JPH09243793A - X-ray or gamma-ray shielding equipment - Google Patents
X-ray or gamma-ray shielding equipmentInfo
- Publication number
- JPH09243793A JPH09243793A JP8190596A JP8190596A JPH09243793A JP H09243793 A JPH09243793 A JP H09243793A JP 8190596 A JP8190596 A JP 8190596A JP 8190596 A JP8190596 A JP 8190596A JP H09243793 A JPH09243793 A JP H09243793A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- shielding
- passage
- rays
- partition plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- X-Ray Techniques (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、X線又はγ線の遮
蔽設備に係り、特に、電子ビーム照射時等に発生する遮
蔽通路を経て開口部から外部に漏洩するX線又はγ線を
遮蔽するための遮蔽設備に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to X-ray or γ-ray shielding equipment, and more particularly to shielding X-rays or γ-rays leaking from an opening through a shielding passage generated during electron beam irradiation or the like. Shielding equipment for
【0002】[0002]
【従来の技術】従来、X線又はγ線を遮蔽する場合、線
源の周囲をコンクリート、鉛、鉄などの遮蔽壁で囲むこ
とでX線又はγ線を壁内で減衰させ、外部への漏洩を防
いでいる。しかし、X線又はγ線発生時にも物質の出入
りがあるために、完全に密閉出来なく、開口部分がある
場合、例えば発生源が製造ラインの工程の一部であっ
て、製造品を開口部から取り出す場合や、発生源が排ガ
スや排出物の連続処理工程の一部であって、処理物を開
口部から取り出すような場合、あるいは遮蔽設備内の換
気口に対しては、開口部から外部に漏洩するX線又はγ
線を別の方法で遮蔽しなければならない。一般に電磁波
であるX線及びγ線は、物質内を透過する際に減衰する
他に、線源からの距離が離れるほど弱くなり、また物質
表面で反射する毎に減衰する。したがって、開口部分か
ら漏洩するX線又はγ線を遮蔽するためには、開口部に
至る通路の外壁をX線又はγ線が漏洩しないような遮蔽
壁とし、かつ通路の距離を長くし、さらに通路を屈曲さ
せることで、X線又はγ線を減衰させる方法が用いられ
ている。2. Description of the Related Art Conventionally, in the case of shielding X-rays or γ-rays, by surrounding the radiation source with a shielding wall made of concrete, lead, iron or the like, the X-rays or γ-rays are attenuated in the wall so as to Prevents leakage. However, when X-rays or γ-rays are generated, substances can come and go, so that it is not possible to completely seal and there is an opening. For example, the source is a part of the process of the production line, For example, when the product is taken out from the opening, or when the source is part of the continuous treatment process of exhaust gas and effluent and the processed product is taken out from the opening, X-ray or γ leaking into
The wire must be shielded in another way. In general, X-rays and γ-rays, which are electromagnetic waves, are attenuated when they pass through a substance, and become weaker as the distance from the radiation source increases, and attenuated each time they are reflected on the substance surface. Therefore, in order to shield the X-rays or γ-rays leaking from the opening, the outer wall of the passage leading to the opening is made a shielding wall that does not leak X-rays or γ-rays, and the distance of the passage is increased. A method of attenuating X-rays or γ-rays by bending the passage is used.
【0003】この方法を用いた遮蔽通路(X線又はγ線
を遮蔽し得る壁で囲まれた屈曲通路)の一例を、図7に
示す。また、大型でコストの高い遮蔽扉9(図8−a)
の代わりに、図8−bのように入口通路を長くとって曲
げた上で、通常のドアを使用する遮蔽設備もある。遮蔽
通路部分での距離と反射による減衰の効果(以下減衰率
という。遮蔽部分の入口のX線又はγ線強度を、I IN
、出口をIout とすれば、減衰率=I IN /Iout 。
例えば、遮蔽部分の入口と出口で強度が100分の1に
なるとき、この遮蔽での減衰率は100である。)を計
算する場合、次の式1のような経験式が用いられてお
り、遮蔽通路部分の設計も式1によって行われている。 ここで、I0 は線源での強度、Iは開口部分での強度、
Lは線源から開口部分までの距離、Rは反射1回あたり
の減衰率、Nは線源から開口部分までの反射回数であ
る。つまり開口部でのX線又はγ線の減衰率ηは、線源
からの距離の2乗に比例し、反射回数の指数乗に比例す
る(式2)。 FIG. 7 shows an example of a shielding passage (a curved passage surrounded by a wall capable of shielding X-rays or γ-rays) using this method. Also, a large and costly shielding door 9 (Fig. 8-a)
Instead of the above, there is also a shielding facility that uses an ordinary door after bending the entrance passage with a long length as shown in FIG. The effect of attenuation due to the distance and reflection at the shielded passage portion (hereinafter referred to as the attenuation rate.
, If the outlet is Iout, then the attenuation rate = I IN / Iout.
For example, when the strength becomes 1/100 at the entrance and the exit of the shielding part, the attenuation rate at this shielding is 100. ), An empirical formula such as the following formula 1 is used, and the design of the shield passage portion is also performed by formula 1. Where I 0 is the intensity at the radiation source, I is the intensity at the aperture,
L is the distance from the radiation source to the aperture, R is the attenuation rate per reflection, and N is the number of reflections from the radiation source to the aperture. That is, the attenuation rate η of X-rays or γ-rays at the opening is proportional to the square of the distance from the radiation source, and is proportional to the exponential power of the number of reflections (equation 2).
【0004】X線又はγ線の減衰率は式2で示されるよ
うに距離と反射回数に依存するため、遮蔽通路を持つ遮
蔽設備では、図8−aの方式に比べて遮蔽に要するスペ
ースと資材が大幅に増加する結果となる(図8のaとb
を比較すると分かりやすい)。X線又はγ線の発生量が
増えるほど、またエネルギーが高くなるほど、遮蔽に必
要な距離と反射回数が増えるため、遮蔽に要するスペー
スと資材の増加の割合も高くなる。また、設備内に出入
りする物質の量が増えれば、遮蔽通路の断面積が大きく
なり、やはりスペースと資材の増加の割合が高くなる。
スペースの増加は設備配置上の障害になり、資材の増加
は遮蔽設備のコスト上昇ばかりではなく、重量増加によ
る基礎工事のコスト上昇にもつながる。Since the attenuation rate of X-rays or γ-rays depends on the distance and the number of reflections as shown by the equation 2, in the shielding facility having the shielding passage, the space required for shielding is larger than that in the system of FIG. This results in a large increase in materials (a and b in Fig. 8).
It is easy to understand by comparing). As the amount of generated X-rays or γ-rays increases and the energy increases, the distance required for shielding and the number of reflections increase, and the ratio of increase in space and materials required for shielding also increases. Further, as the amount of substances entering and exiting the facility increases, the cross-sectional area of the shielding passage increases, and the ratio of increase in space and materials also increases.
An increase in space will be an obstacle to equipment layout, and an increase in materials will not only increase the cost of shielding equipment, but also increase the cost of foundation work due to the increase in weight.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解消し、遮蔽通路部分に要するスペースと
資材を大幅に削減できるX線又はγ線遮蔽設備を提供す
ることを課題とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide an X-ray or γ-ray shield facility that solves the above-mentioned problems of the prior art and can significantly reduce the space and material required for the shield passage. To do.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に、本発明では、X線又はγ線の発生源を、通路を介し
て開口部を持つ遮蔽壁で囲み、該遮蔽壁で囲まれた通路
を屈曲させたX線又はγ線遮蔽設備において、前記遮蔽
壁で囲まれた通路の少なくとも一部が、その断面を仕切
板及び/又は内部隔壁によって複数に分割されているこ
ととしたものである。本発明のX線又はγ線遮蔽設備
は、電子ビーム排ガス処理法等に用いた電子ビーム照射
時に発生するX線又はγ線の遮蔽設備に用いることがで
きる。In order to solve the above-mentioned problems, in the present invention, a source of X-rays or γ-rays is surrounded by a shielding wall having an opening through a passage, and is surrounded by the shielding wall. In an X-ray or γ-ray shielding facility in which the passage is bent, at least a part of the passage surrounded by the shielding wall is divided into a plurality of sections by a partition plate and / or an internal partition wall. Is. The X-ray or γ-ray shielding equipment of the present invention can be used for shielding X-rays or γ-rays generated during electron beam irradiation used in the electron beam exhaust gas treatment method and the like.
【0007】[0007]
【発明の実施の形態】上記のように、本発明では、屈曲
した遮蔽通路断面を仕切板及び/又は内部隔壁によって
複数に分割するものであり、(1)屈曲した遮蔽通路断
面を分割することで減衰効率が向上することと、(2)
分割する仕切板又は内部隔壁には十分な遮蔽能力(厚さ
と密度)を必要としないという2点に基づいた発明であ
る。これまで、遮蔽設備の設計に用いられてきた方法
(式1による計算)では、通路を分割しても、線源から
の距離と反射回数が変わらないため、減衰率は変わらな
いと考えられていた。これに対して、本発明者らは、屈
曲した遮蔽通路断面を、仕切板及び/又は内部隔壁によ
って複数に分割することで、X線又はγ線減衰率を高め
ることができることを見いだした。さらに、仕切板又は
内部隔壁が、X線又はγ線をほとんど遮蔽できない厚さ
でも、減衰率を高める効果があることを確認した。BEST MODE FOR CARRYING OUT THE INVENTION As described above, in the present invention, the curved shield passage cross section is divided into a plurality of sections by the partition plate and / or the internal partition wall, and (1) the curved shield passage cross section is divided. The damping efficiency is improved by (2)
It is an invention based on two points that a partitioning plate or an internal partition to be divided does not require sufficient shielding ability (thickness and density). In the method used to design shielding equipment (calculation by Equation 1), it is considered that the attenuation factor does not change even if the passage is divided because the distance from the radiation source and the number of reflections do not change. It was On the other hand, the present inventors have found that the X-ray or γ-ray attenuation rate can be increased by dividing the bent shield passage section into a plurality of sections by the partition plate and / or the internal partition wall. Furthermore, it was confirmed that the partition plate or the internal partition wall has an effect of increasing the attenuation rate even when the partition plate or the internal partition wall has a thickness that hardly shields X-rays or γ-rays.
【0008】図1に、本発明の仕切板又は内部隔壁によ
り通路断面を分割した一例を示す。図1において、1は
X線又はγ線入口、2は同出口であり、3は遮蔽通路外
壁で、4が仕切り板又は内部隔壁である。図2は、減衰
率と通路断面積及び反射点からの距離との関係を説明す
るためのものである。本発明者らは、遮蔽通路でのX線
又はγ線減衰率は、通路断面積と屈曲部の反射点からの
距離に対して、次のような関係が成り立つことを見いだ
した。図2のような遮蔽通路において、曲がり部分
P1 、P2 、・・・、Pn でのX線強度をそれぞれ
I1 、I2 、・・・、In とすれば、Pn でのX線強度
In は、1つ前の曲がり部分Pn-1 での強度In-1 をも
とに、以下の式で計算できる(図2ではn=4)。 式3でSは通路断面積、Ln は通路曲がり部分Pn-1 か
らの距離、αとβは通路断面形状に依存する定数であ
り、(α×L2 /S+β)が曲がり1回当たりの減衰率
である。FIG. 1 shows an example in which the passage cross section is divided by the partition plate or internal partition of the present invention. In FIG. 1, 1 is an X-ray or γ-ray entrance, 2 is the same exit, 3 is an outer wall of a shield passage, and 4 is a partition plate or an internal partition wall. FIG. 2 is for explaining the relationship between the attenuation rate, the passage cross-sectional area, and the distance from the reflection point. The present inventors have found that the X-ray or γ-ray attenuation rate in the shielded passage has the following relationship with the passage cross-sectional area and the distance from the reflection point of the bent portion. In blocking passage as in FIG. 2, the bending portion P 1, P 2, ···, I 1, I 2 X-ray intensity at P n respectively, ..., if I n, in P n The X-ray intensity I n can be calculated by the following formula based on the intensity I n-1 at the previous curved portion P n-1 (n = 4 in FIG. 2). In Formula 3, S is the passage cross-sectional area, L n is the distance from the passage bent portion P n-1 , α and β are constants depending on the passage cross-sectional shape, and (α × L 2 / S + β) Is the decay rate of.
【0009】つまり式3によれば、遮蔽通路の曲がり部
分での減衰は、反射点からの距離の2乗に比例し、通路
の断面積に反比例することがわかる。この作用に着目す
れば、反射の回数と距離を増やす以外にも通路断面積を
小さくすることで減衰効果を上げることができる。例え
ば遮蔽通路断面を図1のように仕切板で9等分したとす
れば、曲がり1回当たり減衰効果が約9倍になる。した
がって、曲がりが5回の遮蔽通路であれば、遮蔽通路の
体積がほとんど変わらずに、遮蔽効果をほぼ60,00
0倍(=95 )にすることができる。また、この際、仕
切板又は内部隔壁の厚さは、透過するX線又はγ線に対
する半価層(X線又はγ線の強度を半分に減衰させるの
に必要な厚さ)の約20分の1以上あれば、減衰効果が
得られることが実験から明らかになった。これにより、
仕切り板又は内部隔壁の厚さを、非常に薄くすることが
できたことが、本発明のもう一つの重要な発見である。That is, according to the equation 3, it is understood that the attenuation at the curved portion of the shielded passage is proportional to the square of the distance from the reflection point and is inversely proportional to the sectional area of the passage. Focusing on this action, the damping effect can be enhanced by reducing the passage cross-sectional area in addition to increasing the number of reflections and the distance. For example, if the cross section of the shielding passage is divided into nine equal parts by the partition plate as shown in FIG. 1, the damping effect per bending is about nine times. Therefore, if the curved passage has five bends, the volume of the shielded passage hardly changes, and the shielding effect is almost 60,000.
It can be 0 times (= 9 5). Further, at this time, the thickness of the partition plate or the internal partition wall is about 20 minutes of the half-value layer (thickness required to attenuate the intensity of X-rays or γ-rays to half) for the transmitted X-rays or γ-rays. It has been clarified from the experiment that the damping effect can be obtained if 1 or more. This allows
It was another important finding of the present invention that the thickness of the partition plate or the internal partition wall could be made very thin.
【0010】[0010]
【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 図3はX線源(電子ビーム発生装置)5と、X線の遮蔽
設備である。この設備の遮蔽通路内(図3の斜線部分)
6に、図4のように床面と平行に仕切板4を設置し、発
生するX線の最大エネルギーを0.5MeVと0.8M
eVの2通りで試験を行った。仕切板は、幅900m
m、高さ3,000mmの通路の床から、1,000m
mの高さに設置し、通路を2:1の断面積に分割した。
仕切板としては、表1に示したように、アルミ・鉄・鉛
についてそれぞれ板厚を変えて測定した。表1中の対半
価層比とは、表2に示した半価層に対する仕切板の厚さ
比である。The present invention will be described below in more detail with reference to examples. Example 1 FIG. 3 shows an X-ray source (electron beam generator) 5 and X-ray shielding equipment. Inside the shielded passage of this equipment (shaded area in Figure 3)
4, the partition plate 4 is installed parallel to the floor surface as shown in FIG. 4, and the maximum energy of the generated X-rays is 0.5 MeV and 0.8M.
The test was performed in two ways of eV. The partition plate is 900m wide
m, 1,000m from the floor of the 3,000mm high passage
It was installed at a height of m and the passage was divided into a cross-sectional area of 2: 1.
As the partition plate, as shown in Table 1, aluminum, iron, and lead were measured with different plate thicknesses. The ratio to the half-value layer in Table 1 is the thickness ratio of the partition plate to the half-value layer shown in Table 2.
【0011】[0011]
【表1】 [Table 1]
【0012】[0012]
【表2】 注:半価層算出のための物質の全吸収係数は「放射線」(共立出版)、 また密度は「理科年表」(丸善)より引用した。[Table 2] Note: The total absorption coefficient of the substance for calculating the half-value layer is quoted from "Radiation" (Kyoritsu Publishing), and the density is quoted from "Science Chronology" (Maruzen).
【0013】遮蔽通路部分入口のX線強度(I1 )に対
して、遮蔽通路部分出口のX線強度(I3 )を測定し、
減衰率η(η=I1 /I3 )によって遮蔽の効果を比較
した。対半価層比に対する減衰率をグラフにしたもの
が、図5である。仕切板を設置する前(断面積2.7m
2 )の減衰率を直線(a)で表し、〇は仕切板設置後の
上側の通路(断面積1.8m2 )での減衰率、△は仕切
板設置後の下側(断面積0.9m2 )の通路での減衰率
を示す。図5を見ると、線源からの距離と反射回数が同
じ測定場所であっても、仕切られた通路の断面積が、小
さくなるにつれて減衰率が大きくなり、仕切板での遮蔽
通路分割によって、遮蔽効果が向上していることがわか
る。With respect to the X-ray intensity (I 1 ) at the entrance of the shield passage portion, the X-ray intensity (I 3 ) at the outlet of the shield passage portion was measured,
The shielding effect was compared by the attenuation rate η (η = I 1 / I 3 ). FIG. 5 is a graph showing the attenuation rate with respect to the half-value layer ratio. Before installing the partition plate (cross section 2.7m
2 ) is represented by the straight line (a), ◯ is the attenuation rate in the upper passage (cross-sectional area 1.8 m 2 ) after the partition plate is installed, and △ is the lower side (cross-sectional area 0. It shows the damping rate in the 9 m 2 ) passage. As shown in FIG. 5, even at the measurement location where the distance from the radiation source and the number of reflections are the same, the attenuation rate increases as the sectional area of the partitioned passage becomes smaller, and due to the shielding passage division by the partition plate, It can be seen that the shielding effect is improved.
【0014】さらに、1回分の反射減衰に相当する減衰
率(I1 /I2 )を図6に示すが、このグラフから、式
3に示したような関係式を得ることができる。また、図
5から仕切板の板厚を、半価層の10分の1(X線最大
エネルギー0.5MeVに対する厚さ1mmの鉄仕切
板)まで薄くしても、減衰の効果は変わらないことが確
認された。板厚をさらに半価層の0.08倍(X線最大
エネルギー0.8MeVに対する厚さ1mmの鉄仕切
板)にすると、減衰効果は若干落ちるが、遮蔽通路の形
状を変えずに、遮蔽効率を上げる方法としては、依然と
して有効な方法である。また逆に、仕切板をさらに厚く
しても、遮蔽の効果は変わらないが、施工上のあるいは
経済的なデメリットが増えるのみなので、現実的には半
価層の10倍程度までが上限と考えられる。Further, the attenuation rate (I 1 / I 2 ) corresponding to the reflection attenuation for one time is shown in FIG. 6, and from this graph, the relational expression as shown in Expression 3 can be obtained. Moreover, even if the thickness of the partition plate is reduced to 1/10 of that of the half-value layer (an iron partition plate having a thickness of 1 mm for the maximum X-ray energy of 0.5 MeV) from FIG. 5, the damping effect does not change. Was confirmed. If the plate thickness is 0.08 times the half-value layer (1 mm thick iron partition plate for maximum X-ray energy of 0.8 MeV), the damping effect will drop slightly, but the shielding efficiency will be maintained without changing the shape of the shielding passage. It is still an effective way to raise the level. On the contrary, even if the partition plate is made thicker, the shielding effect does not change, but the construction or economic demerit only increases, so in reality it is considered that the upper limit is about 10 times the half-value layer. To be
【0015】[0015]
【発明の効果】本発明によれば、開口部をもつX線又は
γ線遮蔽設備の遮蔽通路部分を、前記のように仕切板又
は内部隔壁で分割することにより、X線又はγ線の遮蔽
効率を高め、遮蔽設備の設置スペースと建設コストを節
約することができる。According to the present invention, the shielding passage portion of the X-ray or γ-ray shielding facility having an opening is divided by the partition plate or the internal partition wall as described above to shield X-rays or γ-rays. It can improve efficiency and save the installation space and construction cost of shielding equipment.
【図1】本発明の仕切板又は内部隔壁により通路断面を
分割した例の斜視図。FIG. 1 is a perspective view of an example in which a passage section is divided by a partition plate or an internal partition wall of the present invention.
【図2】減衰率を説明するための遮蔽通路図。FIG. 2 is a shielding path diagram for explaining an attenuation rate.
【図3】実施例で用いたX線遮蔽設備の断面図。FIG. 3 is a sectional view of the X-ray shielding equipment used in the examples.
【図4】図3の仕切板を設置した遮蔽通路断面図。FIG. 4 is a cross-sectional view of a shield passage in which the partition plate of FIG. 3 is installed.
【図5】対半価層比に対するX線減衰率を示すグラフ。FIG. 5 is a graph showing the X-ray attenuation rate with respect to the half-value layer ratio.
【図6】L2 /Sに対するX線減衰率を示すグラフ。FIG. 6 is a graph showing an X-ray attenuation rate with respect to L 2 / S.
【図7】公知のX線又はγ線遮蔽設備の一例を示す断面
図。FIG. 7 is a sectional view showing an example of a known X-ray or γ-ray shielding facility.
【図8】公知のX線又はγ線遮蔽設備の他の例を示す断
面図。FIG. 8 is a cross-sectional view showing another example of known X-ray or γ-ray shielding equipment.
1:X線又はγ線入口、2:X線又はγ線出口、3:遮
蔽通路外壁、4:仕切板又は内部隔壁、5:X線又はγ
線発生源、6:仕切板設置位置、7:開口部、8:遮蔽
通路、9:遮蔽扉1: X-ray or γ-ray entrance, 2: X-ray or γ-ray exit, 3: shield passage outer wall, 4: partition plate or internal partition wall, 5: X-ray or γ
Line generation source, 6: partition plate installation position, 7: opening, 8: shield passage, 9: shield door
Claims (3)
開口部を持つ遮蔽壁で囲み、該遮蔽壁で囲まれた通路を
屈曲させたX線又はγ線遮蔽設備において、前記遮蔽壁
で囲まれた通路の少なくとも一部が、その断面を仕切板
及び/又は内部隔壁によって複数に分割されていること
を特徴とするX線又はγ線遮蔽設備。1. An X-ray or γ-ray shielding facility in which an X-ray or γ-ray generation source is surrounded by a shielding wall having an opening through a passage, and the passage surrounded by the shielding wall is bent, X-ray or γ-ray shielding equipment, characterized in that at least a part of the passage surrounded by the shielding wall is divided into a plurality of sections by a partition plate and / or an internal partition wall.
に発生するX線又はγ線であることを特徴とする請求項
1記載のX線又はγ線遮蔽設備。2. The X-ray or γ-ray shielding facility according to claim 1, wherein the X-rays or γ-rays are X-rays or γ-rays generated during electron beam irradiation.
いた排ガス処理法において行われることを特徴とする請
求項2記載のX線又はγ線遮蔽設備。3. The X-ray or γ-ray shielding facility according to claim 2, wherein the electron beam irradiation is performed in an exhaust gas treatment method using an electron beam.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8190596A JPH09243793A (en) | 1996-03-12 | 1996-03-12 | X-ray or gamma-ray shielding equipment |
BR9707904A BR9707904A (en) | 1996-03-12 | 1997-03-12 | Shielded installations for x-rays or gamma rays |
PL97328797A PL185245B1 (en) | 1996-03-12 | 1997-03-12 | X-rays screening device |
DE69713304T DE69713304T2 (en) | 1996-03-12 | 1997-03-12 | SHIELDING DEVICE FOR X-RAY OR Gamma RAYS |
PCT/JP1997/000772 WO1997034305A1 (en) | 1996-03-12 | 1997-03-12 | SHIELDING FACILITY FOR X-RAYS OR η-RAYS |
EP97907280A EP0888622B1 (en) | 1996-03-12 | 1997-03-12 | Shielding facility for x-rays or gamma-rays |
BG102734A BG63177B1 (en) | 1996-03-12 | 1998-08-28 | Screening device of x-ray or gamma-rays |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8190596A JPH09243793A (en) | 1996-03-12 | 1996-03-12 | X-ray or gamma-ray shielding equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09243793A true JPH09243793A (en) | 1997-09-19 |
Family
ID=13759467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8190596A Pending JPH09243793A (en) | 1996-03-12 | 1996-03-12 | X-ray or gamma-ray shielding equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09243793A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104084943A (en) * | 2014-06-26 | 2014-10-08 | 西南科技大学 | Hydraulically-controlled demolition robot in intense-radiation environment |
CN105102063A (en) * | 2013-04-10 | 2015-11-25 | 三菱电机株式会社 | Particle beam irradiation chamber |
WO2016059990A1 (en) * | 2014-10-14 | 2016-04-21 | 日立造船株式会社 | Electron beam sterilisation equipment |
-
1996
- 1996-03-12 JP JP8190596A patent/JPH09243793A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105102063A (en) * | 2013-04-10 | 2015-11-25 | 三菱电机株式会社 | Particle beam irradiation chamber |
CN105102063B (en) * | 2013-04-10 | 2017-07-18 | 三菱电机株式会社 | Particle-beam exposure room |
CN104084943A (en) * | 2014-06-26 | 2014-10-08 | 西南科技大学 | Hydraulically-controlled demolition robot in intense-radiation environment |
WO2016059990A1 (en) * | 2014-10-14 | 2016-04-21 | 日立造船株式会社 | Electron beam sterilisation equipment |
CN106794912A (en) * | 2014-10-14 | 2017-05-31 | 日立造船株式会社 | Electron ray disinfection equipment |
JPWO2016059990A1 (en) * | 2014-10-14 | 2017-07-27 | 日立造船株式会社 | Electron beam sterilization equipment |
US10252830B2 (en) | 2014-10-14 | 2019-04-09 | Hitachi Zosen Corporation | Electron beam sterilization apparatus |
CN106794912B (en) * | 2014-10-14 | 2019-07-09 | 日立造船株式会社 | Electron ray disinfection equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mackie et al. | A convolution method of calculating dose for 15‐MV x rays | |
JPH09243793A (en) | X-ray or gamma-ray shielding equipment | |
US8139705B2 (en) | Screened chamber for ion therapy | |
JP4307379B2 (en) | Shield room for ion therapy for neutrons up to energy region GeV | |
JPH09243794A (en) | X-ray or gamma-ray shielding equipment | |
EP0888622B1 (en) | Shielding facility for x-rays or gamma-rays | |
Al‐Affana | Estimation of the dose at the maze entrance for x‐rays from radiotherapy linear accelerators | |
JP2019100757A (en) | Radiation shield structure | |
JPH0452598A (en) | Medical radiation shielding chamber | |
JP7541472B2 (en) | Radiation shielding structure for piping | |
Lalonde | The effect of neutron-moderating materials in high-energy linear accelerator mazes | |
Abrath et al. | Attenuation of primary and scatter radiation in concrete and steel for 18 MV x-rays from a Clinac-20 linear accelerator | |
CN1207199A (en) | Shielding facility for X-rays or 'gamma'-rays | |
Iwasaki | A convolution method for calculating 10‐MV x‐ray primary and scatter dose including electron contamination dose | |
JP7541471B2 (en) | Radiation shielding structure | |
JPS6222880Y2 (en) | ||
Tobias et al. | Penetrating power in radiography of high-Z materials as a function of bremsstrahlung spectrum endpoint energy | |
Rutherfoord et al. | The ATLAS forward region | |
JP2001091690A (en) | Radiation shield facility | |
JPH08136694A (en) | Radiation shield structure | |
CN116421897A (en) | Special-shaped target and accelerator | |
Chuang et al. | USE OF MONTE CARLO METHOD IN THE ESTIMATION OF FAST NEUTRONS LEAKED THROUGH A CONCRETE-PARAFFIN SHIELDING | |
Bassett | Gamma skyshine calculations for shielded sources | |
Hayashida et al. | Development of Sn-AMC-AMC Coupling Technique and Its Application to Analysis of Neutron Streaming Data of “JOYO” | |
Stevens | Radiation Environment and Induced Activity Near the RHIC Internal Beam Dump |