[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09256152A - Aligning ion beam assisting film forming method - Google Patents

Aligning ion beam assisting film forming method

Info

Publication number
JPH09256152A
JPH09256152A JP6355696A JP6355696A JPH09256152A JP H09256152 A JPH09256152 A JP H09256152A JP 6355696 A JP6355696 A JP 6355696A JP 6355696 A JP6355696 A JP 6355696A JP H09256152 A JPH09256152 A JP H09256152A
Authority
JP
Japan
Prior art keywords
film
ion
ion beam
ions
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6355696A
Other languages
Japanese (ja)
Inventor
Katsuo Fukutomi
勝夫 福富
Shunji Kumagai
俊司 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
National Research Institute for Metals
Original Assignee
Mitsuba Corp
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corp, National Research Institute for Metals filed Critical Mitsuba Corp
Priority to JP6355696A priority Critical patent/JPH09256152A/en
Publication of JPH09256152A publication Critical patent/JPH09256152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the orientating properties of a film by formin parallel ion beams aligning linearly in one direction and applying assisting irradiation thereof to the face of a grown film. SOLUTION: On the side of a plasma generating chamber 6 for the gaseous raw material of the ions to be desired to be assisted, parabolic electric field distribution is formed by an aligning ion forming electrode 7 and an ion tripping electrode 8 with fine slits, and regularity is imparted to an ion flow. Ions 13 are formed into a parallel beam in the direction of the Z axis and progress, and in the cross-section, the state of the flying trace of the ions 13 is the one in which order on a straight line is present in the case of being observed from the Y axis, but it is random and any order is not shown from the direction of the X axis. In the above arraying ion beams, energies are regulated to prescribed ones by an accelerating and decelerating electrode 9, furthermore, parallelization is imparted thereto by a divergence suppressing electrode 10, and the face of a film is irradiated therewith. Thus, by imparting regularity to the positional space of the ions on the side of the ion beam, film formation is made possible even on the one having a crystal structure in which orientation has not been controlled by the conventional method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、整列イオンビー
ムアシスト成膜法に関するものである。さらに詳しく
は、低エネルギー(数eV〜数100eV)イオンビー
ムを援用し、結晶成長させたり結晶配向を制御する整列
イオンビームを用いたIBAD(イオンビームアシスト
デポジション)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aligned ion beam assisted film forming method. More specifically, the present invention relates to IBAD (ion beam assisted deposition) using an aligned ion beam for growing a crystal or controlling a crystal orientation by using a low energy (several eV to several hundred eV) ion beam.

【0002】[0002]

【従来の技術とその課題】従来より、薄膜形成の方法と
して、イオンビームを用いる方法が知られている。そし
て、このイオンビーム法においては、膜生成特性はビー
ムの制御性に大きく依存していることから、イオンビー
ムの質の重要性が指摘されている。そこで、このような
イオンビームの制御性、その質の観点に留意したイオン
源の開発研究が近年盛んに進められている。たとえば、
目的により平行イオンビーム、集束イオンビーム、微細
ビーム、大口径一様ビーム、大口径大電流ビームなどが
検討されている。しかし、これら従来の検討では主にビ
ームの幾何学的形状、大きさ、イオン密度(fluen
ce)に関するものに限られていた。
2. Description of the Related Art Conventionally, a method using an ion beam is known as a method for forming a thin film. In this ion beam method, the film formation characteristics depend largely on the controllability of the beam, so the importance of the quality of the ion beam has been pointed out. Therefore, research and development of an ion source, which takes note of such controllability and quality of the ion beam, has been actively pursued in recent years. For example,
Depending on the purpose, parallel ion beam, focused ion beam, fine beam, large diameter uniform beam, large diameter large current beam, etc. are being studied. However, these conventional studies mainly focus on the beam geometry, size, and ion density (fluen).
ce).

【0003】また、IBAD(イオンビームアシストデ
ポジション)で三軸配向膜を得る方法が、1985年I
BMのYuらにより、ついで1991年フジクラのIi
jimaらにより報告されているが、この場合には、ビ
ームは、結晶の軸または面間のイオンチャネリング方向
に一致するように、基板面に対して斜め入射させてい
る。このため、入射イオンは、チャネリング方位と異な
る方位関係の結晶粒を選択的に再スパッタし、その結晶
粒の成長を抑止することになる。その結果、チャネリン
グ方位に沿った結晶粒のみが柱状に成長を始め、イオン
の斜め入射により優勢に成長する柱状晶の影にあたると
ころの結晶核の成長は抑えられ(シャドー効果)、最終
的には基板全面に面内方位配列を有する膜が得られるこ
とになる。
Further, a method of obtaining a triaxially oriented film by IBAD (ion beam assisted deposition) is described in 1985 I.
Yu et al. Of BM followed by Ii of Fujikura in 1991.
As reported by Jima et al., in this case, the beam is obliquely incident on the surface of the substrate so as to coincide with the ion channeling direction between the axes or faces of the crystal. Therefore, the incident ions selectively re-sputter the crystal grains having an orientation relation different from the channeling orientation, and suppress the growth of the crystal grains. As a result, only the crystal grains along the channeling direction begin to grow in columns, and the growth of crystal nuclei in the shadow of columnar crystals that grow predominantly due to the oblique incidence of ions is suppressed (shadow effect), and finally A film having an in-plane orientational arrangement on the entire surface of the substrate can be obtained.

【0004】このように、成膜法におけるイオンビーム
の検討は、従来方法の改良、あるいは、新しい観点から
の様々な工夫としてなされてきてはいるが、対象となる
物質の結晶構造によっては配向制御が出来ないものもあ
り、成膜可能な物質の種類は限られているのが実情であ
った。また成膜が可能な物質の結晶成長においても、そ
の配向度の向上のためには更なる工夫が必要とされてい
た。
As described above, the study of the ion beam in the film forming method has been made as an improvement of the conventional method or as various ideas from a new viewpoint, but the orientation control is performed depending on the crystal structure of the target substance. However, the fact is that the types of substances that can be used for film formation are limited. Further, even in the crystal growth of a substance capable of forming a film, further improvement has been required to improve the degree of orientation.

【0005】一方、発明者らは、従来のIBADとは異
なる、プラズマビームアシスト法と言われるべき薄膜の
新しい3軸配向制御法をすでに考案している(結晶配向
薄膜製造装置・特許第 1966676号他)。そしてさらに、
このプラズマビームアシスト法における入射イオンビー
ム中のイオンの空間的位置配置が、3軸配向膜を得る上
で極めて重要な意味を有することを見いだしてもいる。
On the other hand, the present inventors have already devised a new triaxial orientation control method for a thin film, which should be called a plasma beam assisted method, which is different from the conventional IBAD (crystal orientation thin film manufacturing apparatus, Japanese Patent No. 1966676). other). And furthermore,
It is also found that the spatial position arrangement of ions in the incident ion beam in the plasma beam assist method has an extremely important meaning in obtaining a triaxial alignment film.

【0006】そこで、この発明は、このような状況に鑑
みてなされたものであり、プラズマビームアシスト法に
おける成膜時の面内配向の出現機構の検討から、イオン
ビーム側のイオンの位置空間に着目し、従来技術の限界
を越えた高い配向度を持つことを可能とした、新しいイ
オンビーム成膜法を提供することを目的としている。
Therefore, the present invention has been made in view of such a situation, and from the examination of the appearance mechanism of the in-plane orientation at the time of film formation in the plasma beam assist method, the position space of the ions on the ion beam side is considered. Focusing attention, it is an object of the present invention to provide a new ion beam film forming method capable of having a high degree of orientation exceeding the limit of the conventional technique.

【0007】[0007]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、イオンをビーム断面において一
方向に直線状に整列させた平行イオンビームを形成し、
これを成長膜面にアシスト照射することを特徴とする整
列イオンビームアシスト成膜法を提供する。
In order to solve the above problems, the present invention forms a parallel ion beam in which ions are linearly aligned in one direction in a beam cross section,
Provided is an aligned ion beam assisted film forming method characterized by irradiating the growth film surface with this assist.

【0008】[0008]

【実施の形態】この発明の整列イオンビームアシスト成
膜法は、上記の通り、プラズマビームアシスト法におけ
る面内配向の出現機構の詳細な検討から、入射イオンビ
ーム中のイオンの空間的位置配置が、配向度を向上させ
る上で重要であることを見出し、この知見からイオンビ
ームの平行性のみでなくビーム断面を考えて、イオンが
一方向に直線的に規則性を持って配列した整列ビームを
成長中の膜面にアシスト照射することを特徴としてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, according to the aligned ion beam assisted film forming method of the present invention, the spatial position of the ions in the incident ion beam is determined from the detailed examination of the appearance mechanism of the in-plane orientation in the plasma beam assisted method. , It was found to be important in improving the degree of orientation, and from this finding, not only the parallelism of the ion beam but also the beam cross section was considered, and an aligned beam in which the ions were linearly arranged in one direction was arranged. The feature is that the film surface during growth is irradiated with assist.

【0009】このような成膜法の実施の形態としては、
たとえば図1のような装置を例示することができる。図
1に例示したこの発明の整列イオンビームアシスト法で
は、成膜チャンバー内で基板ホルダー(2)の垂直下方
に整列イオンビーム発生源(1)を配置する構造となっ
ている。基板ホルダー(2)は水平面に対し任意角度
(θ)傾けることができる。基板の斜め下方には回転タ
ーゲットホルダー(3)を水平面から45°傾け配置す
る。チャンバー側壁に設けたレーザー光導入窓からはエ
キシマレーザーパルス(4)を導入し、ターゲット上で
焦点を結びターゲット物質を蒸発させる。ターゲットに
は目的とする成膜物質をペレット状に焼結したものが使
われる。生成した蒸気は基板上で析出し膜となって成長
するが、この時、成長中の膜面に整列イオンビームをア
シスト照射する。イオンの入射角は基板を水平面からθ
傾けることで、垂直入射(θ=0)から斜め入射の範囲
で結晶形を考慮して適切に選択する。
As an embodiment of such a film forming method,
For example, a device as shown in FIG. 1 can be exemplified. The aligned ion beam assist method of the present invention illustrated in FIG. 1 has a structure in which the aligned ion beam generation source (1) is arranged vertically below the substrate holder (2) in the film forming chamber. The substrate holder (2) can be tilted at an arbitrary angle (θ) with respect to the horizontal plane. A rotary target holder (3) is placed at an angle of 45 ° from the horizontal plane diagonally below the substrate. An excimer laser pulse (4) is introduced through a laser beam introduction window provided on the side wall of the chamber to focus on the target and evaporate the target material. A target is formed by sintering a target film-forming substance into pellets. The generated vapor is deposited on the substrate and grows as a film. At this time, the surface of the growing film is assisted by the aligned ion beam. The incident angle of ions is θ from the horizontal plane of the substrate.
By inclining, the crystal form is appropriately selected in the range of normal incidence (θ = 0) to oblique incidence.

【0010】図2に例示したのは、この発明で用いた整
列イオンビーム発生源(1)の断面図である。アシスト
したいイオンの原料ガスのプラズマ生成室(6)側に、
整列イオン形成電極(7)と微細スリット入りイオン引
出し電極(8)とで放物線上の電界分布を形成し、イオ
ン流に規則性を持たせる。イオン源は紙面垂直方向(y
軸方向)が電極長手方向となる。図3は、発生する整列
イオンビームを模式的に例示したものである。イオン
(13)はz軸方向に平行ビームとなって進行し、その
断面においてイオン(13)の飛跡は、y軸方向からみ
た時は直線上の秩序が存在するが、x軸方向からはラン
ダムでいかなる秩序もみられない状態である。このよう
な整列イオンビームを、図2に示したように、加速・減
速電極(9)で所定のエネルギーに調整し、かつ発散抑
制電極(10)で平行性を持たせ真空中を輸送し膜面に
照射するものである。
FIG. 2 is a sectional view of the aligned ion beam generator (1) used in the present invention. On the plasma generation chamber (6) side of the source gas of the ions to be assisted,
An electric field distribution on a parabola is formed by the aligned ion forming electrode (7) and the ion extracting electrode (8) with fine slits to give regularity to the ion flow. The ion source is perpendicular to the paper (y
The axial direction) is the electrode longitudinal direction. FIG. 3 schematically illustrates the generated aligned ion beam. The ions (13) travel as a parallel beam in the z-axis direction, and the tracks of the ions (13) in the cross section have linear order when viewed from the y-axis direction, but are random from the x-axis direction. So no order is seen. As shown in FIG. 2, such an aligned ion beam is adjusted to a predetermined energy by the acceleration / deceleration electrode (9) and is made parallel by the divergence suppression electrode (10) to transport in a vacuum. It irradiates the surface.

【0011】このような構造の装置による整列イオンビ
ームアシスト法では,イオンビーム側のイオンの位置空
間に規則性を持たせることで、斜め入射させた場合のみ
ならず、成長膜面に垂直にイオンビームを入射させた場
合にも、面内配向膜を得ることができる。その結果、従
来法では配向制御ができなかった結晶構造でも本発明の
方法では可能となり、配向膜の得られる物質群を広げる
ことができる。また、すでに従来のIBADで成膜可能
だった物質の場合にも、照射するビーム側のイオン配列
の規則性の存在により、アシストされてできる膜の配向
性は一層向上する。
In the aligned ion beam assisted method using the apparatus having such a structure, by making the position space of the ions on the ion beam side have regularity, not only when obliquely incident, but also when the ions are perpendicular to the growth film surface. The in-plane alignment film can be obtained even when the beam is incident. As a result, the method of the present invention enables even a crystal structure that cannot be controlled in orientation by the conventional method, and can broaden the group of substances from which the orientation film can be obtained. Further, even in the case of a substance which can be formed into a film by the conventional IBAD, the orientation of the film which is assisted is further improved due to the existence of the regularity of the ion arrangement on the irradiation beam side.

【0012】また、整列イオンビーム発生源を回転させ
ることにより、基板面内で結晶の整列方向を任意に回転
制御できる。またイオンビームを斜め入射させるとしば
しば結晶軸がビーム方向に傾く問題が生じるが、本方法
の垂直入射では結晶軸の傾きは無くなり、バッファー層
あるいは圧電性や電気光学効果を使う音響デバイス、光
デバイス等の機能膜の特性向上を望むことができる。
Further, by rotating the aligned ion beam generation source, it is possible to arbitrarily control the rotation direction of the crystal in the plane of the substrate. Also, when the ion beam is obliquely incident, the problem that the crystal axis tilts in the beam direction often occurs. However, the perpendicular incidence of this method eliminates the tilt of the crystal axis, and a buffer layer or an acoustic device or an optical device using piezoelectricity or electro-optic effect It is desired to improve the characteristics of the functional film such as.

【0013】そして、このような3軸高配向膜(単結晶
状薄膜)を種々の物質で得ることができるようになれ
ば、これらをバッファー層に応用することで、安価かつ
大型基板が入手可能なアモルファス(ガラス、溶融石
英)セラミックス、金属基板などを、高価な単結晶基板
の代わりに用いることも可能になる。また、3軸高配向
膜は粒界弱結合が問題となる超伝導膜のバッファー層、
キャリアの粒界散乱を抑制したい透明導電膜、多結晶S
i膜あるいはその機能に結晶異方性を有する機能膜(磁
性薄膜、強誘電体膜)等への広範な応用も期待できる。
If it becomes possible to obtain such a triaxial high orientation film (single crystal thin film) with various substances, an inexpensive and large substrate can be obtained by applying these materials to the buffer layer. Amorphous (glass, fused silica) ceramics, metal substrates, etc. can be used instead of expensive single crystal substrates. In addition, the triaxial high orientation film is a buffer layer of a superconducting film in which weak grain boundary bonding is a problem
A transparent conductive film, polycrystalline S for suppressing carrier grain boundary scattering
Wide application to the i film or a functional film (magnetic thin film, ferroelectric film) having crystal anisotropy in its function can be expected.

【0014】整列イオンビームは、この発明においては
代表的には不活性ガス、反応性ガス等からの比較的低エ
ネルギー(数eV〜数100eV)のイオンビームが用
いられるが、これらに限定されることはない。ところ
で、この発明は整列イオンビームアシストによる成膜法
に関するものであり、従って膜物質の基板状での堆積法
はレーザー法に限る必要はない。真空蒸着、イオンビー
ムスパッタなどのどの方法でも良く、また整列イオンビ
ーム発生法も、ここに例示したイオン源に限定されるも
のではない。
As the aligned ion beam, an ion beam of relatively low energy (several eV to several 100 eV) from an inert gas, a reactive gas or the like is typically used in the present invention, but the invention is not limited thereto. There is no such thing. By the way, the present invention relates to a film formation method by means of aligned ion beam assist, and therefore the method of depositing a film substance on a substrate is not limited to the laser method. Any method such as vacuum deposition or ion beam sputtering may be used, and the aligned ion beam generation method is not limited to the ion source exemplified here.

【0015】以下、実施例を示し、さらに詳しくこの発
明の実施の形態について説明する。
Examples will be shown below to describe the embodiments of the present invention in more detail.

【0016】[0016]

【実施例】【Example】

(実施例1)多結晶金属基板(ハステロイ)上にSrT
iO3 (ペロブスカイト構造)を成長させながら整列イ
オンビームを成長膜面に垂直に入射アシストした。ハス
テロイ基板は、たとえば図4(A)(B)として例示す
ることのできる構造の電極に組み込んだ。スパッタ装置
でAr+ イオン流が整列し、垂直に基板に入射する基板
電極(Vs)の領域、すなわち2枚の補助電極(Va)
の中心線がVsに交差する領域に取り付けた。主な成膜
条件はVs,Va;ー200V,D;〜10mm,L;
〜70mm,作用ガス Ar−2%O2 (4x10-3
orr)、ターゲット SrTiO3 焼結板(100
φ)、ターゲットへのRFパワー 〜150Wである。
得られた膜のX線回折の結果を図5に示した。(11
1)、(222)のピークしか現れず、(111)面を
単一配向面としていることがわかる。さらに、(11
0)面のX線極点図測定の結果を図6に示した。また、
整列イオンビーム源を30°回転して配置し、同じよう
にアシスト成膜した膜の極点図も図7に示した。これら
の図から、成長した結晶もイオン配列の回転角30°だ
け基板上で面内回転していることがわかる。これはSr
TiO3 の(221)面間チャネリングに、整列Ar+
イオンが入射した結果生じたことであり、図8はその様
子を模式的に示している。イオンを斜めに入射させる従
来のイオンアシスト、またはイオンの直線上の秩序のな
い単なる平行ビームの垂直入射アシストでは、この物質
の面内配向は得られない。ペロブスカイトはその圧電性
などが結晶方位依存性を有するため、得られた3軸配向
膜は種々の機能薄膜として用途が期待できる。
(Example 1) SrT on a polycrystalline metal substrate (Hastelloy)
While growing iO 3 (perovskite structure), an assisted injection of an aligned ion beam was performed perpendicularly to the growth film surface. The Hastelloy substrate was incorporated in an electrode having a structure that can be illustrated as, for example, FIGS. A region of the substrate electrode (Vs) in which the Ar + ion flow is aligned in the sputtering device and is vertically incident on the substrate, that is, two auxiliary electrodes (Va)
Was attached to the area where the center line of Vs intersects Vs. The main film forming conditions are Vs, Va; -200V, D; -10 mm, L;
~ 70 mm, working gas Ar-2% O 2 (4x10 -3 T
orr), target SrTiO 3 sintered plate (100
φ), RF power to target ~ 150W.
The result of X-ray diffraction of the obtained film is shown in FIG. (11
Only the peaks of 1) and (222) appear, and it can be seen that the (111) plane is a single orientation plane. Furthermore, (11
The result of the X-ray pole figure measurement of the (0) plane is shown in FIG. Also,
FIG. 7 also shows a pole figure of a film in which the aligned ion beam source was rotated by 30 ° and the film was similarly assisted. From these figures, it can be seen that the grown crystal also rotates in-plane on the substrate by the rotation angle of the ion arrangement of 30 °. This is Sr
Aligned Ar + for (221) inter-channeling of TiO 3
This is a result of the incidence of ions, and FIG. 8 schematically shows the situation. In-plane orientation of this substance cannot be obtained by conventional ion assist in which ions are obliquely incident, or normal incident assist of parallel beams having no linear order of ions. Since the perovskite has a crystal orientation dependency in its piezoelectricity, the obtained triaxial orientation film can be expected to be used as various functional thin films.

【0017】(実施例2)CrN膜(NaCl構造)に
ついても実施例1と同様の実験を行った。作用ガスとし
てArー40%N2 、ターゲットに金属Cr(100
φ)を使った以外は実施例1と同じ条件である。整列イ
オンビームをアシスト成膜すると(220)が単一配向
面となり、ビームの中のイオンの整列方向にそろった面
内配向を示した。すなわち、図9に示したように、イオ
ンビームの入射角度を、基板に対して斜めから垂直へと
変えると、面内で結晶が90°回転していることがわか
る。これは、結晶の(200)面間へ整列イオンがチャ
ネリング入射するために起こっていて、従来のIBAD
法では得られない面内方位配列である。このことから、
バッファー層、薄膜抵抗体などへの用途が期待できる。
なお、図9においては、CrN単位胞の立面図(14)
CrN単位胞の平面図(15)および長手方向が図2の
y軸方向に対応する基板面(16)を模式的に示してい
る。
Example 2 The same experiment as in Example 1 was conducted on the CrN film (NaCl structure). Ar-40% N 2 as working gas, metallic Cr (100
The conditions are the same as in Example 1 except that φ) is used. When the aligned ion beam was assisted to form a film, (220) had a single alignment plane, which showed in-plane alignment aligned with the alignment direction of the ions in the beam. That is, as shown in FIG. 9, it can be seen that when the incident angle of the ion beam is changed from oblique to perpendicular to the substrate, the crystal is rotated by 90 ° in the plane. This occurs because aligned ions are channeled and injected between the (200) planes of the crystal.
This is an in-plane orientation array that cannot be obtained by the method. From this,
Expected applications include buffer layers and thin film resistors.
In FIG. 9, an elevation view of the CrN unit cell (14)
The top view (15) of a CrN unit cell and the board | substrate surface (16) whose longitudinal direction corresponds to the y-axis direction of FIG. 2 are shown typically.

【0018】(実施例3)YSZ膜(イットリア安定化
ZrO2 )[CaF2 構造]についても実施例1と同様
の実験を行った。ターゲットにY2 3 8mol%ーZ
rO2 (YSZ)焼結板(100φ)を使った以外は実
施例1と同じ条件である。YSZはイオン照射下で(2
00)面が基板に平行に優先配向する。またイオンの斜
め入射(最適条件は基板面に対し55度)により[11
1]軸方向のイオンチャネリングで強い面内配向が生じ
る。しかしながら、従来のIBADでは基板に垂直入射
した場合面内配向は得られない。それに対して、整列イ
オンビームの場合、(110)面間のイオンチャネリン
グが生じ、図10のように面内配向が得られる。この場
合もイオン源を45度回転してアシスト成膜すると、図
11のようにYSZの結晶も基板上で45度回転して配
列させることができる。
(Example 3) The same experiment as in Example 1 was conducted for the YSZ film (yttria-stabilized ZrO 2 ) [CaF 2 structure]. Y 2 O 3 8 mol% -Z as target
The conditions are the same as in Example 1 except that a rO 2 (YSZ) sintered plate (100φ) was used. YSZ under ion irradiation (2
The (00) plane is preferentially oriented parallel to the substrate. In addition, when the ions are obliquely incident (the optimum condition is 55 degrees to the substrate surface),
1] A strong in-plane orientation occurs due to ion channeling in the axial direction. However, in the conventional IBAD, in-plane orientation cannot be obtained when vertically incident on the substrate. On the other hand, in the case of an aligned ion beam, ion channeling between (110) planes occurs, and in-plane orientation is obtained as shown in FIG. Also in this case, when the ion source is rotated by 45 degrees and assisted film formation, YSZ crystals can be rotated by 45 degrees and arranged on the substrate as shown in FIG.

【0019】高温超伝導バッファー層として金属基板に
この3軸配向YSZ膜を施し、その上にYBa2 Cu3
7 超伝導膜をエピタキシャル成長させることで臨界温
度〜90K、臨海電流〜105 A/cm2 (OT、77
K)の高特性が得られる。また、以上の実施例において
用いたイオンビームのイオンの整列性、平行度をさらに
向上させることで、得られる3軸配向膜の配向度は格段
と強くなっていくと考えられる。
This triaxially oriented YSZ film was applied to a metal substrate as a high temperature superconducting buffer layer, and YBa 2 Cu 3 was formed on it.
By epitaxially growing an O 7 superconducting film, a critical temperature of 90 K, a critical current of 10 5 A / cm 2 (OT, 77
The high characteristics of K) are obtained. Further, it is considered that by further improving the ion alignment and parallelism of the ion beam used in the above Examples, the degree of orientation of the obtained triaxial orientation film becomes significantly stronger.

【0020】[0020]

【発明の効果】以上詳しく説明したとおり、この発明の
整列イオンビームアシスト成膜法により、従来のIBA
Dでは配向制御できなかった結晶構造の成膜が可能とな
る。また、従来法で成膜可能だった物質の場合にも、照
射するビーム側のイオン配列の規則性の存在により、ア
シストされてできる膜の配向性は一層向上する。さら
に、3軸高配向膜が種々の物質で得られることで、それ
ぞれの機能膜の用途を広範に広げることができる。
As described in detail above, according to the aligned ion beam assisted film forming method of the present invention, the conventional IBA
With D, it is possible to form a film having a crystal structure whose orientation cannot be controlled. Further, even in the case of a substance that can be formed into a film by a conventional method, the orientation of the film formed by being assisted is further improved due to the existence of the regularity of the ion arrangement on the irradiation beam side. Furthermore, since the triaxial highly oriented film can be obtained from various substances, the application of each functional film can be widely spread.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の整列イオンビームアシスト成膜法の
装置構成を例示した概要図である。
FIG. 1 is a schematic view illustrating an apparatus configuration of an aligned ion beam assisted film forming method of the present invention.

【図2】この発明の整列イオンビームアシスト成膜法に
おける整列イオンビーム発生源を例示した概要図であ
る。
FIG. 2 is a schematic view illustrating an aligned ion beam generation source in the aligned ion beam assisted film forming method of the present invention.

【図3】この発明の整列イオンビームアシスト成膜法に
おける整列イオンビームの概念を例示した説明図であ
る。
FIG. 3 is an explanatory view illustrating the concept of an aligned ion beam in the aligned ion beam assisted film forming method of the present invention.

【図4】実施例としてのハステロイ基板の電極取り付け
の様子を例示した概要図である。
FIG. 4 is a schematic view illustrating an example of how electrodes are attached to a Hastelloy substrate as an example.

【図5】実施例としてのSrTiO3 膜のX線回折チャ
ートを例示した図である。
FIG. 5 is a view exemplifying an X-ray diffraction chart of a SrTiO 3 film as an example.

【図6】実施例としてのSrTiO3 膜の(110)面
のX線極点図を例示した図である。
FIG. 6 is a view exemplifying an X-ray pole figure of the (110) plane of a SrTiO 3 film as an example.

【図7】実施例としてのSrTiO3 膜結晶の30度の
基板面内回転を例示した(110)面のX線極点図であ
る。
FIG. 7 is an X-ray pole figure of the (110) plane exemplifying 30-degree in-plane rotation of the SrTiO 3 film crystal as an example.

【図8】実施例としてのSrTiO3 結晶の[111]
方向からみた原子配置とイオンチャネリング面{22
1}との関係を例示した説明図である。
FIG. 8: [111] of SrTiO 3 crystal as an example
Atomic arrangement viewed from the direction and ion channeling surface {22
It is an explanatory view illustrating the relationship with 1}.

【図9】実施例としてのCrN膜結晶基板の配列方位を
例示した説明図と、CrN膜の(110)面のX線極点
図を例示した図である。
FIG. 9 is an explanatory diagram illustrating an arrangement orientation of a CrN film crystal substrate as an example, and a diagram illustrating an X-ray pole figure of the (110) plane of the CrN film.

【図10】実施例としての整列イオンビーム垂直入射の
様子を例示するYSZ(111)面のX線極点図であ
る。
FIG. 10 is an X-ray pole figure of the YSZ (111) plane illustrating the state of vertical incidence of an aligned ion beam as an example.

【図11】実施例としての整列イオンビーム発生源を4
5度回転してアシスト入射した場合のYSZ(111)
面のX線極点図で、結晶の45度基板面内回転を例示し
た説明図である。
FIG. 11 shows four aligned ion beam generation sources as an example.
YSZ (111) when rotated by 5 degrees and assisted
It is an X-ray pole figure of a plane and is an explanatory view which illustrated 45 degrees in-plane rotation of a crystal board.

【符号の説明】[Explanation of symbols]

1 整列イオンビーム発生源 2 基板ホルダー 3 回転ターゲット 4 レーザービーム 5 真空排気孔 6 プラズマ生成室 7 整列イオン形成電極 8 微細スリット入りイオン引出し電極 9 加速・減速イオン引出し電極 10 発散抑制電極 11 ガス導入孔 12 フィラメント 13 イオン 14 CrN単位胞の立面図 15 CrN単位胞の平面図 16 長手方向が図2のy軸方向に対応する基板面 1 aligned ion beam generation source 2 substrate holder 3 rotating target 4 laser beam 5 vacuum exhaust hole 6 plasma generation chamber 7 aligned ion forming electrode 8 ion extraction electrode with fine slit 9 acceleration / deceleration ion extraction electrode 10 divergence suppression electrode 11 gas introduction hole 12 Filament 13 Ion 14 Elevation of CrN unit cell 15 Plan view of CrN unit cell 16 Substrate surface whose longitudinal direction corresponds to the y-axis direction of FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 イオンビーム断面において一方向に直線
状に整列させた平行イオンビームを形成し、これを成長
膜面にアシスト照射することを特徴とする整列イオンビ
ームアシスト成膜法。
1. An aligned ion beam assisted film forming method, which comprises forming a parallel ion beam linearly aligned in one direction in an ion beam cross section and irradiating the growth film surface with assist.
JP6355696A 1996-03-19 1996-03-19 Aligning ion beam assisting film forming method Pending JPH09256152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6355696A JPH09256152A (en) 1996-03-19 1996-03-19 Aligning ion beam assisting film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6355696A JPH09256152A (en) 1996-03-19 1996-03-19 Aligning ion beam assisting film forming method

Publications (1)

Publication Number Publication Date
JPH09256152A true JPH09256152A (en) 1997-09-30

Family

ID=13232618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6355696A Pending JPH09256152A (en) 1996-03-19 1996-03-19 Aligning ion beam assisting film forming method

Country Status (1)

Country Link
JP (1) JPH09256152A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186680A (en) * 2002-11-19 2004-07-02 Seiko Epson Corp Piezoelectric device, liquid discharge head, ferroelectric device, and electronic device, and their manufacturing method
JP2004207692A (en) * 2002-12-09 2004-07-22 Seiko Epson Corp Piezoelectric device, liquid discharge head, ferroelectric device, electronic device, and method for manufacturing them
US6984843B2 (en) 2002-03-25 2006-01-10 Seiko Epson Corporation Board for electronic device, electronic device, ferroelectric memory, electronic apparatus, ink-jet recording head, and ink-jet printer
US7522388B2 (en) 2004-01-13 2009-04-21 Seiko Epson Corporation Magnetoresistance effect element having a lower magnetic layer formed over a base substrate through a transition metal oxide layer having a predetermined orientation plane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984843B2 (en) 2002-03-25 2006-01-10 Seiko Epson Corporation Board for electronic device, electronic device, ferroelectric memory, electronic apparatus, ink-jet recording head, and ink-jet printer
JP2004186680A (en) * 2002-11-19 2004-07-02 Seiko Epson Corp Piezoelectric device, liquid discharge head, ferroelectric device, and electronic device, and their manufacturing method
JP4507565B2 (en) * 2002-11-19 2010-07-21 セイコーエプソン株式会社 Piezoelectric device manufacturing method, liquid discharge head manufacturing method, and droplet discharge apparatus manufacturing method
JP2004207692A (en) * 2002-12-09 2004-07-22 Seiko Epson Corp Piezoelectric device, liquid discharge head, ferroelectric device, electronic device, and method for manufacturing them
JP4507564B2 (en) * 2002-12-09 2010-07-21 セイコーエプソン株式会社 Method for manufacturing piezoelectric device, method for manufacturing liquid discharge head, and method for manufacturing liquid discharge apparatus
US7522388B2 (en) 2004-01-13 2009-04-21 Seiko Epson Corporation Magnetoresistance effect element having a lower magnetic layer formed over a base substrate through a transition metal oxide layer having a predetermined orientation plane

Similar Documents

Publication Publication Date Title
US5650378A (en) Method of making polycrystalline thin film and superconducting oxide body
EP1178129B1 (en) Polycrystalline thin film and method for preparation thereof, and superconducting oxide and method for preparation thereof
KR100545547B1 (en) Method of producing polycrystalline thin film and method of producing an oxide superconducting element
Garrido et al. A review of typical PLD arrangements: Challenges, awareness, and solutions
JP2996568B2 (en) Method for producing polycrystalline thin film and method for producing oxide superconducting conductor
JPH09256152A (en) Aligning ion beam assisting film forming method
JP3447077B2 (en) Thin film laminate, oxide superconducting conductor, and method for producing the same
JP3771012B2 (en) Oxide superconducting conductor
JP2004156057A (en) Method for depositing carbon thin film, and carbon thin film obtained thereby
JP2670391B2 (en) Polycrystalline thin film manufacturing equipment
JP2721595B2 (en) Manufacturing method of polycrystalline thin film
JP3415888B2 (en) Apparatus and method for producing polycrystalline thin film and method for producing oxide superconducting conductor
JP3877903B2 (en) Thin film formation method
JP3856878B2 (en) Method for producing polycrystalline thin film
EP0591588B1 (en) Method of making polycrystalline thin film and superconducting oxide body
JP2001114594A (en) Polycrystal thin film and method for producing the same and oxide superconductive conductor and method for producing the same
JP3251034B2 (en) Oxide superconductor and method of manufacturing the same
JP2614948B2 (en) Polycrystalline thin film
JP3459092B2 (en) Method for producing polycrystalline thin film and method for producing oxide superconducting conductor
JP3444917B2 (en) Method and apparatus for producing polycrystalline thin film and method for producing oxide superconducting conductor having polycrystalline thin film
JPH05282932A (en) Oxide superconductive conductor and manufacture thereof
JP3415874B2 (en) Manufacturing method of oxide superconducting conductor
JPH0747816B2 (en) Method for forming polycrystalline thin film
JP2009221572A (en) Biaxial oriented thin film for oxide super-conducting wire, and its manufacturing method
KR100222581B1 (en) Large surface area diamond films manufacturing apparatus and method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050812

A131 Notification of reasons for refusal

Effective date: 20060117

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060316

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060516

Free format text: JAPANESE INTERMEDIATE CODE: A02