[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09245827A - Manufacture of alkaline storage battery - Google Patents

Manufacture of alkaline storage battery

Info

Publication number
JPH09245827A
JPH09245827A JP8051265A JP5126596A JPH09245827A JP H09245827 A JPH09245827 A JP H09245827A JP 8051265 A JP8051265 A JP 8051265A JP 5126596 A JP5126596 A JP 5126596A JP H09245827 A JPH09245827 A JP H09245827A
Authority
JP
Japan
Prior art keywords
battery
active material
nickel hydroxide
cobalt
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8051265A
Other languages
Japanese (ja)
Inventor
Akihiro Maeda
明宏 前田
Shozo Fujiwara
昌三 藤原
Katsumi Yamashita
勝巳 山下
Hideo Kaiya
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8051265A priority Critical patent/JPH09245827A/en
Publication of JPH09245827A publication Critical patent/JPH09245827A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To heighten the coefficient of use of an active material using only a slight amount of a conductive auxiliary agent by aging nickel hydroxide at a prescribed temperature for a prescribed time before initial charging. SOLUTION: This battery comprises a cathode produced by uniting, drying and pressure molding spherical nickel hydroxide, which is mixed with a fine nickel hydroxide particles, with a metal porous supporting body, an anode, a separator, and an alkaline electrolytic solution. Before the initial charging of the battery after assembly, the battery is left still at 40-80 deg.C for 24 hours or longer, so that the fine nickel hydroxide particles are aged. The fine nickel hydroxide is converted into one having a crystal structure easy to be charged and discharged by the aging. Consequently, electricity quantity of the fine active material particles with which spaces of active material particles and gaps between the active material and a core material are filled can be sufficiently drawn out, so that a high coefficient of use is provided by using only a slight amount of the added conductive agent (e.g. cobalt compound).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル正極を用
いたアルカリ蓄電池の製造法に関するものであり、ニッ
ケル−カドミウム蓄電池、ニッケル・水素蓄電池、ニッ
ケル・亜鉛蓄電池等に使用できる。
TECHNICAL FIELD The present invention relates to a method for producing an alkaline storage battery using a nickel positive electrode, which can be used for a nickel-cadmium storage battery, a nickel-hydrogen storage battery, a nickel-zinc storage battery and the like.

【0002】[0002]

【従来の技術】アルカリ蓄電池用正極として、従来から
水酸化ニッケルを活物質とする正極が用いられてきた。
2. Description of the Related Art As a positive electrode for an alkaline storage battery, a positive electrode using nickel hydroxide as an active material has been conventionally used.

【0003】この水酸化ニッケル正極は、”焼結式”
と”非焼結式”極板とに大別される。”焼結式”極板
は、その集電性能の良さから大電流を必要とするパワー
ツール用の電池に主に用いられている。一方、”非焼結
式”極板は、活物質そのものを金属多孔質支持体と一体
化させることにより得られ、”焼結式”極板に比べて大
きな容量を得ることができ、高容量タイプの電池として
主に用いられている。
This nickel hydroxide positive electrode is "sintered"
And "non-sintered" electrode plates. The "sintered" electrode plate is mainly used in batteries for power tools that require a large current because of its good current collecting performance. On the other hand, the "non-sintered" electrode plate is obtained by integrating the active material itself with the metal porous support, and it is possible to obtain a larger capacity than the "sintered" electrode plate. It is mainly used as a type of battery.

【0004】活物質はその充填密度を向上するために、
一般に球状のものが用いられる。この球状の水酸化ニッ
ケルは、ニッケルのアンモニア錯体を水酸化ナトリウム
水溶液に滴下することで得られる粒子(一次粒子)どう
しをアルカリ中で攪拌することで成長させ、一次粒子の
集合体である二次粒子にすることで得られる。ニッケル
のアンモニア錯体はアルカリによって速やかに水酸化ニ
ッケルに変化するが、このときに、アルカリのカチオ
ン、水及びニッケル塩中のアニオン種等を結晶中に取り
込んでしまう。これらの不純物が結晶中に存在すること
で電池材料としての特性が低下する。そこで、水酸化ニ
ッケルを製造する際には、一般に”熟成”という、高
温、高濃度のアルカリ中での放置を行い、不純物を除去
している。
In order to improve the packing density of the active material,
Generally spherical ones are used. This spherical nickel hydroxide grows by stirring particles (primary particles) obtained by dropping an ammonia complex of nickel into an aqueous solution of sodium hydroxide in an alkali, and secondary particles that are aggregates of primary particles. It is obtained by making it into particles. The nickel ammonia complex is promptly converted into nickel hydroxide by the alkali, but at this time, the cation of the alkali, water, an anion species in the nickel salt and the like are incorporated into the crystal. The presence of these impurities in the crystal deteriorates the characteristics as a battery material. Therefore, when producing nickel hydroxide, impurities are removed by leaving it in a high-temperature, high-concentration alkali, which is generally called "aging".

【0005】この技術により、不定形の水酸化ニッケル
を用いるものよりも充填密度が向上し、更なる高容量化
が図られた。
With this technique, the packing density was improved and the capacity was further increased as compared with the case where amorphous nickel hydroxide was used.

【0006】しかし、この”非焼結式”極板は様々な添
加物が添加されなければ活物質の理論容量を使いきるこ
とはできないことが一般に言われている。添加物として
は、亜鉛、コバルト、カドミウム等の化合物及び金属ニ
ッケル、カーボン等が用いられる。亜鉛、カドミウム等
は過充電時のγ−オキシ水酸化ニッケルの生成を抑制す
るなどの目的で使用されている。また、金属ニッケル、
カーボン等は極板内の集電性向上のために導電助剤とし
て用いられることが多い。
However, it is generally said that this "non-sintered" electrode plate cannot use up the theoretical capacity of the active material unless various additives are added. As the additive, compounds such as zinc, cobalt, cadmium, nickel metal, carbon and the like are used. Zinc, cadmium and the like are used for the purpose of suppressing the production of γ-nickel oxyhydroxide during overcharge. Also, metallic nickel,
Carbon and the like are often used as a conductive aid for improving the current collecting property in the electrode plate.

【0007】コバルト化合物は導電助剤として用いられ
ることが多く、より微粉末にすることで活物質表面を覆
い、効率を上げることが試みられている。また、コバル
ト化合物は電池内のアルカリ電解液に溶解し、初充電時
に水酸化ニッケルが充電されるよりも低い電位で酸化さ
れ、析出する。析出した高次のコバルト化合物は、導電
性皮膜を作り、活物質の利用率向上に寄与している。ま
た、コバルト化合物を正極に添加した電池は、初充放電
前に一日程度、常温または高温で放置すると利用率が向
上すると言われているが、これは、コバルト化合物の溶
解、拡散を行う時間としてとられているものである。
Cobalt compounds are often used as conductive aids, and attempts have been made to improve the efficiency by covering the surface of the active material with finer powder. Further, the cobalt compound is dissolved in the alkaline electrolyte in the battery and is oxidized and deposited at a potential lower than that of nickel hydroxide charged at the time of initial charging. The deposited high-order cobalt compound forms a conductive film and contributes to the improvement of the utilization rate of the active material. In addition, it is said that the battery with a cobalt compound added to the positive electrode will improve the utilization rate if left at room temperature or high temperature for about one day before the first charge and discharge. This is the time taken to dissolve and diffuse the cobalt compound. Is taken as.

【0008】さらに、このような正極には一般に、電池
内での活物質の脱落を防止し、サイクルによる容量減少
を防止するために、結着剤や増粘剤が用いられる。この
ような結着剤、増粘剤は一般に導電性のほとんど無い有
機化合物が用いられており、利用率の低下を引き起こす
ことは明らかである。このような、活物質の脱落を抑制
する手段として、活物質の塩を含む極板をアルカリ水溶
液で活物質化する技術が知られている(特公平7−60
681号)。しかし、この技術は電池内での活物質脱落
には効果があるが、アルカリでニッケル塩を活物質化す
る際及び水洗の際には、活物質の脱落が生じて十分では
ない。
Further, in such a positive electrode, a binder or a thickener is generally used in order to prevent the active material from falling off in the battery and prevent the capacity from being reduced by the cycle. As such a binder and a thickener, an organic compound having almost no conductivity is generally used, and it is clear that the utilization rate is lowered. As a means for suppressing such a drop of the active material, there is known a technique of converting an electrode plate containing a salt of the active material into an active material with an alkaline aqueous solution (Japanese Patent Publication No. 7-60).
681). However, this technique is effective in removing the active material in the battery, but is not sufficient because the active material drops out when the nickel salt is made into the active material with an alkali and when washed with water.

【0009】[0009]

【発明が解決しようとする課題】また、これらの正極を
用いた電池を高温で、かつ放電状態で長期間保存すると
正極電位の変化により、通常の電池内では安定とされて
いた高次のコバルト化合物が溶出してしまい、導電性皮
膜が破壊され、保存前後での利用率の変化が大きく、保
存後には良好な利用率が得られないことが問題となって
いる。
Further, when a battery using these positive electrodes is stored at a high temperature for a long period of time in a discharged state, a change in the positive electrode potential causes a high-order cobalt which is considered to be stable in a normal battery. There is a problem in that the compound is eluted, the conductive film is destroyed, the utilization factor changes greatly before and after storage, and a good utilization factor cannot be obtained after storage.

【0010】さらに、コバルト化合物と同様に導電助剤
として挙げられる金属ニッケル、カーボン等にもいえる
ことであるが、導電助剤は活物質表面を十分に被覆する
ことが必要であり、微細粒子を高分散の状態で用いなけ
ればならない。しかし、微細粒子は比表面積が大きいの
で充填密度を低下させる原因となっている。
Further, as with the cobalt compound, the same can be said for metallic nickel, carbon, etc., which are mentioned as the conduction aid, but the conduction aid needs to sufficiently cover the surface of the active material, so that fine particles are formed. It must be used in a highly dispersed state. However, since the fine particles have a large specific surface area, they cause a decrease in packing density.

【0011】そこで本発明は、導電助剤を少量用いるだ
けで利用率を向上させ、導電助剤の電解液への溶出によ
る導電性の低下を回避して保存後の利用率低下を抑制
し、活物質の充填密度を向上させ、さらにこれらの処理
時における活物質の脱落を抑制することを目的とする。
Therefore, the present invention improves the utilization rate by using a small amount of a conductive auxiliary agent, avoids the decrease in conductivity due to the elution of the conductive auxiliary agent into the electrolytic solution, and suppresses the decrease in the utilization rate after storage. The purpose is to improve the packing density of the active material and further to prevent the active material from falling off during these treatments.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に本発明は、電池構成後の初充放電前に40〜80℃で
24時間以上保存して電池外もしくは電池内で活物質化
した微細な水酸化ニッケル粒子を電池内のアルカリ電解
液によって熟成するものである。
In order to solve the above-mentioned problems, the present invention was stored at 40 to 80 ° C. for 24 hours or more before the first charging / discharging after the battery was constructed to make it an active material outside or inside the battery. The fine nickel hydroxide particles are aged by the alkaline electrolyte in the battery.

【0013】この熟成により、導電助剤を極少量使用す
るだけで良好な活物質利用率が得られ、導電助剤の溶出
による利用率低下を回避し、さらに充填密度を向上させ
ることができる。さらに、塩を活物質化する際の活物質
の脱落も電池内でニッケル塩を活物質化することで抑制
できる。
By this aging, a good utilization factor of the active material can be obtained by using a very small amount of the conductive additive, a decrease in the utilization factor due to the elution of the conductive additive can be avoided, and the packing density can be further improved. Further, the dropout of the active material when converting the salt into the active material can be suppressed by converting the nickel salt into the active material in the battery.

【0014】[0014]

【発明の実施の形態】本発明の請求項1に記載の発明
は、金属多孔質支持体と微細な水酸化ニッケル粒子を混
合した球状水酸化ニッケルを一体化し、乾燥、加圧成型
を経て得られた正極を用い、電池内のアルカリ電解液中
で微細な水酸化ニッケル粒子の熟成を行ったもので、導
電助剤を少量用いるだけで良好な利用率が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is obtained by integrating spherical nickel hydroxide obtained by mixing a porous metal support and fine nickel hydroxide particles, and drying and pressing. The obtained positive electrode was used to age fine nickel hydroxide particles in an alkaline electrolyte in a battery, and a good utilization rate can be obtained by using a small amount of a conductive auxiliary agent.

【0015】また、請求項2に記載の発明は、金属多孔
質支持体と水酸化ニッケルを一体化し、乾燥、加圧成型
を経て得られた極板に、ニッケル塩を含む溶液を含浸
し、乾燥させた後に電池を構成し、ニッケル塩を電池内
のアルカリ電解液で活物質化し、さらに初充放電前に電
池を高温で放置し、活物質化された粒子を熟成したもの
で、アルカリ溶液によるニッケル塩の活物質化の段階で
の活物質の脱落が抑制できる。
Further, in the invention according to claim 2, an electrode plate obtained by integrating a metal porous support and nickel hydroxide, drying and press-molding is impregnated with a solution containing a nickel salt, After drying, the battery is constructed, the nickel salt is made into an active material with the alkaline electrolyte in the battery, and the battery is left at high temperature before the first charge and discharge to age the particles that have been made into the active material. It is possible to prevent the active material from falling off at the stage of converting the nickel salt into an active material.

【0016】さらに、請求項3に記載の発明は、金属多
孔質支持体と、ニッケル塩を含む金属塩混合物を混合し
た水酸化ニッケルを一体化して得られた極板で電池を構
成し、電池内のアルカリ電解液でニッケル塩を活物質化
し、さらに初充放電前に電池を高温で放置し、活物質化
された粒子を熟成したもので、アルカリ溶液によるニッ
ケル塩の活物質化の段階での活物質の脱落が抑制でき
る。
Further, according to the invention described in claim 3, a battery is constituted by an electrode plate obtained by integrating nickel hydroxide prepared by mixing a metal porous support and a metal salt mixture containing a nickel salt, The nickel salt is made into an active material with the alkaline electrolyte inside, and the battery is left at high temperature before the first charge and discharge to age the particles that have been made into an active material. It is possible to prevent the active material from falling off.

【0017】この本発明における電池内での水酸化ニッ
ケルの熟成は、前記コバルト化合物の溶出、拡散とは根
本的に異なり、従来のコバルト化合物を5重量%以上使
用している電池には用いられていない微細な水酸化ニッ
ケルの結晶中の不純物を取り除くことで微細な水酸化ニ
ッケルを充放電しやすい結晶構造に変換するものであ
る。これにより、活物質粒子間及び活物質と芯材間の空
隙を埋めた微細活物質粒子の電気量を十分に引出すこと
ができるようになり、活物質の利用率が向上する。
The aging of nickel hydroxide in the battery according to the present invention is fundamentally different from the elution and diffusion of the cobalt compound, and is used for a battery using a conventional cobalt compound in an amount of 5% by weight or more. By removing impurities in the fine nickel hydroxide crystals that are not present, the fine nickel hydroxide is converted into a crystal structure that is easy to charge and discharge. This makes it possible to sufficiently draw out the amount of electricity of the fine active material particles filling the voids between the active material particles and between the active material and the core material, thus improving the utilization rate of the active material.

【0018】[0018]

【実施例】次に、本発明の具体例を説明する。Next, specific examples of the present invention will be described.

【0019】(実施例1)平均粒径10μmの球状水酸
化ニッケル(Ni:Co:Zn=100:1.5:4.
0)100部及び硫酸ニッケル六水和物の2mol/l
水溶液に、濃度23重量%の水酸化ナトリウム水溶液を
滴下、攪拌して得られた不定形の微粉末水酸化ニッケル
5部を乾燥状態で混合し、純水を20重量%加えてペー
ストを調整した。得られたペーストを発泡式ニッケル基
板に充填し、80℃で30分間乾燥し、加圧成型して3
6.5mm×110mm×0.70mmに裁断して理論
容量1800mAhの正極板を作製した。このときの充
填密度は640mAh/ccであった。
Example 1 Spherical nickel hydroxide having an average particle size of 10 μm (Ni: Co: Zn = 100: 1.5: 4.
0) 100 parts and 2 mol / l of nickel sulfate hexahydrate
An aqueous solution of sodium hydroxide having a concentration of 23% by weight was added dropwise to the aqueous solution, and 5 parts of infinitely fine nickel hydroxide powder obtained by stirring was mixed in a dry state, and pure water was added at 20% by weight to prepare a paste. . The obtained paste was filled in a foaming nickel substrate, dried at 80 ° C. for 30 minutes, and pressure-molded to 3
A positive electrode plate having a theoretical capacity of 1800 mAh was produced by cutting into 6.5 mm × 110 mm × 0.70 mm. The packing density at this time was 640 mAh / cc.

【0020】得られた正極板を再度80℃で30分間乾
燥し、スルホン化ポリプロピレンセパレータを介して水
素吸蔵合金負極とともに電池群を構成し、外装容器に収
容した後、比重1.30の水酸化カリウムに40g/l
の水酸化リチウムを溶解した電解液を2.32ml注液
し、4/5Aサイス゛の正極理論容量1800mAhの
密閉型ニッケル水素蓄電池を構成した。この電池をその
初充放電前に、45℃で3日間放置し微粉末の水酸化ニ
ッケル粒子の熟成を行った。このようにして得られた電
池を本発明の電池Aとする。また、初充放電前に40℃
で24時間放置したものを電池A’とした。
The positive electrode plate thus obtained was again dried at 80 ° C. for 30 minutes to form a battery group together with the hydrogen storage alloy negative electrode via the sulfonated polypropylene separator, which was then housed in an outer container and then hydroxylated with a specific gravity of 1.30. 40g / l for potassium
2.32 ml of an electrolytic solution in which lithium hydroxide was dissolved was poured to form a sealed nickel-hydrogen storage battery having a positive electrode theoretical capacity of 1800 mAh of 4/5 A size. This battery was left standing at 45 ° C. for 3 days to age fine nickel hydroxide particles before the initial charge and discharge. The battery thus obtained is referred to as Battery A of the present invention. Also, before the first charge and discharge, 40 ℃
The battery A ′ was left for 24 hours.

【0021】(実施例2)電池Aと同様にして得た正極
を2mol/lの硫酸ニッケル水溶液に浸漬し、80℃
で30分間乾燥し、硫酸ニッケルの活物質化に伴う容量
の増加分を考慮し、1800mAhになるようにして正
極板を作製した。このときの極板寸法は、36.5mm
×105mm×0.67mmであり、充填密度は、70
0mAh/ccであった。この正極板を用い、上記実施
例1と同様にして1800mAhの電池を構成し、初充
放電前に45℃で3日間放置し微粉末の水酸化ニッケル
の熟成を行った。
(Example 2) A positive electrode obtained in the same manner as the battery A was immersed in a 2 mol / l nickel sulfate aqueous solution, and the temperature was changed to 80 ° C.
Was dried for 30 minutes, and in consideration of the increase in capacity due to the conversion of nickel sulfate into the active material, a positive electrode plate was prepared so as to have a current of 1800 mAh. The electrode plate size at this time is 36.5 mm.
× 105 mm × 0.67 mm, the packing density is 70
It was 0 mAh / cc. Using this positive electrode plate, a 1800 mAh battery was constructed in the same manner as in Example 1 above, and allowed to stand at 45 ° C. for 3 days before the first charge / discharge to age fine powder of nickel hydroxide.

【0022】このようにして得られた電池を本発明の電
池Bとした。また、初充放電前に40℃で24時間放置
したものを電池B’とした。
The battery thus obtained was designated as Battery B of the present invention. Further, a battery B ′ was left at 40 ° C. for 24 hours before the first charge / discharge.

【0023】(実施例3)平均粒径10μmの球状水酸
化ニッケル(Ni:Co:Zn=100:1.5:4.
0)100部に、20重量%の純水に硫酸ニッケルを1
5部溶解したものを加えてペーストを調整し、硫酸ニッ
ケルの活物質化に伴う増加分を考慮して1800mAh
の正極を作製した。このときの極板寸法は、36.5m
m×110mm×0.73mmであり、このときの充填
密度は614mAh/ccであった。これを用い電池A
と同様にして1800mAhの電池を構成し、初充放電
前に45℃で3日間放置し微粉末の水酸化ニッケルの熟
成を行った。
(Embodiment 3) Spherical nickel hydroxide (Ni: Co: Zn = 100: 1.5: 4.
0) Add 100 parts of nickel sulfate to 20% by weight of pure water.
Prepare a paste by adding 5 parts of melted material, and take into account the increase due to the conversion of nickel sulfate into the active material, 1800 mAh
The positive electrode of was produced. The electrode plate size at this time is 36.5 m.
m × 110 mm × 0.73 mm, and the packing density at this time was 614 mAh / cc. Battery A using this
A 1800 mAh battery was constructed in the same manner as described above, and the fine powder of nickel hydroxide was aged for 3 days at 45 ° C. before the first charge and discharge.

【0024】このようにして得られた電池を本発明の電
池Cとした。また、初充放電前に40℃で24時間放置
したものを電池C’とした。
The battery thus obtained was designated as Battery C of the present invention. A battery C ′ was left at 40 ° C. for 24 hours before the first charge / discharge.

【0025】さらに、球状水酸化ニッケル(Ni:C
o:Zn=100:1.5:4.0)100部に水酸化
コバルト7部、酸化コバルト3部及び酸化亜鉛2部を混
合し、純水を加えてペースト状にした後に、金属多孔質
支持体に充填し、乾燥、加圧成型し、110mm×3
6.5mm×0.78mmの極板を作製した。これを用
い電池Aと同様にして、1800mAhの電池を構成
し、比較例とした。このときの充填密度は575mAh
/ccであった。
Furthermore, spherical nickel hydroxide (Ni: C
(o: Zn = 100: 1.5: 4.0) 100 parts of cobalt hydroxide 7 parts, cobalt oxide 3 parts and zinc oxide 2 parts are mixed, pure water is added to form a paste, and then metal porous. Filled into a support, dried, pressure molded, 110 mm x 3
A 6.5 mm × 0.78 mm electrode plate was prepared. Using this, a 1800 mAh battery was constructed in the same manner as the battery A, and used as a comparative example. The packing density at this time is 575 mAh
/ Cc.

【0026】導電助剤とその他の添加物を加えた比較例
の極板は、電池A,B及びCに比べて充填密度が低いこ
とが明らかである。
It is apparent that the electrode plate of the comparative example to which the conductive additive and other additives are added has a lower packing density than the batteries A, B and C.

【0027】上記で得られた電池A,A’,B,B’,
C,C’及び比較例を、20℃で0.1CmA,150
%の充電を行い、0.2CmAで0.8Vを終止電圧と
して放電を行い初充放電とした。その後、45℃で3日
間放置し、初充放電と同じ条件で、充放電を行い電池容
量を把握し、これを評価1とした。なお水酸化ニッケル
1g当り289mAhとした理論容量との比を正極利用
率とし、評価1で表中に示した。
The batteries A, A ', B, B', obtained as above,
C, C'and comparative example, 0.1 CmA, 150 at 20 ℃
%, And discharged at a final voltage of 0.8 V at 0.2 CmA to obtain the initial charge / discharge. Then, the battery was left at 45 ° C. for 3 days, charged and discharged under the same conditions as the initial charge and discharge, and the battery capacity was determined. The ratio with the theoretical capacity of 289 mAh per 1 g of nickel hydroxide was defined as the positive electrode utilization rate, which is shown in the table in Evaluation 1.

【0028】さらに、電池A,B,C及び比較例に対し
て、充電条件は同様に20℃で0.1CmA,150%
とし、放電電流を0.5,1.0CmAとしてそれぞれ
評価を行い、0.5CmA放電を評価2,1.0CmA
放電を評価3とし、評価1と同様に、正極利用率として
表1に示した。
Further, for the batteries A, B and C and the comparative example, the charging conditions were also 0.1 CmA and 150% at 20 ° C.
And the discharge current was 0.5 and 1.0 CmA, respectively, and the evaluation was performed, and 0.5 CmA discharge was evaluated as 2,1.0 CmA.
The discharge was rated as 3, and the positive electrode utilization rate is shown in Table 1 as in the case of the rating 1.

【0029】加えて、これら電池A,B,C及び比較例
を20℃で1.0CmA,120%の充電を行い、20
℃で0.8Vを終止電圧として、放電を行い利用率を測
定し、評価4とし、ついで、65℃で30日間放置し、
その後評価4と同様の測定を行って評価5とし、これら
も表1に示した。
In addition, the batteries A, B and C and the comparative example were charged at 1.0 CmA and 120% at 20 ° C.
At 0.8 ° C, the final voltage was 0.8 V, discharge was performed, the utilization factor was measured, and the evaluation was set to 4. Then, the sample was left at 65 ° C for 30 days,
After that, the same measurement as the evaluation 4 was performed to obtain the evaluation 5, and these are also shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】評価1により電池A,B及びCの利用率は
95%を越えており、導電助剤を多量に使用している比
較例と同等であることが明らかであり、導電助剤を用い
ずとも良好な利用率が得られたといえる。これは、初充
放電前の熟成により、微細な水酸化ニッケルの結晶内の
カリウムイオン、硫酸イオン、水分子等の不純物が除去
され、充放電しやすい結晶形に変化したためであると考
えられる。
Evaluation 1 shows that the utilization rates of the batteries A, B and C exceed 95%, which is clear to be equivalent to the comparative example using a large amount of the conductive auxiliary agent. It can be said that a good utilization rate was obtained. This is presumably because impurities such as potassium ions, sulfate ions, water molecules in fine nickel hydroxide crystals were removed by the aging before the initial charge / discharge, and the crystal form was changed to be easy to charge / discharge.

【0032】しかし、微細な水酸化ニッケル粒子の熟成
が十分でない電池A’,B’及びC’は電池A,B及び
Cに比べ総じて利用率が低かった。これは、電池内での
微細水酸化ニッケルの熟成が十分でないことを示してお
り、少なくとも24時間以上の熟成が必要であることを
示している。雰囲気温度は熟成を十分に行うために少な
くとも40℃以上が必要であり、一方、セパレータなど
の保護のためには80℃以下で行うことが望ましい。
However, in the batteries A ', B'and C'where the aging of the fine nickel hydroxide particles was not sufficient, the utilization rates were generally lower than those in the batteries A, B and C. This indicates that the aging of the fine nickel hydroxide in the battery is not sufficient and that aging for at least 24 hours or more is necessary. The ambient temperature needs to be at least 40 ° C. or higher in order to sufficiently perform the aging, while it is preferably 80 ° C. or lower in order to protect the separator and the like.

【0033】また、評価2及び評価3の結果より、放電
電流を変化させても比較例と同等の容量の低下であるこ
とが明らかとなった。
From the results of Evaluation 2 and Evaluation 3, it was revealed that the capacity was reduced even when the discharge current was changed, as in the comparative example.

【0034】これらのことは、放電時に、活物質間の空
隙を微細な活物質で埋めたことにより活物質間のプロト
ン拡散が円滑に行われ、電気化学的反応抵抗が減少した
ためであると推測される。また、芯材と活物質の接触面
積の増大により、芯材と活物質間の電流密度が低くなっ
たことも理由の一つである。
It is presumed that these are because the gaps between the active materials were filled with the fine active material during the discharge, so that the proton diffusion between the active materials was smoothly performed and the electrochemical reaction resistance was reduced. To be done. Another reason is that the current density between the core material and the active material has decreased due to the increase in the contact area between the core material and the active material.

【0035】評価4での利用率は評価3とほぼ同等の値
を示したが、評価5で比較例は、利用率の低下が非常に
大きかった。これに比べて、電池A,B及びCでは評価
5でも利用率の低下がほとんど無く、評価4とほぼ同等
の値を示した。
The utilization factor in the evaluation 4 was almost the same as that in the evaluation 3, but in the comparative example in the evaluation 5, the utilization factor was greatly decreased. On the other hand, in the batteries A, B and C, there was almost no decrease in the utilization factor even in the evaluation 5, and the values were almost the same as those in the evaluation 4.

【0036】比較例では、導電助剤の電解液への溶出が
激しく、正極活物質間の電子伝導が損なわれ、導電助剤
の占めていた所に空隙が発生し、これにより活物質間の
電子伝導及びプロトン拡散が阻害されたためであると推
測される。一方、電池A,B及びCには導電助剤が添加
されていないので、保存により空隙が発生したり、活物
質間の導電性が変化するようなことがないため、正極の
構造の変化が非常に少なく、保存前と同等の構造を保っ
ているために利用率の変化が少なかったものと考えられ
る。
In the comparative example, the electroconductivity aid was so much eluted into the electrolytic solution that the electron conduction between the positive electrode active materials was impaired, and voids were generated at the places occupied by the electroconductivity aid. It is presumed that this is because the electron conduction and the proton diffusion were hindered. On the other hand, since the batteries A, B, and C do not contain a conductive auxiliary agent, voids are not generated during storage and the conductivity between the active materials is not changed, so that the structure of the positive electrode is not changed. It is considered that the usage rate was small because the structure was very small and the structure was the same as before storage.

【0037】また、電池B及び電池Cと同様にして得た
正極板を電池構成前に60℃の水酸化カリウム溶液(比
重1.3)に浸漬後、水洗、乾燥した極板を用いて電池
を構成し、電池B及びCと同様に評価1の試験を行った
ところ、約7%容量が小さく、電池外でのアルカリ処理
では活物質の脱落が本発明の電池内でのアルカリ処理よ
りも多かった。
Further, the positive electrode plates obtained in the same manner as the batteries B and C were immersed in a potassium hydroxide solution (specific gravity 1.3) at 60 ° C., then washed with water and dried to prepare a battery. When the test of Evaluation 1 was conducted in the same manner as the batteries B and C, the capacity was about 7% smaller, and the alkaline treatment outside the battery resulted in the loss of the active material than the alkaline treatment inside the battery of the present invention. There were many.

【0038】なお、本発明で用いる球状水酸化ニッケル
の成分としては、水酸化ニッケルのみで構成されたもの
でも良いが、コバルト(0.1〜5重量%)、亜鉛
(0.1〜8重量%)、カドミウム(0.1〜5重量
%)等の内部添加物を少なくとも1種を上記の範囲内で
含む方がより好ましい。平均粒径は、5〜25μmが活
物質の脱落などが少なくて良好であり、これよりも粒径
が小さいと充填密度が低くなり、粒径が大きいと活物質
が脱落しやすくなる。さらに、添加物としての水酸化ニ
ッケルは平均粒径が3μm以下が望ましく、これ以上の
粒径では十分に機能しない。また、本発明では浸漬液に
ニッケル塩溶液を用いた。このようなニッケル塩として
は、硫酸ニッケル、硝酸ニッケル、ハロゲン化ニッケル
等の無機ニッケル塩、酢酸ニッケル、クエン酸ニッケル
等の有機ニッケル塩類等が用いられる。これらの塩の溶
媒としては、水あるいはアルコール、アセトン等の有機
溶媒を単独あるいは適宜混合して使用することができ
る。ペースト作製時の溶媒にもこれらの物質が使用でき
る。
The spherical nickel hydroxide used in the present invention may be composed of nickel hydroxide alone, but cobalt (0.1 to 5% by weight), zinc (0.1 to 8% by weight). %), Cadmium (0.1 to 5% by weight), and the like, more preferably containing at least one internal additive within the above range. The average particle size of 5 to 25 μm is good because the active material is less likely to fall off. If the particle size is smaller than this, the packing density is low, and if the particle size is large, the active material is likely to fall off. Further, nickel hydroxide as an additive preferably has an average particle size of 3 μm or less, and a particle size larger than this does not sufficiently function. Further, in the present invention, a nickel salt solution is used as the immersion liquid. As such nickel salts, inorganic nickel salts such as nickel sulfate, nickel nitrate and nickel halide, and organic nickel salts such as nickel acetate and nickel citrate are used. As a solvent for these salts, water or an organic solvent such as alcohol or acetone can be used alone or in an appropriate mixture. These substances can also be used as a solvent when preparing a paste.

【0039】また、本発明では導電助剤を用いていない
が、導電助剤を添加することでさらに良好な利用率が得
られることは言うまでもない。導電助剤としては、水酸
化コバルト、酸化コバルト、金属コバルト等のコバルト
化合物、ニッケル粉末、カーボン粉末等があり、水酸化
ニッケル重量の20%迄を限度として加ることができ、
3重量%程度の添加で利用率が100%となる。さら
に、これらの物質の添加方法としては、従来の活物質ペ
ーストに混合する方法に加え、塩がアルカリにより変化
して導電助剤として機能するもの例えば硫酸コバルト、
硝酸コバルト等の無機コバルト塩であれば、本発明のニ
ッケル塩と混合もしくはニッケル塩の代わりに単独で用
いることにより、従来よりも効率よく活物質表面を被覆
でき、添加による充填密度の低下も回避できることは容
易に推測される。
Further, in the present invention, no conductive auxiliary agent is used, but it goes without saying that a better utilization rate can be obtained by adding the conductive auxiliary agent. As the conductive aid, there are cobalt compounds such as cobalt hydroxide, cobalt oxide, and metallic cobalt, nickel powder, carbon powder, etc., and it is possible to add up to 20% by weight of nickel hydroxide.
Addition of about 3% by weight makes the utilization rate 100%. Further, as a method of adding these substances, in addition to a method of mixing with a conventional active material paste, a salt that functions as a conduction aid by changing with an alkali, such as cobalt sulfate,
If it is an inorganic cobalt salt such as cobalt nitrate, by mixing with the nickel salt of the present invention or by using alone instead of the nickel salt, the surface of the active material can be coated more efficiently than before, and a decrease in packing density due to addition can be avoided. It's easy to guess what you can do.

【0040】[0040]

【発明の効果】以上のように本発明では、電池外もしく
は電池内で活物質塩を活物質化することで得られた微細
粒子で極板内の空隙を埋め、電池内のアルカリ電解液を
用いて熟成することにより、活物質間及び活物質と芯材
間との密着性が増し、電流密度が小さくなることで、導
電助剤を極力用いることなく利用率が向上するという効
果が得られる。しかも導電助剤を極力用いないことで保
存前後の正極の構造変化を抑制して保存前後の利用率変
化を最小限にとどめることができる。
As described above, in the present invention, the voids in the electrode plate are filled with the fine particles obtained by converting the active material salt into an active material outside or inside the battery to remove the alkaline electrolyte in the battery. By aging it, the adhesion between the active materials and between the active material and the core material is increased, and the current density is reduced, so that it is possible to obtain the effect that the utilization rate is improved without using the conductive additive as much as possible. . Moreover, the use of the conductive auxiliary agent as little as possible suppresses the structural change of the positive electrode before and after the storage, and minimizes the change in the utilization rate before and after the storage.

【0041】また、活物質塩の活物質化に電池内のアル
カリ電解液を用いることで、従来のようなアルカリ処
理、水洗、乾燥という工程を削減でき、工業的にも有効
である。
Further, by using the alkaline electrolyte in the battery for converting the active material salt into an active material, it is possible to reduce the conventional steps of alkali treatment, washing and drying, which is industrially effective.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 海谷 英男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Kaitani 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】平均粒径が5〜25μmの球状水酸化ニッ
ケルに、平均粒径が3μm以下の水酸化ニッケル粒子及
び、金属コバルト、コバルト酸化物もしくはコバルト水
酸化物から選ばれた少なくとも一種を金属コバルト換算
で0.1〜3重量%含む添加物を混合したペーストを金
属多孔質支持体で保持した正極と、負極、セパレータお
よびアルカリ電解液とから電池を構成し、その初充放電
前に40℃以上80℃以下の温度下で少なくとも24時
間以上放置することを特徴とするアルカリ蓄電池の製造
法。
1. Spherical nickel hydroxide having an average particle size of 5 to 25 μm, nickel hydroxide particles having an average particle size of 3 μm or less, and at least one selected from metallic cobalt, cobalt oxide or cobalt hydroxide. A battery is composed of a positive electrode holding a paste mixed with an additive containing 0.1 to 3% by weight in terms of metallic cobalt on a metal porous support, a negative electrode, a separator and an alkaline electrolyte, and before the first charge and discharge thereof. A method for producing an alkaline storage battery, which comprises leaving at a temperature of 40 ° C. or higher and 80 ° C. or lower for at least 24 hours or longer.
【請求項2】平均粒径が5〜25μmの球状水酸化ニッ
ケルと金属コバルト、コバルト酸化物もしくはコバルト
水酸化物から選ばれた少なくとも一種を金属コバルト換
算で0.1〜3重量%含む添加物を混合したペーストを
金属多孔質支持体で保持して乾燥、加圧成型した後に、
少なくともニッケル塩を含む金属塩水溶液を含浸させて
乾燥したものを正極として用い、これを負極、セパレー
タ、アルカリ電解液とで電池を構成し、その初充放電前
に40℃以上80℃以下の温度下で少なくとも24時間
以上放置することを特徴とするアルカリ蓄電池の製造
法。
2. An additive containing spherical nickel hydroxide having an average particle diameter of 5 to 25 μm and at least one selected from metallic cobalt, cobalt oxide or cobalt hydroxide in an amount of 0.1 to 3% by weight in terms of metallic cobalt. After holding the paste mixed with the metal porous support, drying and pressure molding,
A positive electrode is obtained by impregnating an aqueous metal salt solution containing at least a nickel salt and then drying it to form a battery with a negative electrode, a separator, and an alkaline electrolyte. A method for producing an alkaline storage battery, which is characterized by leaving it under at least 24 hours or more.
【請求項3】平均粒径が5〜25μmの球状水酸化ニッ
ケルと金属コバルト、コバルト酸化物もしくはコバルト
水酸化物から選ばれた少なくとも一種を金属コバルト換
算で0.1〜3重量%含む添加物との混合物に少なくと
もニッケル塩を含む金属塩水溶液を加えペースト状に
し、これを金属多孔質支持体と一体化して乾燥、加圧成
型した正極と、負極、セパレータとから電池を構成し、
この電池を初充放電前に40℃以上80℃以下で少なく
とも24時間以上放置することを特徴とするアルカリ蓄
電池の製造法。
3. An additive containing 0.1 to 3% by weight in terms of metallic cobalt of at least one selected from spherical nickel hydroxide having an average particle diameter of 5 to 25 μm and metallic cobalt, cobalt oxide or cobalt hydroxide. An aqueous solution of a metal salt containing at least a nickel salt is added to a mixture of the above to form a paste, which is integrated with a metal porous support and dried, and a pressure-molded positive electrode, a negative electrode, and a separator to form a battery,
A method for producing an alkaline storage battery, which comprises leaving this battery at 40 ° C. or higher and 80 ° C. or lower for at least 24 hours or more before initial charge / discharge.
JP8051265A 1996-03-08 1996-03-08 Manufacture of alkaline storage battery Pending JPH09245827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8051265A JPH09245827A (en) 1996-03-08 1996-03-08 Manufacture of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8051265A JPH09245827A (en) 1996-03-08 1996-03-08 Manufacture of alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH09245827A true JPH09245827A (en) 1997-09-19

Family

ID=12882124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8051265A Pending JPH09245827A (en) 1996-03-08 1996-03-08 Manufacture of alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH09245827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270535B1 (en) 1998-09-04 2001-08-07 Moltech Power Systems, Inc. Method of forming CoOOH and NiOOH in a NiMH electrochemical cell and an electrochemical cell formed thereby
US7594938B2 (en) * 2000-11-17 2009-09-29 Toshiba Battery Co., Ltd. Enclosed nickel-zinc primary battery, its anode and production methods for them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270535B1 (en) 1998-09-04 2001-08-07 Moltech Power Systems, Inc. Method of forming CoOOH and NiOOH in a NiMH electrochemical cell and an electrochemical cell formed thereby
US7594938B2 (en) * 2000-11-17 2009-09-29 Toshiba Battery Co., Ltd. Enclosed nickel-zinc primary battery, its anode and production methods for them
US7851087B2 (en) 2000-11-17 2010-12-14 Toshiba Battery Co., Ltd. Enclosed nickel-zinc primary battery, its anode and production methods for them

Similar Documents

Publication Publication Date Title
US3785868A (en) Zinc electrode
JP3173973B2 (en) Alkaline storage battery
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JPH09245827A (en) Manufacture of alkaline storage battery
WO1999017388A1 (en) Nickel-hydrogen storage battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH07272722A (en) Paste type nickel positive electrode for alkaline storage battery
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JP3263603B2 (en) Alkaline storage battery
JP3454641B2 (en) Cadmium negative electrode for alkaline storage battery and method for producing the same
JP2797554B2 (en) Nickel cadmium storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH11260359A (en) Alkaline storage battery
JP2754800B2 (en) Nickel cadmium storage battery
JP4120762B2 (en) Nickel electrode and nickel metal hydride storage battery using the same
JP3003218B2 (en) Method for producing nickel electrode plate and method for producing alkaline storage battery
JP3995288B2 (en) Cadmium negative electrode for alkaline storage battery and method for producing the same
JP2589750B2 (en) Nickel cadmium storage battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPH10188971A (en) Unsintered nickel electrode for alkaline storage battery
JPH10214619A (en) Manufacture of unsintered nickel electrode for alkaline storage battery