi Ltd Screw air compressor has a frequency controlled drive motor protected from overload by a valve venting to the atmosphere.
JP2006283649A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Compressor and its operation control method
JP2007170186A (en) * 2005-12-19 2007-07-05 Hitachi Industrial Equipment Systems Co Ltd Oil-cooled screw compressor
US7473084B2 (en) 2005-09-30 2009-01-06 Hitachi Industrial Equipment System Co. Oil-cooled screw compressor
CN102927011A (en) * 2011-08-12 2013-02-13 株式会社神户制钢所 Compression apparatus
WO2013109022A1 (en) * 2012-01-20 2013-07-25 Kim Keum Kyun Auxiliary control device for compressor and auxiliary control method for compressor thereof
CN104033372A (en) * 2014-06-04 2014-09-10 上海英格索兰压缩机有限公司 Air compressor host performance measurement system
CN104632631A (en) * 2014-12-30 2015-05-20 广东溢达纺织有限公司 Air compressor control system
JP2016530450A (en) * 2013-09-11 2016-09-29 アトラス コプコ エアーパワー, ナームローゼ フェンノートシャップATLAS COPCO AIRPOWER, naamloze vennootschap Liquid injection type screw compressor, controller for shifting screw compressor from unloaded state to loaded state, and method applied thereto
JP2017504754A (en) * 2014-01-10 2017-02-09 アトラス コプコ エアーパワー, ナームローゼ フェンノートシャップATLAS COPCO AIRPOWER, naamloze vennootschap Method for preventing condensate in oil of oil injection type compressor and compressor to which the method is applied
CN107076151A (en) * 2014-07-19 2017-08-18 Gea制冷德国公司 Screw compressor
US20180223847A1 (en) * 2015-08-14 2018-08-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Oil-cooled screw compressor and control method therefor
EP3492751A1 (en) * 2010-04-20 2019-06-05 Sandvik Intellectual Property AB Air compressor system and method of operation
JP2020180576A (en) * 2019-04-25 2020-11-05 マックス株式会社 air compressor
CN113728163A (en) * 2019-04-15 2021-11-30 株式会社日立产机系统 Gas compressor
JPWO2022065072A1 (en) * 2020-09-25 2022-03-31
US11415136B2 (en) * 2018-06-22 2022-08-16 Kobe Steel, Ltd. Screw compressor
US11448217B2 (en) 2018-03-30 2022-09-20 Hitachi Industrial Equipment Systems Co., Ltd. Gas compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106471254B (en) 2014-07-02 2018-05-08 株式会社日立产机系统 Liquid-cooled compressor and its method of operation

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104666A (en) * 1998-09-29 2000-04-11 Hitachi Ltd Load measuring diagnosis device in air compressor and air compressor equipped therewith
DE10047940A1 (en) * 2000-06-02 2001-12-13 Hitachi Ltd Screw air compressor has a frequency controlled drive motor protected from overload by a valve venting to the atmosphere.
DE10047940B4 (en) * 2000-06-02 2005-06-23 Hitachi, Ltd. Method for controlling the operation of an oil-free screw compression device
JP2006283649A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Compressor and its operation control method
US7473084B2 (en) 2005-09-30 2009-01-06 Hitachi Industrial Equipment System Co. Oil-cooled screw compressor
US7762799B2 (en) 2005-09-30 2010-07-27 Hitachi Industrial Equipment Systems Co. Oil-cooled screw compressor
US8226388B2 (en) 2005-09-30 2012-07-24 Hitachi Industrial Equipment Systems Co., Ltd. Oil-cooled screw compressor
JP2007170186A (en) * 2005-12-19 2007-07-05 Hitachi Industrial Equipment Systems Co Ltd Oil-cooled screw compressor
JP4627492B2 (en) * 2005-12-19 2011-02-09 株式会社日立産機システム Oil-cooled screw compressor
US8241007B2 (en) 2005-12-19 2012-08-14 Hitachi Industrial Equipment Systems Co., Ltd. Oil-injection screw compressor
EP3492751A1 (en) * 2010-04-20 2019-06-05 Sandvik Intellectual Property AB Air compressor system and method of operation
TWI486524B (en) * 2011-08-12 2015-06-01 Kobe Steel Ltd Compression device
CN102927011A (en) * 2011-08-12 2013-02-13 株式会社神户制钢所 Compression apparatus
US9157432B2 (en) 2011-08-12 2015-10-13 (Kobe Steel, Ltd.) Compression apparatus
JP2013040572A (en) * 2011-08-12 2013-02-28 Kobe Steel Ltd Compression apparatus
WO2013109022A1 (en) * 2012-01-20 2013-07-25 Kim Keum Kyun Auxiliary control device for compressor and auxiliary control method for compressor thereof
CN104066995A (en) * 2012-01-20 2014-09-24 金金均 Auxiliary control device for compressor and auxiliary control method for compressor thereof
US10704550B2 (en) 2013-09-11 2020-07-07 Atlas Copco Airpower, Naamloze Vennootschap Liquid injected screw compressor, controller for the transition from an unloaded state to a loaded state of such a screw compressor and method applied therewith
JP2016530450A (en) * 2013-09-11 2016-09-29 アトラス コプコ エアーパワー, ナームローゼ フェンノートシャップATLAS COPCO AIRPOWER, naamloze vennootschap Liquid injection type screw compressor, controller for shifting screw compressor from unloaded state to loaded state, and method applied thereto
US10550844B2 (en) 2014-01-10 2020-02-04 Atlas Copco Airpower N.V. Method for preventing condensate in the oil of an oil-injected compressor and compressor in which such a method is applied
JP2017504754A (en) * 2014-01-10 2017-02-09 アトラス コプコ エアーパワー, ナームローゼ フェンノートシャップATLAS COPCO AIRPOWER, naamloze vennootschap Method for preventing condensate in oil of oil injection type compressor and compressor to which the method is applied
CN104033372A (en) * 2014-06-04 2014-09-10 上海英格索兰压缩机有限公司 Air compressor host performance measurement system
CN107076151A (en) * 2014-07-19 2017-08-18 Gea制冷德国公司 Screw compressor
US10648473B2 (en) 2014-07-19 2020-05-12 Gea Refrigeration Germany Gmbh Screw compressor
CN104632631A (en) * 2014-12-30 2015-05-20 广东溢达纺织有限公司 Air compressor control system
US10788039B2 (en) * 2015-08-14 2020-09-29 Kobe Steel, Ltd. Oil-cooled screw compressor and control method therefor
US20180223847A1 (en) * 2015-08-14 2018-08-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Oil-cooled screw compressor and control method therefor
US11448217B2 (en) 2018-03-30 2022-09-20 Hitachi Industrial Equipment Systems Co., Ltd. Gas compressor
US11415136B2 (en) * 2018-06-22 2022-08-16 Kobe Steel, Ltd. Screw compressor
CN113728163A (en) * 2019-04-15 2021-11-30 株式会社日立产机系统 Gas compressor
CN113728163B (en) * 2019-04-15 2023-09-15 株式会社日立产机系统 gas compressor
JP2020180576A (en) * 2019-04-25 2020-11-05 マックス株式会社 air compressor
JPWO2022065072A1 (en) * 2020-09-25 2022-03-31

Also Published As

Publication number Publication date
JP3262011B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
JPH09287580A (en) Screw compressor and operation method thereof
JP3837278B2 (en) Compressor operation method
EP1851438B1 (en) System and method for controlling a variable speed compressor during stopping
US6082971A (en) Compressor control system and method
US3860363A (en) Rotary compressor having improved control system
US8241007B2 (en) Oil-injection screw compressor
US6287083B1 (en) Compressed air production facility
CN110475973B (en) Gas compressor
US5820352A (en) Method for controlling compressor discharge pressure
JP5506830B2 (en) Screw compressor
US5967757A (en) Compressor control system and method
JP4792383B2 (en) Operation method of screw compressor
CN113790171A (en) Static pressure gas suspension centrifugal refrigeration compressor operation control system
JP7258161B2 (en) How to control a compressor towards a no-load condition
JP3914713B2 (en) Screw compressor operating method and screw compressor
JP3384225B2 (en) Oil-cooled screw compressor and operating method thereof
JP4418321B2 (en) Compressor and operation method thereof
JP4532327B2 (en) Compressor and operation control method thereof
KR20090036509A (en) Refrigerating device and operation method of refrigerating device
CN100585185C (en) Compressor and operation method
US20230243352A1 (en) Oiling device and abnormality detection method of the same
JPH035246A (en) Hydraulic driving device for vehicle
JP2510534B2 (en) Control equipment for refrigeration equipment
JP2018053724A (en) Water addition start method of water addition type compressor
JPS5941193A (en) Controller for turbo refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

EXPY Cancellation because of completion of term