JPH09279332A - Refining method of organic compound monomer - Google Patents
Refining method of organic compound monomerInfo
- Publication number
- JPH09279332A JPH09279332A JP8116976A JP11697696A JPH09279332A JP H09279332 A JPH09279332 A JP H09279332A JP 8116976 A JP8116976 A JP 8116976A JP 11697696 A JP11697696 A JP 11697696A JP H09279332 A JPH09279332 A JP H09279332A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- organic compound
- monomer
- monomers
- compound monomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Polyurethanes Or Polyureas (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、有機化合物モノマ
ーを蒸発させて重合を行う蒸着重合に用いられる有機化
合物モノマーの精製方法に関する。TECHNICAL FIELD The present invention relates to a method for purifying an organic compound monomer used in vapor deposition polymerization in which the organic compound monomer is evaporated to carry out polymerization.
【0002】[0002]
【従来の技術】近年、真空中で有機化合物の有機化合物
モノマーを蒸発させてこれを基体上で重合させることに
よって高分子薄膜を形成する蒸着重合法が提案されてい
る。2. Description of the Related Art In recent years, a vapor deposition polymerization method has been proposed in which a polymer thin film is formed by evaporating an organic compound monomer of an organic compound in a vacuum and polymerizing it on a substrate.
【0003】図6は、一般的な蒸着重合装置の一例を示
すものである。図6に示すように、この蒸着重合装置1
01は、気密状態を保持可能な処理室102を有し、こ
の処理室102は、図示しない外部の真空ポンプその他
の真空排気系に接続されている。そして、処理室102
内の上部には、高分子薄膜を形成すべき基板103が基
板ホルダ104によって下向きに保持され、また、基板
ホルダ104の背面側には、基板103を所望の温度に
加熱するためのヒーター105が設けられている。FIG. 6 shows an example of a general vapor deposition polymerization apparatus. As shown in FIG. 6, this vapor deposition polymerization apparatus 1
01 has a processing chamber 102 capable of maintaining an airtight state, and this processing chamber 102 is connected to an external vacuum pump or other vacuum exhaust system (not shown). Then, the processing chamber 102
A substrate 103 on which a polymer thin film is to be formed is held downward by a substrate holder 104 in the upper part of the inside, and a heater 105 for heating the substrate 103 to a desired temperature is provided on the back side of the substrate holder 104. It is provided.
【0004】一方、処理室102の下方には、基板10
3に対抗するように、各有機化合物モノマーa、bを蒸
発させるための蒸発源が設けられる。この蒸発源は、例
えばガラスからなる蒸発用容器106、107が設けら
れるとともに、各蒸発用容器106、107の近傍に、
加熱用のヒーター108、109と温度センサ110、
111が設けられ、これらによって有機化合物モノマー
a、bの蒸発レートが常に一定に保たれるように構成さ
れる。On the other hand, below the processing chamber 102, the substrate 10
An evaporation source for evaporating each of the organic compound monomers a and b is provided so as to counter 3. This evaporation source is provided with evaporation containers 106 and 107 made of, for example, glass, and in the vicinity of the evaporation containers 106 and 107,
Heaters 108 and 109 for heating and a temperature sensor 110,
111 is provided so that the evaporation rates of the organic compound monomers a and b are always kept constant.
【0005】また、蒸発用容器106、107の間に
は、各有機化合物モノマーa、bの蒸気の混合を防止す
るための仕切板112が設けられ、また、加熱用のヒー
ター108、109の上方には、有機化合物モノマー
a、bの蒸気の混入を防止するためのシャッター113
が設けられている。A partition plate 112 is provided between the evaporation containers 106 and 107 to prevent the vapors of the organic compound monomers a and b from mixing with each other, and above the heaters 108 and 109 for heating. The shutter 113 is provided to prevent the vapor of the organic compound monomers a and b from entering.
Is provided.
【0006】従来、このような装置を用いて高分子薄膜
を形成する例として、4、4'−ジフェニルメタンジイソ
シアナート(MDI)と4、4'−ジアミノジフェニルメ
タン(MDA)を用い、基板103上にポリ尿素膜を形
成する方法が知られている。Conventionally, as an example of forming a polymer thin film using such an apparatus, 4,4′-diphenylmethane diisocyanate (MDI) and 4,4′-diaminodiphenylmethane (MDA) were used to form a thin film on a substrate 103. A method of forming a polyurea film is known.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の蒸着重合方法においては、次のような問題が
あった。すなわち、上述のMDIとMDAを真空中でそ
れぞれ70℃、100℃に加熱して蒸発させ、基板10
3にポリ尿素膜を形成しようとした場合、同じ温度条件
で連続して蒸着し続けると、蒸着の初期の段階で得られ
た膜と12時間程度経過後に得られた膜とでは薄膜のモ
ノマーの組成比が同じではなく、そのため、安定した膜
の絶縁特性、圧電、焦電特性が得られないという問題が
あった。However, such a conventional vapor deposition polymerization method has the following problems. That is, the above-mentioned MDI and MDA are heated to 70 ° C. and 100 ° C. in vacuum to be evaporated, and the substrate 10
When a polyurea film was to be formed on No. 3, if the vapor deposition was continued under the same temperature conditions, the thin film monomer was not formed between the film obtained in the initial stage of vapor deposition and the film obtained after a lapse of about 12 hours. Since the composition ratios are not the same, there is a problem that stable insulation properties, piezoelectric properties, and pyroelectric properties of the film cannot be obtained.
【0008】すなわち、従来は、有機化合物のモノマー
は市販品をそのまま蒸着重合に用いていたので、モノマ
ー中に含有する不純物がモノマーの加熱中に蒸発し、蒸
発面の近傍において不純物による蒸気がモノマーの蒸発
を阻害するため、モノマーの安定した蒸発速度が得られ
ず、結果的に生成した高分子薄膜に含まれるモノマーの
組成比が異なってしまうという問題があった。That is, in the past, as the monomer of the organic compound, a commercially available product was directly used for vapor deposition polymerization. Therefore, the impurities contained in the monomer are evaporated during the heating of the monomer, and the vapor due to the impurity is generated in the vicinity of the evaporation surface. Therefore, there is a problem in that the stable evaporation rate of the monomer cannot be obtained and the composition ratio of the monomer contained in the resultant polymer thin film is different.
【0009】この場合、24時間程度連続して蒸着を行
えば、不純物が概ね放出されるため、モノマーの組成比
はほぼ一定になるが、これでは、不純物の除去の効率が
悪く、ひいては蒸着重合自体を効率良く行うことができ
ないという問題が生じていた。In this case, if the vapor deposition is continuously carried out for about 24 hours, the impurities are almost released, so that the composition ratio of the monomers becomes almost constant. However, in this case, the removal efficiency of the impurities is poor, and therefore the vapor deposition polymerization is performed. There has been a problem that the process itself cannot be performed efficiently.
【0010】本発明は、このような従来の技術の課題を
解決するためになされたもので、有機化合物モノマーに
含まれる不純物を効率良く除去し、その蒸着速度を安定
化しうる有機化合物モノマーの精製方法を提供すること
を目的とするものである。The present invention has been made in order to solve the problems of the conventional techniques, and purifies the organic compound monomer capable of efficiently removing the impurities contained in the organic compound monomer and stabilizing the deposition rate thereof. It is intended to provide a method.
【0011】[0011]
【課題を解決するための手段】本発明者等は、前記課題
を解決すべく鋭意研究を重ねた結果、真空中において有
機化合物モノマーを所定の温度で所定の時間加熱するこ
とにより、蒸着重合の際の加熱時における蒸発速度が安
定する有機化合物モノマーが得られることを見い出し、
本発明を完成するに至った。Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, by heating an organic compound monomer at a predetermined temperature for a predetermined time in vacuum, vapor deposition polymerization We found that an organic compound monomer with a stable evaporation rate during heating was obtained,
The present invention has been completed.
【0012】すなわち、請求項1記載の発明は、真空中
において蒸発速度が蒸着重合の際の蒸発速度より低くな
る温度で有機化合物モノマーを所定の時間加熱し、当該
モノマー中の不純物を除去することを特徴とする。That is, according to the first aspect of the present invention, the organic compound monomer is heated for a predetermined time in a vacuum at a temperature at which the evaporation rate is lower than the evaporation rate in vapor deposition polymerization to remove impurities in the monomer. Is characterized by.
【0013】また、請求項2記載の発明のように、請求
項1記載の発明において、モノマーの蒸発速度が2×1
0-8g/cm2 秒以下となる温度に当該モノマーを加熱
することも効果的である。この場合、モノマーの蒸発速
度の下限は特に限定されないが、蒸発速度が1×10
-10g/cm2・秒程度より大きくなる温度に当該モノマ
ーを加熱することがより効果的である。Further, as in the invention described in claim 2, in the invention described in claim 1, the evaporation rate of the monomer is 2 × 1.
It is also effective to heat the monomer to a temperature of 0 -8 g / cm 2 seconds or less. In this case, the lower limit of the evaporation rate of the monomer is not particularly limited, but the evaporation rate is 1 × 10
It is more effective to heat the monomer to a temperature higher than about −10 g / cm 2 · sec.
【0014】一方、有機化合物モノマーとしては、種々
のものを用いることができるが、特に、請求項3記載の
発明のように、有機化合物モノマーとして、4、4'−ジ
フェニルメタンジイソシアナート(MDI)を用いるこ
と、又は、請求項4記載の発明のように、4、4'−ジア
ミノジフェニルメタン(MDA)を用いるとより効果的
である。On the other hand, various kinds of organic compound monomers can be used. Particularly, as the organic compound monomer, 4,4'-diphenylmethane diisocyanate (MDI) is used as the organic compound monomer. Or it is more effective to use 4,4′-diaminodiphenylmethane (MDA) as in the invention of claim 4.
【0015】請求項1、3又は4記載の発明の場合、有
機化合物モノマー(例えば、MDI、MDA等)を加熱
して当該モノマー中の不純物を除去することから、蒸着
重合におけるモノマーの加熱中に不純物による蒸気は発
生せず、有機化合物モノマーの蒸発が円滑に行われるた
め、モノマーの安定した蒸発速度が得られる。その結
果、生成した高分子薄膜に含まれるモノマーの組成比が
一定に保たれる。In the case of the invention described in claim 1, 3 or 4, the organic compound monomer (for example, MDI, MDA, etc.) is heated to remove impurities in the monomer. Since vapors due to impurities are not generated and the organic compound monomer is smoothly evaporated, a stable evaporation rate of the monomer can be obtained. As a result, the composition ratio of the monomers contained in the produced polymer thin film is kept constant.
【0016】この場合、真空中において蒸発速度が蒸着
重合の際の蒸発速度より低くなる温度、特に、請求項2
記載の発明のように、モノマーの蒸発速度が2×10-8
g/cm2 秒以下となる温度に有機化合物モノマーを加
熱すれば、加熱時に当該有機化合物モノマーはさほど蒸
発せず、不純物が主体となって蒸発し除去されるように
なる。In this case, the temperature at which the evaporation rate in vacuum is lower than the evaporation rate in the vapor deposition polymerization, in particular,
As in the described invention, the evaporation rate of the monomer is 2 × 10 -8
When the organic compound monomer is heated to a temperature of g / cm 2 seconds or less, the organic compound monomer does not so much evaporate at the time of heating, and impurities mainly evaporate and are removed.
【0017】[0017]
【発明の実施の形態】以下、本発明に係る有機化合物モ
ノマーの精製方法の実施の形態を図面を参照して詳細に
説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the method for purifying an organic compound monomer according to the present invention will be described in detail below with reference to the drawings.
【0018】図1は、本発明が適用される真空処理装置
の一例の概略構成を示すものである。図1に示すよう
に、この真空処理装置1は、気密状態を保持可能な真空
槽2を有し、この真空槽2は、真空バルブ6を介して図
示しない外部の真空ポンプその他の真空排気系7に接続
されている。FIG. 1 shows a schematic structure of an example of a vacuum processing apparatus to which the present invention is applied. As shown in FIG. 1, the vacuum processing apparatus 1 has a vacuum chamber 2 capable of maintaining an airtight state, and the vacuum chamber 2 includes an external vacuum pump (not shown) or other vacuum exhaust system via a vacuum valve 6. Connected to 7.
【0019】真空槽2の周囲には、真空槽2を加熱する
ためのヒーター3が巻き付けられている。この場合、図
1に示すように、ヒーター3は、均一な加熱を行うため
真空槽2の上下左右の全周囲にわたって巻き付けられて
いる。A heater 3 for heating the vacuum chamber 2 is wound around the vacuum chamber 2. In this case, as shown in FIG. 1, the heater 3 is wound around the entire upper, lower, left and right sides of the vacuum chamber 2 in order to perform uniform heating.
【0020】真空槽2は、有機化合物モノマー5を収容
するための容器4が複数個配置可能となっている。本実
施の形態においては、例えば、3つの容器4A、4B、
4Cが配置され、各容器4A、4B、4Cに、MDI、
MDA等の有機化合物モノマー5A、5B、5Cが収容
されている。なお、容器4は、蒸着重合装置内に配され
る蒸発用容器又は試薬瓶のいずれであってもよい。In the vacuum chamber 2, a plurality of containers 4 for containing the organic compound monomer 5 can be arranged. In the present embodiment, for example, three containers 4A, 4B,
4C is arranged, MDI, in each container 4A, 4B, 4C,
Organic compound monomers 5A, 5B, 5C such as MDA are stored. The container 4 may be either an evaporation container or a reagent bottle arranged in the vapor deposition polymerization apparatus.
【0021】このような構成の真空処理装置1を用いて
有機化合物モノマーの精製を行う場合には、有機化合物
モノマー5を注入した容器4を真空槽2の内部に配置
し、真空槽2の真空度を高真空(1×10-3Pa程度)
に調整するとともに、ヒーター3によって真空槽2を所
定時間加熱する。When purifying an organic compound monomer using the vacuum processing apparatus 1 having such a configuration, a container 4 in which the organic compound monomer 5 is injected is placed inside the vacuum tank 2 and the vacuum of the vacuum tank 2 is set. High vacuum (1 × 10 -3 Pa)
And the heater 3 heats the vacuum chamber 2 for a predetermined time.
【0022】本実施の形態においては、真空中で有機化
合物モノマー5を加熱して不純物を除去することから、
蒸着重合におけるモノマーの加熱中に不純物による蒸気
は発生せず、その蒸発が円滑に行われるため、有機化合
物モノマー5の安定した蒸発速度が得られる。その結
果、生成した高分子薄膜におけるモノマーの組成比を一
定に保つことができ、その絶縁特性、圧電、焦電特性を
安定させることができる。In the present embodiment, since the organic compound monomer 5 is heated in vacuum to remove impurities,
Since vapor due to impurities is not generated during the heating of the monomer in the vapor deposition polymerization and the evaporation is smoothly performed, a stable evaporation rate of the organic compound monomer 5 can be obtained. As a result, the composition ratio of the monomers in the generated polymer thin film can be kept constant, and the insulating properties, piezoelectric properties, and pyroelectric properties can be stabilized.
【0023】この場合、真空中において蒸発速度が蒸着
重合の際の蒸発速度より低くなるように、モノマーの蒸
発速度が2×10-8g/cm2 秒以下となる温度に有機
化合物モノマーを加熱すれば、加熱時に当該有機化合物
モノマーはほとんど蒸発せず、不純物が主体となって蒸
発し除去されるようになるため、効率良く不純物の除去
を行うことができる。In this case, the organic compound monomer is heated to a temperature at which the evaporation rate of the monomer is 2 × 10 −8 g / cm 2 seconds or less so that the evaporation rate in vacuum becomes lower than the evaporation rate in vapor deposition polymerization. By doing so, the organic compound monomer hardly evaporates at the time of heating, and the impurities mainly evaporate and are removed, so that the impurities can be efficiently removed.
【0024】また、本実施の形態によれば、真空槽2内
に複数個の容器4を収容することができるため、蒸着重
合装置内において長時間蒸発させることによってモノマ
ーの組成比を安定化させる従来の方法に比べ、蒸着重合
装置の使用効率を向上させることができる。Further, according to the present embodiment, since a plurality of containers 4 can be accommodated in the vacuum chamber 2, the composition ratio of the monomers is stabilized by evaporating for a long time in the vapor deposition polymerization apparatus. The use efficiency of the vapor deposition polymerization apparatus can be improved as compared with the conventional method.
【0025】[0025]
【実施例】以下、本発明に係る有機化合物モノマーの精
製方法の実施例を詳細に説明する。図1に示すように、
有機化合物モノマー5AとしてMDIを注入した容器4
Aを真空槽2の内部に配置し、高真空中(1×10-3P
a)において47℃に加熱し、60時間放置して不純物
の除去を行った。EXAMPLES Examples of the method for purifying an organic compound monomer according to the present invention will be described in detail below. As shown in FIG.
Container 4 into which MDI was injected as organic compound monomer 5A
A is placed inside the vacuum chamber 2 and placed in a high vacuum (1 × 10 −3 P
In a), it was heated to 47 ° C. and left for 60 hours to remove impurities.
【0026】また、有機化合物モノマー5BとしてMD
Aを注入した容器4Bを真空槽2の内部に配置し、高真
空中(1×10-3Pa)において60℃に加熱し、12
時間放置して不純物の除去を行った。Further, MD is used as the organic compound monomer 5B.
The container 4B in which A was injected was placed inside the vacuum chamber 2 and heated to 60 ° C. in a high vacuum (1 × 10 −3 Pa),
It was left for a period of time to remove impurities.
【0027】そして、これらの容器4A、4Bを一般的
な蒸着重合装置に装着し、所定の真空度まで真空排気し
た後に、それぞれの容器4A、4Bを70℃、100℃
に加熱し、有機化合物モノマー5A、5Bを蒸発させて
基板上にポリ尿素膜を形成した。Then, these containers 4A and 4B were mounted on a general vapor deposition polymerization apparatus, and after evacuation to a predetermined vacuum degree, the respective containers 4A and 4B were heated to 70 ° C. and 100 ° C.
Then, the organic compound monomers 5A and 5B were evaporated to form a polyurea film on the substrate.
【0028】このような方法によりポリ尿素膜の連続蒸
着を行ったところ、蒸着開始直後に形成されたポリ尿素
膜の比誘電率は4.3となった。さらに、蒸着開始1時
間後のポリ尿素膜の比誘電率は4.0となり、その後、
連続して30時間にわたって比誘電率が4.0±0.0
5のポリ尿素膜が安定して得られた。When the polyurea film was continuously vapor-deposited by such a method, the relative permittivity of the polyurea film formed immediately after the vapor deposition was 4.3. Furthermore, the relative permittivity of the polyurea film 1 hour after the start of vapor deposition becomes 4.0, and thereafter,
Relative permittivity of 4.0 ± 0.0 for 30 hours continuously
A polyurea film of No. 5 was stably obtained.
【0029】次に、本実施例の作用を図2〜図4を用い
て詳細に説明する。図2は、市販されている有機化合物
モノマーであるMDIを真空中で47℃に加熱した場合
に得られる質量スペクトルの代表的なピークの経時変化
を示すグラフである。Next, the operation of this embodiment will be described in detail with reference to FIGS. FIG. 2 is a graph showing changes with time of typical peaks of mass spectra obtained when MDI, which is a commercially available organic compound monomer, is heated to 47 ° C. in vacuum.
【0030】ここで、MDIは分子量が250であるこ
とから、m/e(mはイオンの質量、eはイオンの電
荷)=250である曲線AはMDIを表し、また、市販
のMDIに添加されている4−メチル−2,6−ジター
シャルブチルフェノールの分子量が205であることか
ら、m/e=205である曲線Bはこれによるものであ
る。Since MDI has a molecular weight of 250, the curve A in which m / e (m is the mass of ions, e is the charge of ions) = 250 represents MDI, and is added to commercially available MDI. Since the molecular weight of 4-methyl-2,6-ditertiary butylphenol used is 205, the curve B with m / e = 205 is due to this.
【0031】図2に示すように、MDIを真空中で47
℃に加熱すると、不純物成分のピーク強度を示す曲線B
が時間とともに低下し、約60時間経過後にモノマーに
含まれる不純物成分が概ね抜けることが理解される。As shown in FIG. 2, the MDI is vacuumed at 47.
Curve B showing peak intensity of impurity components when heated to ℃
Is decreased with time, and it is understood that the impurity component contained in the monomer is almost eliminated after about 60 hours.
【0032】一方、図3は、市販されている有機化合物
モノマーであるMDAを真空中で60℃に加熱した場合
に得られる質量スペクトルの代表的なピークの経時変化
を示すグラフである。On the other hand, FIG. 3 is a graph showing changes with time of typical peaks of mass spectra obtained when MDA, which is a commercially available organic compound monomer, is heated to 60 ° C. in vacuum.
【0033】ここで、MDAは分子量が198であるこ
とから、m/e=198である曲線CはMDAを表す
が、m/e=93である曲線Dは、市販のMDAに不純
物として含まれているアニリンによるものと推定され
る。Here, since MDA has a molecular weight of 198, curve C with m / e = 198 represents MDA, while curve D with m / e = 93 is contained as an impurity in commercially available MDA. It is presumed to be due to aniline.
【0034】図3に示すように、MDAモノマーを真空
中で60℃に加熱すると、不純物成分のピーク強度を示
す曲線Dが時間とともに低下し、約10時間経過後にモ
ノマーに含まれる不純物成分が概ね抜けることが理解さ
れる。As shown in FIG. 3, when the MDA monomer is heated to 60 ° C. in vacuum, the curve D showing the peak intensity of the impurity component decreases with time, and after about 10 hours, the impurity component contained in the monomer is generally reduced. It is understood that it will come out.
【0035】図4は、MDIの蒸発温度と蒸発速度との
関係を示すグラフである。図4から理解されるように、
実施例におけるMDIの蒸発温度である47℃では、モ
ノマーとしてのMDIの蒸発量は小さく、蒸着重合の際
の蒸発温度である70℃の場合の蒸発量より一桁以上小
さい値である。したがって、本実施例の方法によれば、
MDAモノマーについて効率の良い不純物ガスの除去が
可能になる。FIG. 4 is a graph showing the relationship between the evaporation temperature of MDI and the evaporation rate. As can be seen from FIG.
At 47 ° C., which is the evaporation temperature of MDI in the examples, the evaporation amount of MDI as a monomer is small, which is one digit or more smaller than the evaporation amount at 70 ° C. which is the evaporation temperature during vapor deposition polymerization. Therefore, according to the method of the present embodiment,
It is possible to efficiently remove the impurity gas from the MDA monomer.
【0036】図5は、MDAの蒸発温度と蒸発速度との
関係を示すグラフである。図5から理解されるように、
実施例におけるMDIの蒸発温度である60℃では、モ
ノマーとしてのMDIの蒸発量はきわめて小さく、蒸着
重合の際の蒸発温度である100℃の場合の蒸発量より
二桁近く小さい値である。したがって、本実施例の方法
によれば、MDIについても効率の良い不純物ガスの除
去が可能になる。FIG. 5 is a graph showing the relationship between MDA evaporation temperature and evaporation rate. As can be seen from FIG.
At 60 ° C., which is the evaporation temperature of MDI in the examples, the evaporation amount of MDI as a monomer is extremely small, which is a value almost two orders of magnitude smaller than the evaporation amount at 100 ° C. which is the evaporation temperature during vapor deposition polymerization. Therefore, according to the method of the present embodiment, it is possible to remove the impurity gas efficiently even with respect to MDI.
【0037】[0037]
【発明の効果】以上述べたように本発明によれば、蒸着
重合におけるモノマーの加熱中に不純物による蒸気は発
生せず、その蒸発が円滑に行われるため、有機化合物モ
ノマーに含まれる不純物を効率良く除去し、その蒸着速
度を安定化することができる。これにより、蒸着重合に
より生成した高分子薄膜におけるモノマーの組成比を一
定に保つことができ、その絶縁特性、圧電、焦電特性を
安定させることができるという効果がある。As described above, according to the present invention, vapors due to impurities are not generated during heating of monomers in vapor deposition polymerization, and the vaporization is performed smoothly. It can be removed well and the deposition rate can be stabilized. As a result, the composition ratio of the monomers in the polymer thin film formed by vapor deposition polymerization can be kept constant, and the insulating properties, piezoelectric properties, and pyroelectric properties can be stabilized.
【図1】本発明が適用される真空処理装置の一例を示す
概略構成図FIG. 1 is a schematic configuration diagram showing an example of a vacuum processing apparatus to which the present invention is applied.
【図2】市販されているモノマーであるMDIを真空中
で47℃に加熱した場合に得られる質量スペクトルの代
表的なピークの経時変化を示すグラフFIG. 2 is a graph showing changes with time of representative peaks of mass spectra obtained when MDI, which is a commercially available monomer, is heated to 47 ° C. in vacuum.
【図3】市販されているモノマーであるMDAを真空中
で60℃に加熱した場合に得られる質量スペクトルの代
表的なピークの経時変化を示すグラフFIG. 3 is a graph showing changes with time of typical peaks of mass spectra obtained when MDA, which is a commercially available monomer, is heated to 60 ° C. in vacuum.
【図4】MDIの蒸発温度と蒸発速度との関係を示すグ
ラフFIG. 4 is a graph showing the relationship between MDI evaporation temperature and evaporation rate.
【図5】MDAの蒸発温度と蒸発速度との関係を示すグ
ラフFIG. 5 is a graph showing the relationship between MDA evaporation temperature and evaporation rate.
【図6】一般的な蒸着重合装置の一例を示す概略構成図FIG. 6 is a schematic configuration diagram showing an example of a general vapor deposition polymerization apparatus.
1…真空処理装置、2…真空槽、3…ヒーター、4(4
A、4B、4C)…容器、5(5A、5B、5C)…有
機化合物モノマー、6…真空バルブ、7…真空排気系1 ... Vacuum processing device, 2 ... Vacuum tank, 3 ... Heater, 4 (4
A, 4B, 4C) ... Container, 5 (5A, 5B, 5C) ... Organic compound monomer, 6 ... Vacuum valve, 7 ... Vacuum exhaust system
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08G 85/00 NUY C08G 85/00 NUY C23C 14/24 C23C 14/24 E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C08G 85/00 NUY C08G 85/00 NUY C23C 14/24 C23C 14/24 E
Claims (4)
蒸発速度より低くなる温度で有機化合物モノマーを所定
の時間加熱し、当該モノマー中の不純物を除去すること
を特徴とする有機化合物モノマーの精製方法。1. An organic compound monomer, which is characterized in that an organic compound monomer is heated for a predetermined period of time in vacuum at a temperature at which the evaporation rate is lower than the evaporation rate in vapor deposition polymerization to remove impurities in the monomer. Purification method.
2 秒以下となる温度に当該モノマーを加熱することを特
徴とする請求項1記載の有機化合物モノマーの精製方
法。2. The evaporation rate of the monomer is 2.times.10.sup.- 8 g / cm.sup.2.
The method for purifying an organic compound monomer according to claim 1, wherein the monomer is heated to a temperature of 2 seconds or less.
メタンジイソシアナート(MDI)であることを特徴と
する請求項1又は2のいずれか1項記載の有機化合物モ
ノマーの精製方法。3. The method for purifying an organic compound monomer according to claim 1, wherein the organic compound monomer is 4,4′-diphenylmethane diisocyanate (MDI).
フェニルメタン(MDA)であることを特徴とする請求
項1又は2のいずれか1項記載の有機化合物モノマーの
精製方法。4. The method for purifying an organic compound monomer according to claim 1, wherein the organic compound monomer is 4,4′-diaminodiphenylmethane (MDA).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11697696A JP3773587B2 (en) | 1996-04-15 | 1996-04-15 | Purification method for organic compound monomers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11697696A JP3773587B2 (en) | 1996-04-15 | 1996-04-15 | Purification method for organic compound monomers |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09279332A true JPH09279332A (en) | 1997-10-28 |
JP3773587B2 JP3773587B2 (en) | 2006-05-10 |
Family
ID=14700423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11697696A Expired - Fee Related JP3773587B2 (en) | 1996-04-15 | 1996-04-15 | Purification method for organic compound monomers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3773587B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006001205A1 (en) * | 2004-06-28 | 2006-01-05 | Hitachi Zosen Corporation | Evaporator, vapor deposition apparatus, and method of switching evaporator in vapor deposition apparatus |
WO2007111092A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
WO2007111076A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
-
1996
- 1996-04-15 JP JP11697696A patent/JP3773587B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006001205A1 (en) * | 2004-06-28 | 2006-01-05 | Hitachi Zosen Corporation | Evaporator, vapor deposition apparatus, and method of switching evaporator in vapor deposition apparatus |
TWI398535B (en) * | 2004-06-28 | 2013-06-11 | Hitachi Shipbuilding Eng Co | A vapor deposition apparatus, a vapor deposition apparatus, and a vapor deposition apparatus |
WO2007111092A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
WO2007111076A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
Also Published As
Publication number | Publication date |
---|---|
JP3773587B2 (en) | 2006-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5119760A (en) | Methods and apparatus for material deposition | |
KR0177494B1 (en) | Method for providing a vapour flow whose main component is tiba and apparatus for carrying it out | |
WO2003089680A3 (en) | Process modules for transport polymerization of low dieletric constant thin films | |
JPH05267186A (en) | Vapor growth device and vapor growth method using its device | |
US20040033318A1 (en) | Apparatus and method for forming thin-film | |
JP2001500318A (en) | Method and apparatus for forming silicon dioxide and silicon glass layers on integrated circuits | |
JPS6178463A (en) | Formation of synthetic resin film | |
JPH09279332A (en) | Refining method of organic compound monomer | |
JPH09272703A (en) | Vaporizing source for organic compound and vapor-deposition polymerization apparatus using the same | |
JP2912756B2 (en) | Apparatus and method for forming synthetic resin film | |
JPH11172418A (en) | Film forming device | |
TW366351B (en) | Production process of acrylonitrile (co)polymers | |
JPS61261322A (en) | Formation of synthetic resin film | |
JP2011063865A (en) | Polyurea film and method for depositing the same | |
JPH09278805A (en) | Vapor deposition polymerization process | |
JP5375132B2 (en) | Electro-optical device manufacturing method and electro-optical device manufacturing apparatus | |
JPH0724205A (en) | Sublimating method | |
JPS60197730A (en) | Formation of polyimide film | |
JPH0445259A (en) | Film forming device | |
JP3847863B2 (en) | Vacuum apparatus and manufacturing method thereof | |
JP3745051B2 (en) | Film thickness measurement method | |
KR100480499B1 (en) | Lanthanum complex and method for the preparation of a blt thin layer using same | |
JPH03143506A (en) | Method and device for refining | |
JPH0668151B2 (en) | Vacuum contact surface treatment method inside vacuum member | |
JPH05216041A (en) | Production of organic high-polymer film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051215 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060215 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090224 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120224 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120224 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130224 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140224 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |