[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09277984A - Antimotion device for ocean structure - Google Patents

Antimotion device for ocean structure

Info

Publication number
JPH09277984A
JPH09277984A JP9246696A JP9246696A JPH09277984A JP H09277984 A JPH09277984 A JP H09277984A JP 9246696 A JP9246696 A JP 9246696A JP 9246696 A JP9246696 A JP 9246696A JP H09277984 A JPH09277984 A JP H09277984A
Authority
JP
Japan
Prior art keywords
movable mass
coil
swing
guide
rocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9246696A
Other languages
Japanese (ja)
Other versions
JP3709605B2 (en
Inventor
Takayuki Nakayama
隆幸 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP09246696A priority Critical patent/JP3709605B2/en
Publication of JPH09277984A publication Critical patent/JPH09277984A/en
Application granted granted Critical
Publication of JP3709605B2 publication Critical patent/JP3709605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antimotion device for an ocean structure which can be applied to change of a period of rocking of the ocean structure such as a vessel, in which power consumption is less, and in which a burden of mainte nance work is reduced. SOLUTION: A coil track 3 is disposed along an upper surface of a guide 1 fixed on a vessel 2, a movable mass 4 is disposed to cover the coil track 3 to passively reciprocate on the guide 1 at a shorter period than a period of supposed rocking of the vessel 2, and permanent magnets 5 are disposed inside the movable mass 4 to face each other on both sides of the coil track 3 to form magnetic flux almost in the perpendicular direction to the reciprocating direction. A regenerative current adjusting means to adjust energization quantity of an induced current generated at the coil track 3 by reciprocation of the movable mass 4 is controlled by a control device to set the reciprocation at a phase delay of about 90 deg. corresponding to the period of rocking of the vessel 2 to provide a proper regenerative braking.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、船舶やバージ、そ
の他の浮体等といった海洋構造物の揺動を抑制する為に
用いる海洋構造物の減揺装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for reducing vibration of marine structures used for suppressing the rocking of marine structures such as ships, barges and other floating bodies.

【0002】[0002]

【従来の技術】船舶における従来の減揺装置としては、
図5に示す如く、船舶aの適宜位置に固定された円弧状
のガイドbに沿って可動マスcが往復運動するようにし
たものが知られており、想定される船舶aの揺動と同じ
周期で位相が約90゜遅れをもつような設計とし、船舶
aの揺動に伴って可動マスcを受動的に共振させるパッ
シブ方式としたり、或いは、可動マスcに図示しないモ
ータを設置して能動的な制御をかけながら往復運動させ
るハイブリッド方式として前記船舶aの揺動を抑制する
ようにしていた。
2. Description of the Related Art As a conventional anti-sway device for a ship,
As shown in FIG. 5, it is known that the movable mass c reciprocates along an arcuate guide b fixed to an appropriate position of the ship a, which is the same as the assumed swing of the ship a. The design is such that the phase is delayed by about 90 ° in a cycle, and the passive system in which the movable mass c is passively resonated with the swing of the ship a is used, or a motor (not shown) is installed in the movable mass c. As a hybrid system in which reciprocating motion is performed while active control is applied, the swing of the ship a is suppressed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、可動マ
スcを受動的に共振させるようにしたパッシブ方式の場
合には、一度設計してしまうと固有周期が決まってしま
う為、船舶aの揺動の周期が積荷の積載状態や海洋の波
高等により変化してしまうと、減揺効果が低減してしま
うという不具合があった。
However, in the case of the passive system in which the movable mass c is made to resonate passively, the natural period is determined once it is designed. If the cycle changes depending on the loading state of cargo and the wave height of the ocean, there is a problem that the damping effect is reduced.

【0004】一方、可動マスcに能動的な制御をかけて
往復運動させるようにしたハイブリッド方式の場合に
は、船舶aの揺動周期の変化に対応させることが可能で
あるものの、モータに対する突入電流が大きい為に電力
消費量が増大するという不具合があった。
On the other hand, in the case of the hybrid system in which the movable mass c is actively controlled to reciprocate, it is possible to cope with a change in the swing cycle of the ship a, but the rush into the motor. There is a problem that the power consumption increases due to the large current.

【0005】また、図中二点鎖線で示す如く、電力供給
を行う為に電力ケーブルdを可動マスcに引き込む必要
があるが、一般的に、この種の電力ケーブルdは、カー
ブを描いて可動マスcに引き込まれるよう外皮により抱
持され、前記可動マスcの移動に対し撓み位置を変化さ
せながら追従するようになっていた為、前記電力ケーブ
ルdの劣化の進行が早く寿命が短いという不具合もあっ
た。
Further, as shown by the chain double-dashed line in the figure, it is necessary to draw the power cable d into the movable mass c in order to supply the power, but generally, this kind of power cable d draws a curve. It is held by the outer skin so as to be drawn into the movable mass c, and follows the movement of the movable mass c while changing the bending position, so that the deterioration of the power cable d progresses quickly and the life is short. There was also a defect.

【0006】更に、可動マスcをモータにより機械的に
往復運動させることは構造の複雑化を招き、これにより
故障が発生し易くなってメンテナンス作業の負担が増大
するという不具合もあった。
Further, mechanically reciprocating the movable mass c with a motor complicates the structure, which easily causes a failure and increases the burden of maintenance work.

【0007】本発明は上述の実情に鑑みてなしたもの
で、船舶等の海洋構造物の揺動周期の変化に対応させる
ことが可能である上に、電力消費量も少なくてすみ、メ
ンテナンス作業の負担が少ない海洋構造物の減揺装置を
提供することを目的としている。
The present invention has been made in view of the above situation, and can cope with changes in the swing cycle of a marine structure such as a ship, consumes less power, and can perform maintenance work. It is an object of the present invention to provide an anti-sway device for offshore structures that is less burdensome.

【0008】[0008]

【課題を解決するための手段】本発明は、両側を上向き
に反らせた円弧状に形成されて海洋構造物に固定された
ガイドと、該ガイドの上面に沿わせて円弧状に配置され
たコイル軌道と、想定される海洋構造物の揺動周期より
短い周期で前記ガイド上を受動的に往復運動し得るよう
前記コイル軌道を跨いで配設され且つ往復運動方向に対
し略直角となる向きに磁束を形成し得るよう前記コイル
軌道を挟んで永久磁石を対向配置した可動マスと、海洋
構造物の揺動を検出する揺動検出手段と、前記可動マス
のガイドに対する移動位置を検出する位置検出手段と、
前記可動マスが往復運動することにより前記コイル軌道
に発生した誘導電流の通電量を調整する回生電流調整手
段と、前記揺動検出手段からの揺動信号及び前記位置検
出手段からの位置信号に基づいて前記可動マスの往復運
動が海洋構造物の揺動の周期と対応し且つ約90゜の位
相遅れとなるよう前記回生電流調整手段を制御して前記
可動マスに適宜な回生制動を作用せしめる制御装置とを
備えたことを特徴とする海洋構造物の減揺装置、に係る
ものである。
DISCLOSURE OF THE INVENTION The present invention is directed to a guide fixed to a marine structure which is formed in an arc shape with both sides bent upward, and a coil arranged in an arc shape along the upper surface of the guide. An orbit and a direction that is arranged across the coil orbit so that it can passively reciprocate on the guide in a cycle shorter than the expected rocking cycle of the offshore structure, and in a direction substantially perpendicular to the reciprocating direction. A movable mass in which permanent magnets are arranged to face each other across the coil orbit so as to form a magnetic flux, a swing detecting means for detecting swing of an offshore structure, and a position detecting for detecting a moving position of the movable mass with respect to a guide. Means and
Based on the regenerative current adjusting means for adjusting the energization amount of the induced current generated in the coil orbit by the reciprocating movement of the movable mass, the swing signal from the swing detecting means and the position signal from the position detecting means. Control for controlling the regenerative current adjusting means so that the reciprocating motion of the movable mass corresponds to the period of rocking of the marine structure and has a phase delay of about 90 ° so as to apply appropriate regenerative braking to the movable mass. The present invention relates to an apparatus for reducing vibration of a marine structure, which is provided with a device.

【0009】また、前記回生電流調整手段は、コイル軌
道に対し整流器を介して直列に接続された入力抵抗及び
トランジスタにより構成すれば良い。
Further, the regenerative current adjusting means may be composed of an input resistor and a transistor connected in series to the coil orbit via a rectifier.

【0010】而して、海洋構造物が揺動している際に
は、該海洋構造物の揺動周期より短い周期で可動マスが
ガイド上を受動的に往復運動するが、このとき、揺動検
出手段からの揺動信号及び位置検出手段からの位置信号
に基づいて制御装置により回生電流調整手段が制御さ
れ、前記可動マスの往復運動が海洋構造物の揺動の周期
と対応し且つ約90゜の位相遅れとなるように、コイル
軌道に発生した誘導電流の通電量が調整される。
When the offshore structure is rocking, the movable mass passively reciprocates on the guide in a cycle shorter than the rocking cycle of the offshore structure. The regenerative current adjusting means is controlled by the control device on the basis of the rocking signal from the motion detecting means and the position signal from the position detecting means, and the reciprocating motion of the movable mass corresponds to the rocking cycle of the marine structure and is about The energization amount of the induced current generated in the coil orbit is adjusted so that the phase delay is 90 °.

【0011】即ち、永久磁石により可動マスの往復運動
方向に対し略直角となる向きに磁束が形成されている状
態で前記可動マスがガイド上を往復運動すると、コイル
軌道に誘導電流が発生することになり、このとき、誘導
電流の通電量を調整して電流制御を行えば、誘導電流を
制限することなく流した際に最大となる回生制動を、誘
導電流の通電量を任意に減じて可動マスに作用させるこ
とが可能となるので、前記ガイド上を往復運動する可動
マスに対し適宜な大きさで回生制動を作用させることに
よって、前記可動マスの往復運動を抑制して海洋構造物
の揺動周期の変化に対応させることが可能となるのであ
る。
That is, when the movable mass reciprocates on the guide while the magnetic flux is formed by the permanent magnets in a direction substantially perpendicular to the reciprocating direction of the movable mass, an induced current is generated in the coil orbit. At this time, if the amount of induction current is adjusted to control the current, the maximum regenerative braking when the induction current is applied without being restricted can be moved by arbitrarily reducing the amount of induction current. Since it is possible to act on the mass, reciprocating motion of the movable mass is suppressed by applying regenerative braking to the movable mass that reciprocates on the guide in an appropriate size. It is possible to respond to changes in the motion cycle.

【0012】[0012]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照しつつ説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1〜図3は本発明を実施する形態の一例
を示すもので、図1に示す如く、両側を上向きに反らせ
た円弧状に形成されたガイド1が、海洋構造物である船
舶2の機関室等の適宜位置に固定されている。
FIGS. 1 to 3 show an example of an embodiment for carrying out the present invention. As shown in FIG. 1, a ship 1 is a marine structure in which guides 1 formed in an arc shape with both sides bent upward are formed. It is fixed at an appropriate position such as the engine room of No.2.

【0014】前記ガイド1の上面には、該上面に沿う同
心の円弧状に形成されたコイル軌道3が前記ガイド1と
配置され、しかも、想定される船舶2の揺動周期より短
い周期で前記ガイド1上を受動的に往復運動し得るよう
前記コイル軌道3を跨いで可動マス4が配設されてお
り、図2に示す如く、前記可動マス4の内部には、往復
運動方向(図1中に矢印Aで示す方向)に対し略直角と
なる向き(可動マス4の幅方向)に磁束を形成し得るよ
う互いに反対の磁極を向けた永久磁石5が前記コイル軌
道3を挟んで対向配置されている。
On the upper surface of the guide 1, a coil track 3 formed in a concentric arc shape along the upper surface is arranged with the guide 1, and further, at a cycle shorter than an expected rocking cycle of the ship 2. A movable mass 4 is disposed across the coil track 3 so as to be able to passively reciprocate on the guide 1. As shown in FIG. The permanent magnets 5 having magnetic poles opposite to each other so as to form a magnetic flux in a direction (width direction of the movable mass 4) substantially perpendicular to the direction indicated by the arrow A therein are arranged so as to face each other with the coil track 3 interposed therebetween. Has been done.

【0015】更に、前記ガイド1の上面に沿って磁気ス
ケール6が敷設されていると共に、該磁気スケール6に
対する相対位置を検出可能な位置検出ヘッド7が前記可
動マス4の下面に取り付けられており、前記磁気スケー
ル6と位置検出ヘッド7とによって、可動マス4のガイ
ド1に対する移動位置を検出する為の位置検出手段8が
構成されている。
Further, a magnetic scale 6 is laid along the upper surface of the guide 1, and a position detecting head 7 capable of detecting a relative position with respect to the magnetic scale 6 is attached to the lower surface of the movable mass 4. The magnetic scale 6 and the position detecting head 7 constitute a position detecting means 8 for detecting the moving position of the movable mass 4 with respect to the guide 1.

【0016】また、図3に示す如く、前記コイル軌道3
は、可動マス4が往復運動することにより前記コイル軌
道3に発生した誘導電流を回流し得る閉ループを構成し
ており、前記誘導電流の通電量が回生電流調整手段9に
より調整し得るようにしてある。
Further, as shown in FIG. 3, the coil orbit 3
Constitutes a closed loop capable of circulating the induced current generated in the coil orbit 3 due to the reciprocating movement of the movable mass 4, and the energizing amount of the induced current can be adjusted by the regenerative current adjusting means 9. is there.

【0017】前記回生電流調整手段9は、コイル軌道3
に対し例えばブリッジ形とした整流器10を介して入力
抵抗11とトランジスタ12とを直列に接続した構成と
なっており前記トランジスタ12が制御装置13からの
制御信号14により制御されて前記誘導電流の通電量が
調整されるようになっている。
The regenerative current adjusting means 9 has a coil orbit 3
On the other hand, for example, an input resistor 11 and a transistor 12 are connected in series via a bridge-type rectifier 10, and the transistor 12 is controlled by a control signal 14 from a control device 13 so that the induction current flows. The amount is adjusted.

【0018】前記制御装置13には、角速度計15(揺
動検出手段)からの角速度信号16(揺動信号)と、前
記位置検出手段8を構成する位置検出ヘッド7からの位
置信号17とが夫々入力されるようになっており、前記
角速度信号16と位置信号17とに基づいて前記可動マ
ス4の往復運動が、船舶2の揺動の周期と対応し且つ約
90゜の位相遅れとなるよう前記回生電流調整手段9の
トランジスタ12を制御して前記可動マス4に適宜な回
生制動を作用せしめるようになっている。
The control device 13 has an angular velocity signal 16 (swing signal) from an angular velocity meter 15 (swing detection means) and a position signal 17 from a position detection head 7 which constitutes the position detection means 8. The reciprocating motion of the movable mass 4 is based on the angular velocity signal 16 and the position signal 17, and the reciprocating motion of the movable mass 4 corresponds to the swing cycle of the ship 2 and has a phase delay of about 90 °. Thus, the transistor 12 of the regenerative current adjusting means 9 is controlled so that the movable mass 4 is appropriately regeneratively braked.

【0019】尚、本形態例においては、減揺対象である
海洋構造物を船舶2とした場合を例示しているので、船
舶2に備えられている既存の角速度計15を揺動検出手
段として利用しているが、揺動検出手段を別途設けるよ
うにしても良いことは勿論である。
In this embodiment, the marine structure to be reduced is shown as the marine structure 2. Therefore, the existing angular velocity meter 15 provided in the marine vessel 2 is used as the rocking detecting means. Although it is used, it goes without saying that the swing detecting means may be separately provided.

【0020】而して、船舶2が揺動している際には、該
船舶2の揺動周期より短い周期で可動マス4がガイド1
上を受動的に往復運動するが、このとき、角速度計15
からの角速度信号16及び位置検出手段8を構成する位
置検出ヘッド7からの位置信号17に基づいて制御装置
13により回生電流調整手段9のトランジスタ12が制
御され、前記可動マス4の往復運動が船舶2の揺動の周
期と対応し且つ約90゜の位相遅れとなるように、コイ
ル軌道3に発生した誘導電流の通電量が調整される。
When the ship 2 is swinging, the movable mass 4 is guided by the guide 1 in a cycle shorter than the swinging cycle of the ship 2.
It reciprocates passively above, but at this time, the angular velocity meter 15
The controller 12 controls the transistor 12 of the regenerative current adjusting means 9 on the basis of the angular velocity signal 16 from the position detecting head 7 and the position signal 17 from the position detecting head 7 which constitutes the position detecting means 8 so that the reciprocating motion of the movable mass 4 is controlled by the ship. The energization amount of the induced current generated in the coil track 3 is adjusted so as to correspond to the oscillation cycle of 2 and have a phase delay of about 90 °.

【0021】即ち、永久磁石5により可動マス4の往復
運動方向に対し略直角となる向きに磁束が形成されてい
る状態で前記可動マス4がガイド1上を往復運動する
と、コイル軌道3に誘導電流が発生することになり、こ
のとき、誘導電流の通電量を調整して電流制御を行え
ば、誘導電流を制限することなく流した際に最大となる
回生制動を、誘導電流の通電量を任意に減じて可動マス
4に作用させることが可能となるので、前記ガイド1上
を往復運動する可動マス4に対し適宜な大きさで回生制
動を作用させることによって、前記可動マス4の往復運
動を抑制して船舶2の揺動周期の変化に対応させること
が可能となるのである。
That is, when the movable mass 4 reciprocates on the guide 1 while the magnetic flux is formed by the permanent magnet 5 in a direction substantially perpendicular to the reciprocating direction of the movable mass 4, the movable mass 4 is guided to the coil orbit 3. A current will be generated.At this time, if the current amount is controlled by adjusting the energization amount of the induced current, the maximum regenerative braking when the induced current is applied without being restricted Since the movable mass 4 can be arbitrarily reduced and acted on the movable mass 4, the reciprocating motion of the movable mass 4 is performed by applying regenerative braking to the movable mass 4 that reciprocates on the guide 1 with an appropriate size. Thus, it is possible to suppress the fluctuation and respond to the change in the swing cycle of the ship 2.

【0022】従って上記形態例によれば、船舶2の揺動
の周期が積荷の積載状態や海洋の波高等により変化して
も、可動マス4の往復運動が船舶2の揺動の周期と対応
し且つ約90゜の位相遅れとなるよう制御することがで
きるので、常に最大の減揺効果を得ることができる。
Therefore, according to the above embodiment, the reciprocating motion of the movable mass 4 corresponds to the rocking cycle of the ship 2 even if the rocking cycle of the ship 2 changes depending on the loaded state of the cargo or the wave height of the ocean. In addition, since the phase can be controlled to have a phase delay of about 90 °, the maximum damping effect can always be obtained.

【0023】また、可動マス4の往復運動は、基本的に
船舶2の揺動によって受動的に行われ、これを回生制動
により抑制して船舶2の揺動周期の変化に対応させるよ
うにしているにすぎないので、前記可動マス4の往復運
動に関し電力を殆ど必要とせず、しかも、モータ等を使
用した場合の如き大きな突入電流も必要としないので、
電力消費量を著しく低減することができる。
Further, the reciprocating motion of the movable mass 4 is basically passively performed by the swing of the ship 2, and this is suppressed by the regenerative braking so as to correspond to the change of the swing cycle of the ship 2. Since it requires only a small amount of electric power for the reciprocating movement of the movable mass 4, and does not require a large inrush current as in the case of using a motor,
The power consumption can be significantly reduced.

【0024】更に、可動マス4をモータ等により機械的
に往復運動させる必要がなく、電力供給を行う為に電力
ケーブルを可動マス4に引き込む必要もなくなるので、
故障発生の少ない極めてシンプルな構造とすることがで
き、長期間にわたる連続使用を可能としてメンテナンス
作業の負担を著しく軽減することができる。
Further, since it is not necessary to mechanically reciprocate the movable mass 4 by a motor or the like, and it is not necessary to pull the power cable into the movable mass 4 for supplying electric power.
An extremely simple structure with few failures can be made, continuous use is possible for a long period of time, and the burden of maintenance work can be significantly reduced.

【0025】図4は本発明の他の形態例を示すもので、
コイル軌道3を二本とし、両コイル軌道3を挟んで対向
するよう三つの永久磁石5を可動マス4の内部に配置し
たものであり、このようにしても、先に述べた形態例と
同様の作用効果を奏することができ、また、これと同様
にしてコイル軌道3を三本以上とすることも可能であ
る。
FIG. 4 shows another embodiment of the present invention.
Two coil tracks 3 are provided, and three permanent magnets 5 are arranged inside the movable mass 4 so as to face each other with both coil tracks 3 sandwiched between them. In addition, it is possible to provide the coil orbit 3 of three or more in the same manner.

【0026】尚、本発明の海洋構造物の減揺装置は、上
述の形態例にのみ限定されるものではなく、海洋構造物
は船舶以外のものでも良いこと、また、揺動検出手段、
位置検出手段、回生電流調整手段は図示する例に限定さ
れないこと、その他、本発明の要旨を逸脱しない範囲内
において種々変更を加え得ることは勿論である。
The device for reducing vibration of a marine structure according to the present invention is not limited to the above-mentioned embodiment, and the marine structure may be other than a ship, and the vibration detecting means,
It goes without saying that the position detecting means and the regenerative current adjusting means are not limited to the illustrated example, and that various modifications can be made without departing from the scope of the present invention.

【0027】[0027]

【発明の効果】上記した本発明の海洋構造物の減揺装置
によれば、下記の如き種々の優れた効果を奏し得る。
EFFECTS OF THE INVENTION According to the above-described apparatus for reducing vibration of a marine structure of the present invention, various excellent effects as described below can be obtained.

【0028】(I)海洋構造物の揺動の周期が積荷の積
載状態や海洋の波高等により変化しても、可動マスの往
復運動が海洋構造物の揺動の周期と対応し且つ約90゜
の位相遅れとなるよう制御することができるので、常に
最大の減揺効果を得ることができる。
(I) Even if the period of rocking of the marine structure changes depending on the loading condition of the cargo, the wave height of the ocean, etc., the reciprocating motion of the movable mass corresponds to the period of rocking of the marine structure and is about 90. Since the phase delay can be controlled so that the phase is delayed, the maximum damping effect can always be obtained.

【0029】(II)可動マスの往復運動は、基本的に
海洋構造物の揺動によって受動的に行われ、これを回生
制動により抑制して海洋構造物の揺動周期の変化に対応
させるようにしているにすぎないので、前記可動マスの
往復運動に関し電力を殆ど必要とせず、しかも、モータ
等を使用した場合の如き大きな突入電流も必要としない
ので、電力消費量を著しく低減することができる。
(II) Basically, the reciprocating motion of the movable mass is passively performed by the rocking of the marine structure, and it is suppressed by regenerative braking so as to correspond to the change of the rocking cycle of the marine structure. Since it requires only a small amount of electric power for the reciprocating movement of the movable mass, and does not require a large inrush current as in the case of using a motor or the like, the power consumption can be remarkably reduced. it can.

【0030】(III)可動マスをモータ等により機械
的に往復運動させる必要がなく、電力供給を行う為に電
力ケーブルを可動マスに引き込む必要もなくなるので、
故障発生の少ない極めてシンプルな構造とすることがで
き、長期間にわたる連続使用を可能としてメンテナンス
作業の負担を著しく軽減することができる。
(III) Since it is not necessary to mechanically reciprocate the movable mass by a motor or the like, and it is not necessary to pull the power cable into the movable mass to supply electric power,
An extremely simple structure with few failures can be made, continuous use is possible for a long period of time, and the burden of maintenance work can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する形態の一例を示す概略図であ
る。
FIG. 1 is a schematic diagram showing an example of an embodiment for implementing the present invention.

【図2】図1の可動マス及びコイル軌道の横断面図であ
る。
FIG. 2 is a cross-sectional view of the movable mass and the coil track of FIG.

【図3】本発明を実施する形態の一例における制御系を
示す概念図である。
FIG. 3 is a conceptual diagram showing a control system in an example of an embodiment of the present invention.

【図4】本発明を実施する形態の他の例を示す断面図で
ある。
FIG. 4 is a cross-sectional view showing another example of the embodiment for carrying out the present invention.

【図5】従来例を示す概略図である。FIG. 5 is a schematic view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 ガイド 2 船舶(海洋構造物) 3 コイル軌道 4 可動マス 5 永久磁石 8 位置検出手段 9 回生電流調整手段 13 制御装置 15 角速度計(揺動検出手段) 16 角速度信号(揺動信号) 17 位置信号 1 Guide 2 Ship (Offshore Structure) 3 Coil Trajectory 4 Movable Mass 5 Permanent Magnet 8 Position Detection Means 9 Regenerative Current Adjusting Means 13 Control Device 15 Angular Velocity Meter (Vibration Detection Means) 16 Angular Velocity Signal (Oscillation Signal) 17 Position Signal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 両側を上向きに反らせた円弧状に形成さ
れて海洋構造物に固定されたガイドと、該ガイドの上面
に沿わせて円弧状に配置されたコイル軌道と、想定され
る海洋構造物の揺動周期より短い周期で前記ガイド上を
受動的に往復運動し得るよう前記コイル軌道を跨いで配
設され且つ往復運動方向に対し略直角となる向きに磁束
を形成し得るよう前記コイル軌道を挟んで永久磁石を対
向配置した可動マスと、海洋構造物の揺動を検出する揺
動検出手段と、前記可動マスのガイドに対する移動位置
を検出する位置検出手段と、前記可動マスが往復運動す
ることにより前記コイル軌道に発生した誘導電流の通電
量を調整する回生電流調整手段と、前記揺動検出手段か
らの揺動信号及び前記位置検出手段からの位置信号に基
づいて前記可動マスの往復運動が海洋構造物の揺動の周
期と対応し且つ約90゜の位相遅れとなるよう前記回生
電流調整手段を制御して前記可動マスに適宜な回生制動
を作用せしめる制御装置とを備えたことを特徴とする海
洋構造物の減揺装置。
1. A guide which is fixed to a marine structure and is formed in an arc shape in which both sides are bent upward, and a coil trajectory which is arranged in an arc shape along the upper surface of the guide, and an assumed marine structure. The coil is arranged so as to straddle the coil so as to passively reciprocate on the guide in a cycle shorter than the swing cycle of an object, and to form a magnetic flux in a direction substantially perpendicular to the reciprocating direction. A movable mass in which permanent magnets are arranged opposite to each other across a track, swing detection means for detecting the swing of the marine structure, position detection means for detecting the moving position of the movable mass with respect to the guide, and the movable mass reciprocates. Regenerative current adjusting means for adjusting the amount of the induced current generated in the coil orbit by moving, and the movable mass based on the swing signal from the swing detecting means and the position signal from the position detecting means. A control device for controlling the regenerative current adjusting means so that the reciprocating motion of 1 corresponds to the period of rocking of the offshore structure and has a phase delay of about 90 ° so as to apply appropriate regenerative braking to the movable mass. An anti-swing device for offshore structures.
【請求項2】 回生電流調整手段を、コイル軌道に対し
整流器を介して直列に接続された入力抵抗及びトランジ
スタにより構成したことを特徴とする請求項1に記載の
海洋構造物の減揺装置。
2. The vibration control device for a marine structure according to claim 1, wherein the regenerative current adjusting means comprises an input resistance and a transistor connected in series to the coil orbit through a rectifier.
JP09246696A 1996-04-15 1996-04-15 Marine structure anti-vibration equipment Expired - Fee Related JP3709605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09246696A JP3709605B2 (en) 1996-04-15 1996-04-15 Marine structure anti-vibration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09246696A JP3709605B2 (en) 1996-04-15 1996-04-15 Marine structure anti-vibration equipment

Publications (2)

Publication Number Publication Date
JPH09277984A true JPH09277984A (en) 1997-10-28
JP3709605B2 JP3709605B2 (en) 2005-10-26

Family

ID=14055129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09246696A Expired - Fee Related JP3709605B2 (en) 1996-04-15 1996-04-15 Marine structure anti-vibration equipment

Country Status (1)

Country Link
JP (1) JP3709605B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100545914B1 (en) * 2004-05-17 2006-01-24 한국해양연구원 Mass mobile transverse shaking damping device with automatic damping force
WO2011019122A1 (en) * 2009-08-12 2011-02-17 한국과학기술원 Balance maintenance device of floating structure
US20110061971A1 (en) * 2008-02-27 2011-03-17 Nicholas Paul Monkl Rescue arrangement
WO2013005668A1 (en) * 2011-07-07 2013-01-10 Nishimura Isao Wave power generation apparatus
CN103485437A (en) * 2013-09-29 2014-01-01 东南大学 Rotation amplifying power output device of viscous damper
CN108609111A (en) * 2018-04-28 2018-10-02 厦门大学 A kind of ship separate type antirolling device connected with electromagnetism based on steel ball sliding rail
KR20190088356A (en) * 2018-01-18 2019-07-26 한국해양대학교 산학협력단 Anti Rolling Pendulum Reduction Device and Method Using Electromagnetic Force
CN110370549A (en) * 2019-08-08 2019-10-25 璁镐附 A kind of micro foaming injection moulding mold

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106197587A (en) * 2016-07-06 2016-12-07 中国海洋石油总公司 A kind of effusion meter vibration absorber peculiar to vessel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100545914B1 (en) * 2004-05-17 2006-01-24 한국해양연구원 Mass mobile transverse shaking damping device with automatic damping force
US20110061971A1 (en) * 2008-02-27 2011-03-17 Nicholas Paul Monkl Rescue arrangement
US8561759B2 (en) * 2008-02-27 2013-10-22 Rapid Vertical Egress System Holding B.V. Rescue arrangement
WO2011019122A1 (en) * 2009-08-12 2011-02-17 한국과학기술원 Balance maintenance device of floating structure
US8490557B2 (en) 2009-08-12 2013-07-23 Korea Advanced Institute Of Science And Technology Balance maintaining equipment for floating body
WO2013005668A1 (en) * 2011-07-07 2013-01-10 Nishimura Isao Wave power generation apparatus
JP2013019270A (en) * 2011-07-07 2013-01-31 Goto Ikueikai Wave power generation apparatus
CN103485437A (en) * 2013-09-29 2014-01-01 东南大学 Rotation amplifying power output device of viscous damper
CN103485437B (en) * 2013-09-29 2015-10-28 东南大学 The rotary amplification power output device of viscous damper
KR20190088356A (en) * 2018-01-18 2019-07-26 한국해양대학교 산학협력단 Anti Rolling Pendulum Reduction Device and Method Using Electromagnetic Force
CN108609111A (en) * 2018-04-28 2018-10-02 厦门大学 A kind of ship separate type antirolling device connected with electromagnetism based on steel ball sliding rail
CN110370549A (en) * 2019-08-08 2019-10-25 璁镐附 A kind of micro foaming injection moulding mold

Also Published As

Publication number Publication date
JP3709605B2 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
US7448327B2 (en) Suspending, guiding and propelling vehicles using magnetic forces
US7436082B2 (en) Rocking motion charging device using faraday principle
JPH09277984A (en) Antimotion device for ocean structure
WO2015158543A1 (en) Magnetic suspension
JP5700193B2 (en) Linear actuator and suspension device using the same
JP5846618B1 (en) Ship-mounted power generator
KR101999790B1 (en) Maglev train having energy havester and infrastructure-system
KR101764861B1 (en) Magnetic levitation train having active damper
CN108674256B (en) Support arrangement for electric power contact net
JP7065017B2 (en) Aquarium test equipment, aquarium test system, and aquarium test method
JP3743054B2 (en) Marine structure anti-vibration equipment
KR100945713B1 (en) Air gap control system of linear induction motor for train
JP2824667B2 (en) Electromagnetic valve drive
JPH03221687A (en) Linear motor for door opening and closing
JPH09125414A (en) Vibration isolation structure of pile
JP2862855B1 (en) Boundary layer control actuator
EP0487744A1 (en) Underwater linear transport system
Makino et al. 6 Degrees of Freedom Control through Three Electromagnets and Three Linear Induction Motors
JP2669018B2 (en) Damping control device
JPH1014279A (en) Positioning method for surface motor
Jo et al. Design of the Miniature Maglev using Hybrid Magnets in Magnetic Levitation System
JPH05336614A (en) Superconducting magnetic bearing carrier
Makino et al. Control of 6-degrees-of-freedom motion and design of a mover consisting of three linear induction motors and three U-type electromagnets
Groning et al. Design of a state control for a solid-coupled magnetic levitation transport system
Brakensiek et al. Simulation and Implementation of a Curve Run of a Magnetic Levitated Transportation Vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050708

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050719

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050801

Free format text: JAPANESE INTERMEDIATE CODE: A61

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080819

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080819

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees