JPH0925170A - Aluminum nitride pressed body - Google Patents
Aluminum nitride pressed bodyInfo
- Publication number
- JPH0925170A JPH0925170A JP7177798A JP17779895A JPH0925170A JP H0925170 A JPH0925170 A JP H0925170A JP 7177798 A JP7177798 A JP 7177798A JP 17779895 A JP17779895 A JP 17779895A JP H0925170 A JPH0925170 A JP H0925170A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum nitride
- density
- pressed
- component
- pressed body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、反りが小さく、マ
イクロポアの無い窒化アルミニウム焼結体の製造に好適
な窒化アルミニウムプレス体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride pressed body suitable for producing an aluminum nitride sintered body having a small warpage and no micropores.
【0002】[0002]
【従来の技術】最近のLSIの集積度の飛躍的な向上に
伴うICチップの発熱量増大により、従来より使用され
ているアルミナでは熱特性が不十分で、放熱が限界に達
しつつある。2. Description of the Related Art Due to the recent increase in the amount of heat generated by IC chips accompanying the dramatic improvement in the degree of integration of LSIs, the conventionally used alumina has insufficient thermal characteristics and is reaching the limit of heat dissipation.
【0003】これに対し、窒化アルミニウム粉末は、高
熱伝導率、高絶縁性を有し、パッケ−ジ材料等のエレク
トロニクス材料として極めて有用な窒化アルミニウム焼
結体の原料として脚光を浴びている。従来、窒化アルミ
ニウム焼結体を得る方法として、スプレ−ドライヤ−法
等の公知の方法により窒化アルミニウム粉末を顆粒に造
粒した後、該窒化アルミニウム顆粒を成形型の中に詰め
てプレス成形機で加圧する、いわゆる乾式プレスにより
成形してプレス体を得、焼成する方法が知られている。On the other hand, aluminum nitride powder has a high thermal conductivity and a high insulating property, and is in the spotlight as a raw material of an aluminum nitride sintered body which is extremely useful as an electronic material such as a package material. Conventionally, as a method for obtaining an aluminum nitride sintered body, after granulating aluminum nitride powder into granules by a known method such as a spray dryer method, the aluminum nitride granules are packed in a molding die and then a press molding machine is used. A method is known in which pressure is applied, a so-called dry press is used to obtain a pressed body, and the pressed body is fired.
【0004】しかしながら、上記の一般的な方法で得ら
れた窒化アルミニウムプレス体を用いて窒化アルミニウ
ム焼結体の製造を行った場合、反りが小さく、焼結体中
にマイクロポアの無い窒化アルミニウム焼結体を安定し
て得ることが困難であった。However, when an aluminum nitride sintered body is produced by using the aluminum nitride pressed body obtained by the above-mentioned general method, the aluminum nitride sintered body has a small warp and has no micropores in the sintered body. It was difficult to obtain a solid body stably.
【0005】[0005]
【課題を解決するための手段】本発明者らは、上記問題
を解決すべく鋭意研究を重ねてきた。その結果、窒化ア
ルミニウムプレス体において、窒化アルミニウムを主成
分とする無機成分によって構成された空隙を結合剤を主
成分とする有機成分が占有する割合、即ち、前記式で示
される窒化アルミニウムプレス体の空隙内有機物占有率
Rが、脱脂後の窒化アルミニウム粉末成形体中のカ−ボ
ンの残留形態に影響を与え、ひいては得られる窒化アル
ミニウム焼結体の反りやマイクロポアの生成を招くとい
う知見を得た。[Means for Solving the Problems] The present inventors have conducted extensive studies to solve the above problems. As a result, in the aluminum nitride pressed body, the ratio of the organic component containing the binder as the main component in the voids formed by the inorganic component containing aluminum nitride as the main component, that is, in the aluminum nitride pressed body represented by the above formula. It was found that the occupancy ratio R of organic substances in the voids affects the residual form of carbon in the aluminum nitride powder compact after degreasing, which in turn causes warpage of the aluminum nitride sintered body obtained and generation of micropores. It was
【0006】そして、更に研究を重ねた結果、窒化アル
ミニウムプレス体の成形体密度d1及び空隙内有機物占
有率Rが特定の範囲に調整された窒化アルミニウムプレ
ス体が上記の目的を達成し得ることを見い出し、本発明
を提案するに至った。As a result of further research, it has been found that an aluminum nitride press body in which the compact density d 1 of the aluminum nitride press body and the organic matter occupancy R in the voids are adjusted within a specific range can achieve the above object. The inventors have found the present invention and have proposed the present invention.
【0007】即ち、本発明は、窒化アルミニウムを主成
分とする無機成分及び結合剤を主成分とする有機成分と
より成る窒化アルミニウムプレス体であって、該プレス
体の重量と体積の実測値より算出した成形体密度を
d1、該プレス体を構成する有機成分と無機成分との真
比重より計算して求めた成形体密度をd2、該プレス体
の無機成分の重量と体積の実測値より算出した成形体密
度をd3、該プレス体を構成する無機成分の真比重より
計算して求めた成形体密度をd4としたとき、下記式 R=1−{(1−d1/d2)/(1−d3/d4)} より算出される空隙内有機物占有率(R)が0.04〜
0.22であり、d1が1.8g/cm3以上であること
を特徴とする窒化アルミニウムプレス体である。That is, the present invention relates to an aluminum nitride press body composed of an inorganic component containing aluminum nitride as a main component and an organic component containing a binder as a main component, and the measured values of the weight and volume of the press body are used. The calculated compact density is d 1 , the compact density obtained by calculating from the true specific gravity of the organic component and the inorganic component constituting the pressed body is d 2 , and the weight and volume of the inorganic component of the pressed body are actually measured. the compact density was more calculated d 3, when the compact density was calculated from the true specific gravity of the inorganic component constituting the pressed body was d 4, the following equation R = 1 - {(1- d 1 / d 2 ) / (1-d 3 / d 4 )}, the organic matter occupancy (R) in the void is 0.04 to
It is 0.22, and d 1 is 1.8 g / cm 3 or more, which is an aluminum nitride pressed body.
【0008】本発明の窒化アルミニウムプレス体の成形
体密度d1は、プレス体の寸法と重量を測定して求めた
密度である。成形体密度d2は、有機溶媒を除いた窒化
アルミニウムプレス体を構成する全ての原料の真比重か
ら、気孔は含まないと仮定して計算より求めた密度であ
る。また、成形体密度d3は、上記プレス体を、実質的
にプレス体が膨張、収縮しない条件、即ち、600℃で5時
間焼成して、有機成分を除去した後、寸法と重量(無機
成分の重量)を測定して求めた密度である。成形体密度
d4は、窒化アルミニウムプレス体を構成する窒化アル
ミニウムを主成分とする全ての無機成分の真比重から、
気孔は含まないと仮定して計算より求めた密度である。The compact density d 1 of the aluminum nitride pressed body of the present invention is the density obtained by measuring the dimensions and weight of the pressed body. The compact density d 2 is a density calculated from the true specific gravities of all raw materials forming the aluminum nitride pressed body excluding the organic solvent, assuming that no pores are contained. Further, the density d 3 of the molded body is the condition that the pressed body is not substantially expanded or contracted, that is, the molded body is baked at 600 ° C. for 5 hours to remove the organic component, and then the size and weight (inorganic component Is the density obtained by measuring (weight of). The compact density d 4 is calculated from the true specific gravities of all the inorganic components containing aluminum nitride as the main component that constitutes the aluminum nitride pressed body,
The density is calculated by assuming that no pores are included.
【0009】本発明の窒化アルミニウムプレス体を構成
する無機成分は、窒化アルミニウムを主成分とするもの
であればよい。一般に、無機成分は、窒化アルミニウム
単独、または、窒化アルミニウムと焼結助剤0.1〜1
0重量%とから成る。アルミナを必要に応じて5重量%
以下の割合で添加しても良い。The inorganic component forming the aluminum nitride pressed body of the present invention may be any one containing aluminum nitride as a main component. Generally, the inorganic component is aluminum nitride alone, or aluminum nitride and a sintering aid 0.1 to 1
0% by weight. 5% by weight of alumina if necessary
You may add in the following ratios.
【0010】本発明に使用される窒化アルミニウム粉末
は公知のものが何ら制限無く使用される。一般に熱伝導
性に優れた窒化アルミニウム焼結体を得るためには、酸
素含有量や陽イオン不純物の少ないことが好ましい。即
ち、AlNを窒化アルミニウム組成とするとき、不純物
となる酸素含有量が1.5重量%以下、陽イオン不純物
が0.3重量%以下である窒化アルミニウム粉末が好適
である。さらに、酸素含有量が0.4〜1.3重量%、
陽イオン不純物が0.2重量%以下である窒化アルミニ
ウム粉末がより好適である。尚、本発明における窒化ア
ルミニウムはアルミニウムと窒素の1:1の化合物であ
り、これ以外のものをすべて不純物として扱う。但し、
窒化アルミニウム粉末の表面は空気中で不可避的に酸化
され、Al−N結合がAl−O結合に置き換っている
が、この結合Alは陽イオン不純物とみなさない。従っ
て、Al−N、Al−Oの結合をしていない金属アルミ
ニウムは陽イオン不純物である。As the aluminum nitride powder used in the present invention, known powders can be used without any limitation. Generally, in order to obtain an aluminum nitride sintered body having excellent thermal conductivity, it is preferable that the oxygen content and the amount of cationic impurities be small. That is, when AlN has an aluminum nitride composition, aluminum nitride powder having an oxygen content of 1.5% by weight or less and a cation impurity of 0.3% by weight or less is preferable. Furthermore, the oxygen content is 0.4 to 1.3% by weight,
Aluminum nitride powder having 0.2% by weight or less of cationic impurities is more preferable. The aluminum nitride in the present invention is a 1: 1 compound of aluminum and nitrogen, and all other compounds are treated as impurities. However,
The surface of the aluminum nitride powder is inevitably oxidized in air and Al-N bonds are replaced by Al-O bonds, but this bonded Al is not regarded as a cation impurity. Therefore, metallic aluminum having no Al—N or Al—O bond is a cation impurity.
【0011】また、本発明で用いられる上記窒化アルミ
ニウム粉末の粒子は、粒子径の小さいものが揃っている
ことが好ましい。例えば、平均粒子径(遠心式粒度分布
測定装置、例えば、堀場製作所製のCAPA500など
で測定した凝集粒子の平均粒径を言う。)が5μm以
下、さらには3μm以下であることが好ましい。The particles of the aluminum nitride powder used in the present invention preferably have a small particle size. For example, the average particle diameter (referred to as the average particle diameter of agglomerated particles measured by a centrifugal particle size distribution measuring device, such as CAPA500 manufactured by Horiba Ltd.) is preferably 5 μm or less, and more preferably 3 μm or less.
【0012】上記、窒化アルミニウム粉末以外の無機成
分の一つである焼結助剤としては、公知の焼結助剤、例
えば、酸化カルシウム、酸化ストロンチウム等のアルカ
リ土類金属酸化物;酸化イットリウム、酸化ランタン等
の希土類酸化物;アルミン酸カルシウム等の複合酸化物
等が、一般に使用される。As the sintering aid which is one of the inorganic components other than the above-mentioned aluminum nitride powder, known sintering aids, for example, alkaline earth metal oxides such as calcium oxide and strontium oxide; yttrium oxide, Rare earth oxides such as lanthanum oxide; complex oxides such as calcium aluminate are generally used.
【0013】本発明の窒化アルミニウムプレス体を構成
する有機成分としては、通常、表面活性剤及び結合剤が
用いられる。必要に応じて、プレス成形時の圧力伝達を
高めるための滑剤や顆粒の潰れ性を高めるための可塑剤
などを無機成分に対して、2重量%以下の割合で使用し
ても良い。As the organic component constituting the aluminum nitride pressed body of the present invention, a surface active agent and a binder are usually used. If necessary, a lubricant for enhancing pressure transmission during press molding, a plasticizer for enhancing crushability of granules, and the like may be used in a proportion of 2% by weight or less with respect to the inorganic component.
【0014】プレス体を製造する場合、一般には、セラ
ミック粉末は顆粒に造粒され、プレス成形される。ここ
で、顆粒の製造においては、泥しょうの分散性を高める
ため、表面活性剤が多く用いられる。本発明の表面活性
剤として、公知のものが何ら制限無く採用されるが、親
水性親油性バランス(以下、HLBと略す。)が4.5〜
18のものが窒化アルミニウム粉末成形体の成形密度が
上がるために好適に採用される。尚、本発明におけるH
LBは、デ−ビスの式により算出された値である。When manufacturing a pressed body, generally, the ceramic powder is granulated into granules and pressed. Here, in the production of granules, a surfactant is often used in order to enhance the dispersibility of sludge. As the surface active agent of the present invention, known ones can be used without any limitation, but the hydrophilic / lipophilic balance (hereinafter abbreviated as HLB) is 4.5 to.
No. 18 is preferably used because the molding density of the aluminum nitride powder compact increases. In addition, H in the present invention
LB is a value calculated by the Davis equation.
【0015】本発明において好適に使用しうる表面活性
剤を具体的に例示すると、カルボキシル化トリオキシエ
チレントリデシルエ−テル、ジグリセリンモノオレ−
ト、ジグリセリンモノステアレ−ト、カルボキシル化ヘ
プタオキシエチレントリデシルエ−テル、テトラグリセ
リンモノオレ−ト、ヘキサグリセリンモノオレ−ト、ポ
リオキシエチレンソルビタンモノラウレ−ト、ポリオキ
シエチレンソルビタンモノオレ−ト等が挙げられる。本
発明における表面活性剤は、2種以上を混合して使用し
ても良く、そのときのHLBは、それぞれの表面活性剤
のHLBの相加平均で算出できる。Specific examples of the surface active agent that can be preferably used in the present invention include carboxylated trioxyethylene tridecyl ether and diglycerin monoole.
, Diglycerin monostearate, carboxylated heptaoxyethylene tridecyl ether, tetraglycerin monooleate, hexaglycerin monooleate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monooleate -T and the like. The surfactant in the present invention may be used as a mixture of two or more kinds, and the HLB at that time can be calculated by the arithmetic mean of the HLB of each surfactant.
【0016】また、本発明において結合剤は、一般にセ
ラミック粉末の成形に用いられる公知のものが何ら制限
なく使用できる。例えば、ポリビニルブチラ−ル、ポリ
メチルメタクリレ−ト、ポリエチルメタクリレ−ト、ポ
リ2−エチルヘキシルメタクリレ−ト、ポリブチルメタ
クリレ−ト、ポリアクリレ−ト、セルロ−スアセテ−ト
ブチレ−ト、ニトロセルロ−ス、メチルセルロ−ス、ヒ
ドロキシメチルセルロ−ス、ポリビニルアルコ−ル、ポ
リオキシエチレンオキサイド及びポリプロピレンオキサ
イド等の含酸素有機高分子体;石油レジン、ポリエチレ
ン、ポリプロピレン、ポリスチレン等の炭化水素系合成
樹脂;ポリ塩化ビニ−ル;ワックス及びそのエマルジョ
ン等の有機高分子体が1種または2種以上混合して使用
される。結合剤として使用する有機高分子体の分子量は
特に制限されないが、一般には3,000〜1,00
0,000、好ましくは、5,000〜300,000
のものを用いると、プレス成形により得られる窒化アル
ミニウムプレス体の密度が上昇するために好ましい。In the present invention, as the binder, any known binder generally used for molding ceramic powder can be used without any limitation. For example, polyvinyl butyral, polymethyl methacrylate, polyethyl methacrylate, poly 2-ethylhexyl methacrylate, polybutyl methacrylate, polyacrylate, cellulose acetate butyrate, Oxygen-containing organic polymers such as nitrocellulose, methylcellulose, hydroxymethylcellulose, polyvinyl alcohol, polyoxyethylene oxide and polypropylene oxide; hydrocarbon-based synthetic resins such as petroleum resin, polyethylene, polypropylene and polystyrene Polyvinyl chloride; One or more organic polymers such as waxes and emulsions thereof are used in combination. Although the molecular weight of the organic polymer used as the binder is not particularly limited, it is generally 3,000 to 1,000.
000, preferably 5,000 to 300,000
It is preferable to use the above-mentioned one because the density of the aluminum nitride pressed body obtained by the press forming increases.
【0017】本発明の窒化アルミニウムプレス体におい
て、前記表面活性剤及び結合剤等の有機成分と窒化アル
ミニウム粉末、焼結助剤等の無機成分との混合割合は、
表面活性剤及び結合剤等の種類によって多少異なるが、
無機成分100重量部に対して、溶媒を除く有機成分の
割合が、0.1重量部以上で、5重量部未満の範囲から
選択すれば良い。In the aluminum nitride pressed body of the present invention, the mixing ratio of the organic components such as the surface active agent and the binder and the inorganic components such as the aluminum nitride powder and the sintering aid is
Depending on the type of surface-active agent and binder, etc.,
The ratio of the organic component excluding the solvent may be 0.1 part by weight or more and less than 5 parts by weight with respect to 100 parts by weight of the inorganic component.
【0018】本発明の窒化アルミニウムプレス体におい
て、重要な要件の一つは、空隙内有機物占有率Rが0.
04〜0.22にあることである。即ち、空隙内有機物
占有率Rが、0.04より小さい場合は、プレス体の強
度不足のため、良好なプレス体が得られず、また、0.
22より大きい場合は、反りが大きく、マイクロポアが
発生するために好ましくない。良好な窒化アルミニウム
プレス体を得、反りが小さく、マイクロポアの無い窒化
アルミニウム焼結体を得るためには、空隙内有機物占有
率Rが、0.06〜0.20の範囲にあることが更に好
ましい。In the aluminum nitride press body of the present invention, one of the important requirements is that the occupancy ratio R of the organic matter in the void is 0.
It is in the range of 04 to 0.22. That is, when the organic substance occupancy rate R in the voids is smaller than 0.04, a good pressed body cannot be obtained due to insufficient strength of the pressed body.
When it is larger than 22, warpage is large and micropores are generated, which is not preferable. In order to obtain a good pressed aluminum nitride body and an aluminum nitride sintered body having a small warp and no micropores, the organic substance occupancy ratio R in the voids is further preferably in the range of 0.06 to 0.20. preferable.
【0019】また、上記のプレス体の成形体密度d1
は、1.8g/cm3以上であることが重要である。即
ち、成形体密度d1が1.8g/cm3より低い場合は、
焼結による収縮率が大きいため、反りや変形が大きくな
り本発明の効果が得られないために好ましくない。成形
体密度d1は、上記の範囲であれば良いが、1.86〜
2.3g/cm3であることが更に好ましい。因に、本
発明の後述する方法によれば、2.4g/cm3程度の
ものまで製造が可能である。The compact density d1 of the above-mentioned pressed body
Is important to be 1.8 g / cm 3 or more. That is, when the compact density d 1 is lower than 1.8 g / cm 3 ,
Since the shrinkage rate due to sintering is large, warpage and deformation are large, and the effect of the present invention cannot be obtained, which is not preferable. The molded body density d 1 may be in the above range, but 1.86 to
More preferably, it is 2.3 g / cm 3 . By the way, according to the method of the present invention described later, it is possible to manufacture up to about 2.4 g / cm 3 .
【0020】更に、プレス成形の際、プレス体の成形体
密度を顆粒の嵩比重で割って求めた圧縮比が1.8〜
2.8であることが好ましい。即ち、圧縮比が1.8よ
り小さい場合は、顆粒の潰れが不十分になために顆粒間
に空隙ができ、焼結体中のマイクロポアの原因となり易
い。また、2.8より大きい場合は、プレス体中の残留
応力が大きくなり、焼結体の反りが大きくなる傾向があ
る。上記圧縮比は1.85〜2.6の範囲にあることが
更に好ましい。Further, at the time of press molding, the compression ratio obtained by dividing the compact density of the pressed body by the bulk specific gravity of the granule is 1.8 to
It is preferably 2.8. That is, when the compression ratio is smaller than 1.8, the granules are insufficiently crushed and voids are formed between the granules, which easily causes micropores in the sintered body. On the other hand, when it is larger than 2.8, the residual stress in the pressed body becomes large, and the warp of the sintered body tends to become large. More preferably, the compression ratio is in the range of 1.85 to 2.6.
【0021】また、本発明の窒化アルミニウムプレス体
の製造に際しては、混合にて、一般に有機溶媒が使用さ
れる。但し、該有機溶媒は、造粒、プレス成形後のプレ
ス体には実質的に存在しないので、計算上、前記有機成
分から除いて取り扱われる。Further, in manufacturing the aluminum nitride pressed body of the present invention, an organic solvent is generally used by mixing. However, since the organic solvent does not substantially exist in the pressed body after granulation and press molding, it is handled after being excluded from the organic components in calculation.
【0022】上記有機溶媒として好ましく使用されるも
のを例示すれば、アセトン、メチルエチルケトン及びメ
チルイソブチルケトン等のケトン類;エタノ−ル、プロ
パノ−ル及びブタノ−ル等のアルコ−ル類;ベンゼン、
トルエン及びキシレン等の芳香族炭化水素類;あるいは
トリクロロエチレン、テトラクロロエチレン及びブロム
クロロメタン等のハロゲン化炭化水素類の1種または2
種以上の混合物が挙げられる。有機溶媒の量は、20〜
200重量部の範囲から選択され、使用される。Examples of the organic solvent preferably used are ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; alcohols such as ethanol, propanol and butanol; benzene;
Aromatic hydrocarbons such as toluene and xylene; or one or two halogenated hydrocarbons such as trichloroethylene, tetrachloroethylene and bromochloromethane
Mixtures of more than one species. The amount of organic solvent is 20 to
It is selected and used in the range of 200 parts by weight.
【0023】前記した各成分は、溶媒中で分散及び混合
され、一般に泥しょうと呼ばれる粘稠なスラリ−とした
後、スプレ−ドライヤ−法等の公知の方法により造粒さ
れる。得られた該窒化アルミニウム顆粒を成形型の中に
詰めてプレス成形機で加圧する、いわゆる乾式プレス法
により、成形してプレス体を得る方法が好適に採用され
る。The above components are dispersed and mixed in a solvent to form a viscous slurry generally called mud, and then granulated by a known method such as a spray dryer method. A method in which the obtained aluminum nitride granules are packed in a molding die and pressed by a press molding machine to form a pressed body by a so-called dry pressing method is suitably adopted.
【0024】本発明の窒化アルミニウムプレス体の構成
要件である成形体密度d1は、上記製造方法において、
主に、使用する顆粒の後記する加圧密度とプレス成形圧
力により調整することができる。The compact density d 1 which is a constituent factor of the aluminum nitride pressed body of the present invention is determined by the above-mentioned manufacturing method.
It can be adjusted mainly by the pressure density and the press molding pressure, which will be described later, of the granules used.
【0025】本発明に好ましく使用される顆粒として
は、平均粒径が20〜500μmであり、0.3t/c
m2で該顆粒をプレス成形した際のプレス体の加圧密度
が1.8〜2.3g/cm3の範囲にあることが好まし
い。顆粒間に空隙が無いような、顆粒が良く潰れたプレ
ス体を得、焼結体中にマイクロポアの無い焼結体を得る
ためには、平均粒径25〜300μmの範囲にあること
が更に好ましく、また、低いプレス圧力により、残留応
力の小さいプレス体を得、反りの小さい焼結体を得るた
めには、加圧密度が1.86〜2.2g/cm3の範囲
にあることが更に好ましい。ここで、顆粒の加圧密度
は、上記製造方法において、主に、混合条件により調整
され、平均粒径は、主に、スプレ−ドライヤ−の運転条
件によって調整することができる。The granules preferably used in the present invention have an average particle size of 20 to 500 μm and 0.3 t / c.
When the granules are press-molded with m 2 , the pressed density of the pressed body is preferably in the range of 1.8 to 2.3 g / cm 3 . In order to obtain a pressed body in which the granules are well crushed so that there are no voids between the granules and a sintered body having no micropores in the sintered body is obtained, the average particle size is further preferably in the range of 25 to 300 μm. Preferably, in order to obtain a pressed body with a small residual stress and a sintered body with a small warpage by a low pressing pressure, the pressure density is in the range of 1.86 to 2.2 g / cm 3. More preferable. Here, the pressed density of the granules can be adjusted mainly by the mixing conditions in the above-mentioned production method, and the average particle size can be adjusted mainly by the operating conditions of the spray dryer.
【0026】また、本発明の構成要件である空隙内有機
物占有率Rは、上記製造方法において、主に、前記成形
体密度d1と成形体密度d2、d3、d4により調整され
る。具体的には、使用する顆粒の加圧密度と成形圧力に
よる調整の他に、窒化アルミニウムを主成分とする無機
成分に対する溶媒を除く有機成分の混合割合とにより調
整することができる。The occupancy ratio R of organic matter in the voids, which is a constituent feature of the present invention, is mainly adjusted by the above-mentioned molding density d 1 and molding densities d 2 , d 3 and d 4 in the above-mentioned manufacturing method. . Specifically, it can be adjusted by adjusting the press density of the granules used and the molding pressure, and also by adjusting the mixing ratio of the organic component excluding the solvent to the inorganic component containing aluminum nitride as the main component.
【0027】更に、本発明の構成要件である圧縮比は、
上記製造方法において、主に、プレス成形圧力と使用す
る顆粒の嵩密度により調整することができる。ここで、
顆粒の嵩密度は、上記製造方法において、主に、混合時
の溶媒量により調整される。Further, the compression ratio, which is a constituent feature of the present invention, is
In the above production method, it can be adjusted mainly by the press molding pressure and the bulk density of the granules used. here,
The bulk density of the granules is adjusted mainly by the amount of solvent at the time of mixing in the above production method.
【0028】こうして得られた窒化アルミニウムプレス
体は、公知の方法によって脱脂、焼成される。脱脂は、
一般に、空気や窒素雰囲気中で行われ、脱脂温度は、結
合剤の種類や雰囲気の違いによって、300〜1000
℃の範囲から任意に選択される。脱脂後の窒化アルミニ
ウム粉末成形体は、非酸化雰囲気中、1700〜195
0℃の範囲の任意の温度で焼成される。このようにし
て、反りが小さく、焼結体中にマイクロポアの無い窒化
アルミニウム焼結体を得ることができる。The aluminum nitride pressed body thus obtained is degreased and fired by a known method. For degreasing,
Generally, it is carried out in an air or nitrogen atmosphere, and the degreasing temperature is 300 to 1000 depending on the type of binder and the atmosphere.
It is arbitrarily selected from the range of ° C. The aluminum nitride powder compact after degreasing is 1700 to 195 in a non-oxidizing atmosphere.
It is fired at any temperature in the range of 0 ° C. In this way, it is possible to obtain an aluminum nitride sintered body having a small warpage and no micropores in the sintered body.
【0029】[0029]
【発明の効果】本発明の窒化アルミニウムプレス体を使
用して、窒化アルミニウム焼結体を製造した場合、反り
が小さく、焼結体中にマイクロポアの無い窒化アルミニ
ウム焼結体を得ることができるので、反り戻しや表面加
工などの反り修正のための後工程の必要が無く、熱的、
電気的及び機械的にも信頼性の高い基板等の工業材料を
効率的で安価に製造することが可能となる。また、タン
グステン等の高融点金属との同時焼成基板、金属接合基
板、ファインパタ−ン等のメタライズ面を有する基板等
の電子材料やヒ−トシンクや半導体装置関連等の工業材
料として好適に使用される。When an aluminum nitride sintered body is manufactured using the aluminum nitride pressed body of the present invention, it is possible to obtain an aluminum nitride sintered body having a small warpage and no micropores in the sintered body. Therefore, there is no need for a post-process for warping correction such as warping back and surface processing,
It is possible to efficiently and inexpensively manufacture an industrial material such as a substrate having high electrical and mechanical reliability. Further, it is preferably used as an electronic material such as a co-firing substrate with a refractory metal such as tungsten, a metal bonded substrate, a substrate having a metallized surface such as fine pattern, or an industrial material such as a heat sink or a semiconductor device. It
【0030】従って、本発明の窒化アルミニウムプレス
体を用いて得られた窒化アルミニウム焼結体は、高信頼
性を要求される上記電子材料及び工業材料として、極め
て有用な材料となる。Therefore, the aluminum nitride sintered body obtained by using the aluminum nitride pressed body of the present invention is an extremely useful material as the electronic material and industrial material which are required to have high reliability.
【0031】[0031]
【実施例】本発明をさらに具体的に説明するために、以
下に実施例及び比較例を挙げるが、本発明はこれらの実
施例に限定されるものではない。EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
【0032】尚、以下の実施例及び比較例における各種
の物性の測定は次の方法により行った。Various physical properties in the following examples and comparative examples were measured by the following methods.
【0033】1) 比表面積 島津製作所製「フロ−ソ−ブ2300」を用いて、N2
吸着によるBET法で求めた。1) Specific surface area N 2 was used by using "FLOW SOVE 2300" manufactured by Shimadzu Corporation.
It was determined by the BET method by adsorption.
【0034】2) 平均凝集粒径 堀場製作所性「CAPA 500」を用いて、遠心沈降
法により求めた。2) Average Aggregate Particle Size It was determined by the centrifugal sedimentation method using "CAPA 500" manufactured by Horiba Ltd.
【0035】3) 不純物量 陽イオン不純物は、窒化アルミニウム粉末をアルカリ溶
融後、酸で中和し、島津製作所製「ICPS−100
0」を使用して、溶液のICP発光分光分析により定量
した。3) Amount of Impurities As for the cationic impurities, aluminum nitride powder was alkali-melted, neutralized with an acid, and manufactured by Shimadzu Corporation “ICPS-100”.
0 ”was used to quantify the solution by ICP emission spectroscopy.
【0036】不純物カ−ボン量は、窒化アルミニウム粉
末を酸素気流中で燃焼させ、堀場製作所製「EMIA−
110」を使用して、発生したCO、CO2ガス量から
定量した。The amount of impurity carbon was determined by burning aluminum nitride powder in an oxygen stream and using "EMIA-" manufactured by Horiba Ltd.
110 ”was used to quantify the amount of generated CO and CO 2 gas.
【0037】不純物酸素量は、窒化アルミニウム粉末を
堀場製作所製「EMGA−2800」を使用して、グラ
ファイトるつぼ中での高温の熱分解法により発生したC
Oガス量から求めた。The amount of impurity oxygen was generated by a high temperature pyrolysis method in a graphite crucible using aluminum nitride powder "EMGA-2800" manufactured by Horiba Ltd.
It was determined from the amount of O gas.
【0038】4) 顆粒平均粒径 化学工学協会編「化学工学便覧 改訂4版」973頁記
載の粒度分布の累積分布50パ−セント値より求めた。4) Granule average particle size: Obtained from the cumulative distribution 50 percent value of the particle size distribution described in "Chemical Engineering Handbook, 4th Edition", page 973, edited by Chemical Engineering Association.
【0039】5) 顆粒加圧密度 φ20mmの金型を使用して、0.3t/cm2の圧力
で顆粒を加圧し、ペレットを作製した。得られたペレッ
トの重量と形状より、加圧密度を求めた。5) Granule Pressing Density Using a mold having a diameter of 20 mm, the granules were pressed at a pressure of 0.3 t / cm 2 to prepare pellets. The pressure density was determined from the weight and shape of the obtained pellets.
【0040】6) 顆粒嵩密度 筒井理化学機械(株)製「A・B・D粉体特性測定器」を
用いて重装嵩密度を測定した。6) Granular Bulk Density The heavy bulk density was measured using "A / B / D powder property measuring instrument" manufactured by Tsutsui Rikagaku Kikai.
【0041】7) 圧縮比 プレス体の成形体密度を顆粒の嵩比重で割って求めた。7) Compression Ratio: The density of the molded product of the pressed product was divided by the bulk specific gravity of the granules.
【0042】8) 成形体密度(d1,d2,d3,d4) 成形体密度d1は、プレス体の寸法と重量を測定して求
め、又、成形体密度d2は、有機溶媒を除いた窒化アル
ミニウムプレス体を構成する全ての原料の真比重から、
気孔は含まないと仮定して計算より求めた。また、成形
体密度d3は、上記プレス体を600℃で5時間焼成し
て、有機成分を除去した後、寸法と重量を測定して求め
た。更に、成形体密度d4は、窒化アルミニウムプレス
体を構成する窒化アルミニウムを主成分とする全ての無
機物の真比重から、気孔は含まないと仮定して計算より
求めた。8) Molded product density (d 1 , d 2 , d 3 , d 4 ) The molded product density d 1 is obtained by measuring the size and weight of the pressed product, and the molded product density d 2 is calculated as follows. From the true specific gravity of all raw materials constituting the aluminum nitride pressed body excluding the solvent,
It was calculated by assuming that no pores are included. The compact density d 3 was obtained by firing the above-mentioned pressed body at 600 ° C. for 5 hours to remove the organic components, and then measuring the dimensions and weight. Further, the compact density d 4 was calculated from the true specific gravities of all the inorganic substances mainly composed of aluminum nitride constituting the aluminum nitride pressed body, by assuming that no pores were contained.
【0043】9) 焼結体密度 東洋精機製「高精度比重計D−H」を使用して、アルキ
メデス法により求めた。9) Density of Sintered Body The density was determined by the Archimedes method using "High-precision specific gravity meter DH" manufactured by Toyo Seiki.
【0044】10) 焼結体反り 焼結体の厚みに20μmを加えた幅を有するスリットに
焼結体を通して、通過するものを合格とし、その合格率
を示した。10) Warp of Sintered Body The slits having a width obtained by adding 20 μm to the thickness of the sintered body were passed through the sintered body, and the passing rate was shown.
【0045】11) 焼結体マイクロポア 実体顕微鏡を使用して、40倍の倍率で写真測定した。
1平方cm当たりの20μm以上のマイクロポアを計数
し、マイクロポア密度として求めた。3サンプルの平均
値を測定値とした。11) Sintered Micropores Photomicrographs were made at a magnification of 40 using a stereomicroscope.
Micropores of 20 μm or more per 1 cm 2 were counted and determined as the micropore density. The average value of 3 samples was used as the measured value.
【0046】実施例1 内容積10Lのナイロン製ポットに鉄心入りナイロンボ
−ルを入れ、次いで、表1に示す窒化アルミニウム粉末
100重量部、酸化イットリウム4重量部、表面活性剤
としてヘキサグリセリンモノオレ−ト0.5重量部、結
合剤としてn−ブチルメタクリレ−ト、溶媒としてトル
エンを表2に示した量だけ加えて、ボ−ルミル混合を表
2に示した時間行った後、白色の泥奬を得た。Example 1 An iron core-containing nylon ball was placed in a nylon pot having an internal volume of 10 L, then 100 parts by weight of aluminum nitride powder shown in Table 1, 4 parts by weight of yttrium oxide, and hexaglycerin monoole as a surface-active agent. 0.5 parts by weight, n-butyl methacrylate as a binder, and toluene as a solvent in the amounts shown in Table 2, and the mixture was subjected to a ball mill mixing for the time shown in Table 2, and then a white mud was obtained. I got a bite.
【0047】こうして得られた泥奬をスプレ−ドライヤ
−法により造粒し、φ70〜100μmの大きさの窒化
アルミニウム顆粒を作製した。得られた顆粒の嵩密度と
加圧密度を測定した。The mud thus obtained was granulated by a spray dryer method to produce aluminum nitride granules having a size of φ70 to 100 μm. The bulk density and pressure density of the obtained granules were measured.
【0048】この顆粒を用いて、表2に示した成形圧力
でプレス成形し、φ40mm、厚さ3.0mmのプレス
体を得、成形体密度d1、プレス体の空隙内有機物占有
率R及び圧縮比を測定した。その後、空気中600℃で
5時間焼成し、次いで、内面に窒化ホウ素を塗布したカ
−ボン製るつぼに入れ、窒素雰囲気中1800℃で5時
間焼成し、焼結体を得た。焼結体の密度、反り、マイク
ロポア密度を測定し、その結果を表2に示した。The granules were press-molded under the molding pressure shown in Table 2 to obtain a pressed body having a diameter of 40 mm and a thickness of 3.0 mm, the density of the molded body d 1 , the occupancy ratio R of organic matter in the voids of the pressed body and The compression ratio was measured. Then, it was fired in air at 600 ° C. for 5 hours, then placed in a carbon crucible having an inner surface coated with boron nitride, and fired in a nitrogen atmosphere at 1800 ° C. for 5 hours to obtain a sintered body. The density, warpage, and micropore density of the sintered body were measured, and the results are shown in Table 2.
【0049】[0049]
【表1】 [Table 1]
【0050】[0050]
【表2】 [Table 2]
Claims (1)
分及び結合剤を主成分とする有機成分とより成る窒化ア
ルミニウムプレス体であって、該プレス体の重量と体積
の実測値より算出した成形体密度をd1、該プレス体を
構成する有機成分と無機成分との真比重より計算して求
めた成形体密度をd2、該プレス体の無機成分の重量と
体積の実測値より算出した成形体密度をd3、該プレス
体を構成する無機成分の真比重より計算して求めた成形
体密度をd4としたとき、下記式 R=1−{(1−d1/d2)/(1−d3/d4)} より算出される空隙内有機物占有率(R)が、0.04
〜0.22であり、d1が、1.8g/cm3以上でこと
を特徴とする窒化アルミニウムプレス体。1. An aluminum nitride press body comprising an inorganic component containing aluminum nitride as a main component and an organic component containing a binder as a main component, wherein the molded body is calculated from measured values of the weight and volume of the press body. Molding density calculated from the actual density of the molded body, which is obtained by calculating the density of d 1 , the true specific gravity of the organic component and the inorganic component of the pressed body, and d 2 , the measured value of the weight and volume of the inorganic component of the pressed body. Assuming that the body density is d 3 , and the molded body density obtained by calculating from the true specific gravity of the inorganic components constituting the pressed body is d 4 , the following formula R = 1-{(1-d 1 / d 2 ) / The organic matter occupancy (R) in the void calculated from (1-d 3 / d 4 )} is 0.04.
Is ~0.22, d 1 is an aluminum nitride pressed product, characterized in that at 1.8 g / cm 3 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17779895A JP4050798B2 (en) | 1995-07-13 | 1995-07-13 | Aluminum nitride press body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17779895A JP4050798B2 (en) | 1995-07-13 | 1995-07-13 | Aluminum nitride press body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0925170A true JPH0925170A (en) | 1997-01-28 |
JP4050798B2 JP4050798B2 (en) | 2008-02-20 |
Family
ID=16037281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17779895A Expired - Lifetime JP4050798B2 (en) | 1995-07-13 | 1995-07-13 | Aluminum nitride press body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4050798B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007261879A (en) * | 2006-03-28 | 2007-10-11 | National Institute Of Advanced Industrial & Technology | Ceramic sintered compact and method of manufacturing the same |
-
1995
- 1995-07-13 JP JP17779895A patent/JP4050798B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007261879A (en) * | 2006-03-28 | 2007-10-11 | National Institute Of Advanced Industrial & Technology | Ceramic sintered compact and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP4050798B2 (en) | 2008-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2525074B2 (en) | Aluminum nitride granules and method for producing the same | |
JP2007019544A (en) | Heat sink for semiconductor device | |
KR20070003891A (en) | Aluminum nitride powder and aluminum nitride sintered compact | |
WO2020004304A1 (en) | Method for producing granules for ceramic production | |
WO2021161883A1 (en) | Aluminum nitride powder and method of producing same | |
JP4050798B2 (en) | Aluminum nitride press body | |
JPH0952704A (en) | Aluminum nitride granule and its production | |
JP3771950B2 (en) | Aluminum nitride green sheet | |
JP3479160B2 (en) | Aluminum nitride granules and method for producing the same | |
JP3707866B2 (en) | Method for producing aluminum nitride green body | |
JP7112900B2 (en) | Method for producing granules for manufacturing ceramics | |
JP3218275B2 (en) | Aluminum nitride green sheet | |
Nogueira et al. | Selection of a powder for ceramic injection moulding | |
JPS63134570A (en) | Manufacture of aluminum nitride sintered body | |
KR102731434B1 (en) | Method for producing granules for ceramics manufacturing | |
JP4958353B2 (en) | Aluminum nitride powder and method for producing the same | |
JP4564257B2 (en) | High thermal conductivity aluminum nitride sintered body | |
JP3877813B2 (en) | Large aluminum nitride sintered body and manufacturing method thereof | |
JPH0940467A (en) | Production of aluminum nitride sintered compact | |
JPH1025160A (en) | Aluminum nitride sintered material | |
JP2594389B2 (en) | Aluminum nitride composition | |
EP1560672A2 (en) | Method and apparatus for casting coarse grain siliconized silicon carbide parts | |
JPH0686330B2 (en) | High thermal conductivity aluminum nitride sintered body | |
JPH0987032A (en) | Aluminum nitride green sheet and its production | |
JP2004521185A (en) | Highly conductive copper / refractory metal composites and methods of making them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050708 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070806 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071130 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131207 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |