JPH09234338A - Photolysis of organochlorine compound - Google Patents
Photolysis of organochlorine compoundInfo
- Publication number
- JPH09234338A JPH09234338A JP8069262A JP6926296A JPH09234338A JP H09234338 A JPH09234338 A JP H09234338A JP 8069262 A JP8069262 A JP 8069262A JP 6926296 A JP6926296 A JP 6926296A JP H09234338 A JPH09234338 A JP H09234338A
- Authority
- JP
- Japan
- Prior art keywords
- ultraviolet
- reaction tank
- gas
- chlorine
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、有機塩素化合物の
光分解法に関する。さらに詳しくは、本発明は、有機塩
素化合物で汚染された土壌を真空抽出して得られたガ
ス、地下水をエアーストリッピングして得られたガス等
に含まれる有機塩素化合物を、紫外線照射により分解し
て除去するに際して、分解効率が高く、反応槽を小型化
することができる有機塩素化合物の光分解法に関する。TECHNICAL FIELD The present invention relates to a method for photodecomposing organic chlorine compounds. More specifically, the present invention is a gas obtained by vacuum extraction of soil contaminated with an organic chlorine compound, an organic chlorine compound contained in a gas obtained by air stripping groundwater, etc., decomposed by ultraviolet irradiation. The present invention relates to a photolysis method of an organochlorine compound which has a high decomposition efficiency and can be downsized in the reaction tank when it is removed.
【0002】[0002]
【従来の技術】有機塩素化合物は、優れた溶解力を有す
る溶剤として長年にわたり使用されてきたが、近年その
発癌性が指摘され、環境への放出が制限されている。し
かし、環境の有機塩素化合物による汚染は依然解決され
ておらず、全国の井戸からトリクロロエチレンやテトラ
クロロエチレン等が検出され、地下水や土壌の有機塩素
化合物による汚染が大きな問題となっている。有機塩素
化合物は比較的揮発しやすいために、ガスとして大気中
に容易に拡散する。このような地下水、土壌等の汚染の
原因物質である有機塩素化合物の除去方法としては、現
在は、土壌から真空抽出し、あるいはエアーストリッピ
ングしたのち、活性炭等の吸着材で回収し廃棄物として
処理する方法が一般的には行われている。しかし、活性
炭吸着による方法は、汚染物質を回収、再利用しない限
り、単に汚染物質を移行させるのみで、根本的な解決に
はなっていない。したがって、有機塩素化合物を分解し
て無害化する方法に関する研究がこれまで積極的に行わ
れ、種々の技術が提案されている。例えば、有機ハロゲ
ン化合物を含む排ガスを紫外線照射処理して酸性の分解
ガスとしたのち、アルカリで洗浄して無害化処理する方
法(特開昭62−191025号公報)、有機ハロゲン
化物を含有する排水を曝気処理し、排出されるガスを紫
外線照射したのちアルカリ洗浄する装置(特開昭62−
191095号公報)、ハロゲン化非環式炭化水素化合
物とオゾンとを混合して紫外線を照射し、ハロゲン化非
環式炭化水素化合物を分解する装置(特開平1−236
925号公報)、有機ハロゲン化物を含有する排水を紫
外線を照射しつつ曝気処理し、さらに排出されるガスを
紫外線照射したのちアルカリ洗浄する装置(特開平2−
75391号公報)等が提案されている。有機塩素化合
物は光化学的には比較的分解されやすいために、このよ
うに紫外線を利用した分解法が数多く提案されている。
しかし、紫外線照射による光反応だけでは有機塩素化合
物を完全に分解することは容易でなく、分子内に塩素原
子を有する反応中間体が残存しやすい。このため、土中
又は水中に含有される揮発性有機化合物を曝気により抽
出し、酸素存在下に紫外線を照射して酸化し、酸化生成
物を含有するガスを水と接触させたのち好気性生物によ
り分解する方法(特開平7−116467号公報)のよ
うに、紫外線照射による光反応を行ったのち、さらに微
生物反応を行う処理方法が提案されている。しかし、有
機塩素化合物に紫外線照射を行うと、有機塩素化合物が
微生物により分解しやすい反応中間体に変換されると同
時に、微生物に有害な影響を与える反応中間体も生成す
るので、微生物処理を長期間安定して行うことは困難で
ある。一方、日本国内においては、有機塩素化合物で汚
染されて浄化が必要なサイトは敷地面積が小さい場合が
多く、大型の浄化装置を持ち込むことは容易ではない。
そこで、よりコンパクトで高性能の浄化装置が求められ
ている。また、土壌から真空抽出したガスを対象とする
場合、ガス中に存在する有機塩素化合物の濃度は長期的
には浄化開始直後から徐々に低下するが、その濃度は日
々変動するので、負荷の変動に対して安定した処理が可
能な浄化装置が求められている。しかし、紫外線照射を
行う紫外線反応槽を最適化する一般的な方法はいまだ開
発されていない。したがって、有機塩素化合物の濃度変
動に対応できるように不用意に大きな反応槽を設計する
こともあり、そのため本来は効率が高いはずの紫外線分
解法は経済的な理由により実用化されていなかった。Organochlorine compounds have been used for many years as a solvent having an excellent dissolving power, but their carcinogenicity has recently been pointed out, and their release to the environment is limited. However, pollution of organic chlorine compounds in the environment has not been solved yet, and trichlorethylene, tetrachlorethylene, etc. are detected in wells nationwide, and pollution of groundwater and soil by organic chlorine compounds has become a major problem. Since organic chlorine compounds are relatively volatile, they readily diffuse into the atmosphere as a gas. As a method of removing organic chlorine compounds, which are substances that cause contamination of groundwater and soil, etc., currently, vacuum extraction from the soil or air stripping is performed, and then the waste is recovered by an adsorbent such as activated carbon. The method of processing is generally performed. However, the method using activated carbon adsorption is not a fundamental solution because it simply transfers contaminants unless the contaminants are collected and reused. Therefore, research on a method for decomposing an organic chlorine compound to render it harmless has been actively conducted so far, and various techniques have been proposed. For example, a method in which exhaust gas containing an organic halogen compound is irradiated with ultraviolet rays to make an acidic decomposition gas, which is then cleaned with an alkali to detoxify it (JP-A-62-191025), wastewater containing an organic halide. Aerating the gas, irradiating the discharged gas with ultraviolet rays and then cleaning with alkali (Japanese Patent Laid-Open No. 62-
No. 191095), an apparatus for decomposing a halogenated acyclic hydrocarbon compound by mixing a halogenated acyclic hydrocarbon compound and ozone and irradiating the mixture with ultraviolet rays (JP-A-1-236).
No. 925), an apparatus for aeration treatment of wastewater containing an organic halide while irradiating ultraviolet rays, and further irradiating the discharged gas with ultraviolet rays and then performing alkali cleaning (JP-A-2-
No. 75391) is proposed. Since organic chlorine compounds are relatively easily photochemically decomposed, many decomposition methods utilizing ultraviolet rays have been proposed.
However, it is not easy to completely decompose an organic chlorine compound only by a photoreaction by irradiation with ultraviolet rays, and a reaction intermediate having a chlorine atom in a molecule tends to remain. For this reason, volatile organic compounds contained in soil or water are extracted by aeration, and are irradiated with ultraviolet rays in the presence of oxygen to oxidize, and the gas containing the oxidation product is contacted with water, and then aerobic organisms are contacted. As disclosed in Japanese Patent Laid-Open No. 7-116467, a treatment method has been proposed in which a photoreaction by ultraviolet irradiation is performed and then a microbial reaction is further performed. However, when an organic chlorine compound is irradiated with ultraviolet rays, the organic chlorine compound is converted into a reaction intermediate that is easily decomposed by microorganisms, and at the same time, a reaction intermediate that adversely affects the microorganisms is also produced, which prolongs the treatment of microorganisms. It is difficult to do it stably for a period of time. On the other hand, in Japan, sites that are contaminated with organic chlorine compounds and require purification often have a small site area, and it is not easy to bring in a large-scale purification device.
Therefore, there is a demand for a more compact and high-performance purification device. In the case of gas extracted from soil in vacuum, the concentration of organochlorine compounds present in the gas gradually decreases in the long term immediately after the start of purification. There is a demand for a purification device capable of performing stable treatment. However, a general method for optimizing an ultraviolet reaction tank for performing ultraviolet irradiation has not yet been developed. Therefore, a large reaction tank may be designed carelessly so as to cope with the fluctuation of the concentration of the organic chlorine compound. Therefore, the ultraviolet decomposition method, which should have high efficiency originally, has not been put into practical use for economical reasons.
【0003】[0003]
【発明が解決しようとする課題】本発明は、有機塩素化
合物を含有するガスを紫外線反応槽において効率的に分
解し、コンパクトな反応槽による処理を可能とする有機
塩素化合物の光分解法を提供することを目的としてなさ
れたものである。DISCLOSURE OF THE INVENTION The present invention provides a method for photodecomposing an organochlorine compound which efficiently decomposes a gas containing an organochlorine compound in an ultraviolet reaction vessel and enables treatment in a compact reaction vessel. It was made for the purpose of doing.
【0004】[0004]
【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、有機塩素化合物
を含有するガスを紫外線反応槽に導いて紫外線を照射し
て分解する際に、紫外線照射後のガスの一部を紫外線反
応槽に返送することにより分解効率が向上することを見
いだし、この知見に基づいて本発明を完成するに至っ
た。すなわち、本発明は、(1)有機塩素化合物を含有
するガスを紫外線反応槽に導き、紫外線を照射して有機
塩素化合物を分解する方法において、紫外線照射後のガ
スの一部を紫外線反応槽に返送することを特徴とする有
機塩素化合物の光分解法、を提供するものである。さら
に、本発明の好ましい態様として、(2)有機塩素化合
物が、汚染された土壌又は地下水からガス状態で抽出さ
れたものである第(1)項記載の有機塩素化合物の光分解
法、(3)紫外線照射後のガス返送率が0.1〜70%
である第(1)項又は第(2)項記載の有機塩素化合物の光
分解法、を挙げることができる。Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have led a gas containing an organochlorine compound to an ultraviolet reaction tank and irradiating it with ultraviolet rays to decompose it. At that time, it was found that the decomposition efficiency was improved by returning a part of the gas after the ultraviolet irradiation to the ultraviolet reaction tank, and the present invention was completed based on this finding. That is, the present invention provides (1) a method of introducing a gas containing an organochlorine compound into an ultraviolet reaction tank and irradiating it with ultraviolet rays to decompose the organochlorine compound, wherein a part of the gas after ultraviolet irradiation is introduced into the ultraviolet reaction tank. The present invention provides a method for photolyzing an organic chlorine compound, which is characterized in that it is returned. Furthermore, as a preferred embodiment of the present invention, (2) the photolysis method for an organochlorine compound according to (1), wherein the organochlorine compound is extracted in a gas state from contaminated soil or groundwater. ) Gas return rate after UV irradiation is 0.1-70%
The method for photolyzing an organochlorine compound according to item (1) or (2) is
【0005】[0005]
【発明の実施の形態】本発明方法は、有機塩素化合物を
含有するガスに適用することができる。対象とする有機
塩素化合物には特に制限はないが、本発明方法は脂肪族
塩素化合物の分解に適しており、特にトリクロロエチレ
ン及びテトラクロロエチレンを効率よく分解することが
できる。対象とする有機塩素化合物を含有するガスには
特に制限はなく、塗装工場の排ガス、ドライクリーニン
グ工場の排ガス、汚染された土壌からの真空抽出ガス、
地下水のエアーストリッピングの際に発生するガス等に
適用することができる。本発明方法は、これらの中で、
特に土壌又は地下水から有機塩素化合物を抽出したガス
の処理に適している。土壌や地下水の有機塩素化合物汚
染は、主としてトリクロロエチレン又はテトラクロロエ
チレンによる場合が多い。汚染が土壌の場合は、主に真
空抽出法によって、また、地下水の場合はいったん揚水
し曝気法によって空気と混合した状態で有機塩素化合物
が取り出される。この空気中の有機塩素化合物の濃度
は、真空抽出法の場合、数千〜一万ppmに達する場合も
ある。本発明方法においては、紫外線反応槽において、
有機塩素化合物を含むガスに紫外線を照射する。紫外線
の有するエネルギーは波長に反比例するので、紫外線が
300nm以下の波長のものを含むと、有機塩素化合物
の炭素−塩素結合を切断するために十分なエネルギーが
供給されるので好ましい。有機塩素化合物に紫外線が照
射されると、塩素原子の非結合性のn電子が励起され、
炭素−塩素結合がラジカル的に切断する。有機塩素化合
物が、トリクロロエチレン、テトラクロロエチレン等の
ように、炭素−炭素二重結合を有し、かつ、炭素原子に
塩素原子が結合していると、波長約200nm付近に最
大吸収ピークを有するので、300nm以下の波長を有
する紫外線を特に効率よく吸収し、炭素−炭素二重結合
のπ電子が励起され、炭素−塩素結合のラジカル的切断
が起こる。BEST MODE FOR CARRYING OUT THE INVENTION The method of the present invention can be applied to a gas containing an organic chlorine compound. The target organic chlorine compound is not particularly limited, but the method of the present invention is suitable for decomposing an aliphatic chlorine compound, and particularly trichlorethylene and tetrachloroethylene can be efficiently decomposed. There is no particular limitation on the gas containing the target organochlorine compound, and there is no particular limitation on exhaust gas from painting plants, exhaust gas from dry cleaning plants, vacuum extraction gas from contaminated soil,
It can be applied to gas generated during air stripping of groundwater. Among these, the method of the present invention is
In particular, it is suitable for treating gas obtained by extracting organic chlorine compounds from soil or groundwater. Organochlorine contamination of soil and groundwater is often mainly caused by trichloroethylene or tetrachloroethylene. When the contamination is soil, the organic chlorine compound is mainly taken out by vacuum extraction method, and in the case of groundwater, the organic chlorine compound is taken out in a state of being once mixed with air by pumping and aeration method. The concentration of the organic chlorine compound in the air may reach several thousands to 10,000 ppm in the case of the vacuum extraction method. In the method of the present invention, in the ultraviolet reaction tank,
The gas containing the organic chlorine compound is irradiated with ultraviolet rays. Since the energy of ultraviolet rays is inversely proportional to the wavelength, it is preferable that the ultraviolet rays include those having a wavelength of 300 nm or less, because sufficient energy is supplied to break the carbon-chlorine bond of the organic chlorine compound. When the organic chlorine compound is irradiated with ultraviolet light, non-bonded n electrons of a chlorine atom are excited,
The carbon-chlorine bond is radically broken. When the organic chlorine compound has a carbon-carbon double bond, such as trichloroethylene and tetrachloroethylene, and a chlorine atom is bonded to a carbon atom, it has a maximum absorption peak near a wavelength of about 200 nm, and thus has a wavelength of 300 nm. Ultraviolet rays having the following wavelengths are absorbed particularly efficiently, the π electron of the carbon-carbon double bond is excited, and radical cleavage of the carbon-chlorine bond occurs.
【0006】上述のごとく、紫外線は波長300nm以
下のものを含むことが好ましいが、同時に300nmを
超える波長の光は、有機塩素化合物の分解により生成す
る塩素分子により吸収され有効に利用される。紫外線の
照射に用いることができる光源としては、例えば、低圧
水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、キセノ
ンランプ、重水素ランプ、メタルハライドランプ等を挙
げることができる。これらの中で、紫外線照射効率の高
い低圧水銀ランプを、特に好適に使用することができ
る。光源を保護するためにランプの保護筒を設ける場合
は、石英ガラス、透明テフロン製がよく、パイレックス
ガラスは300nm以下の波長をカットするので適当で
はない。本発明方法においては、有機塩素化合物は紫外
線を吸収して励起され不安定になると脱塩素反応を起こ
し、系内に酸素分子が存在するときは自らは酸素分子と
反応して、酸素原子とも結合した塩素原子を有する反応
中間体となる。放出された塩素ラジカルは、一部は2個
が反応して塩素分子となり、残部はさらに他の有機塩素
化合物の分子をラジカル的に攻撃し、炭素中心ラジカル
を生成する。炭素中心ラジカルは系内に酸素分子が存在
するときは酸素分子と反応して、同様に酸素原子とも結
合した塩素原子を有する反応中間体となる。このような
ラジカル反応の結果、光分解生成物として最終的に二酸
化炭素、塩化水素、酸クロライド、ホスゲン、塩素分子
等を生成する。反応は連鎖的に進行するので、この反応
の量子収率は一般的に高く、効率よく有機塩素化合物の
濃度を低下させることができる。[0006] As described above, it is preferable that the ultraviolet rays include those having a wavelength of 300 nm or less. At the same time, light having a wavelength exceeding 300 nm is effectively absorbed by chlorine molecules generated by the decomposition of the organic chlorine compound. Examples of the light source that can be used for irradiation with ultraviolet light include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, a xenon lamp, a deuterium lamp, and a metal halide lamp. Among these, a low-pressure mercury lamp having high ultraviolet irradiation efficiency can be particularly preferably used. When a lamp protection tube is provided to protect the light source, quartz glass or transparent Teflon is preferable, and Pyrex glass is not suitable because it cuts wavelengths of 300 nm or less. In the method of the present invention, the organic chlorine compound undergoes a dechlorination reaction when it becomes unstable when it is excited by absorbing ultraviolet light, and when an oxygen molecule is present in the system, it reacts with the oxygen molecule to bond with an oxygen atom. It becomes a reaction intermediate having a chlorine atom. Two of the released chlorine radicals react to form chlorine molecules, and the remaining radicals attack other organic chlorine compound molecules radically to generate carbon-centered radicals. When an oxygen molecule is present in the system, the carbon-centered radical reacts with the oxygen molecule to form a reaction intermediate having a chlorine atom also bonded to an oxygen atom. As a result of such a radical reaction, carbon dioxide, hydrogen chloride, acid chloride, phosgene, chlorine molecules and the like are finally produced as photolysis products. Since the reaction proceeds in a chain, the quantum yield of this reaction is generally high, and the concentration of the organochlorine compound can be efficiently reduced.
【0007】光分解反応により生成する塩素分子は、波
長約330nmに最大吸収ピークを有し、それより短波
長側では急激に吸光度が減少するが、長波長側では可視
部まで吸光度の減少は比較的小さいため、特に低圧水銀
ランプから照射される波長のうち、トリクロロエチレン
やテトラクロロエチレンが吸収する波長254nmをほ
とんど吸収しないが、トリクロロエチレンやテトラクロ
ロエチレンに吸収されない比較的長波長の紫外線と可視
光線の一部を吸収する。したがって、分解反応により生
成した塩素分子を含むガスを紫外線反応槽に返送する
と、トリクロロエチレンやテトラクロロエチレンの光吸
収を妨害することなく塩素分子は光励起される。光励起
された塩素分子は塩素原子に解裂し、未反応のトリクロ
ロエチレン分子やテトラクロロエチレン分子を攻撃し、
続いてこれらを酸化分解する。このため、紫外線反応槽
で効率よく有機塩素化合物の光分解が起こり、コンパク
トな反応槽での処理が可能となる。本発明方法におい
て、紫外線照射後のガス返送率は、0.1〜70%であ
ることが好ましく、5〜60%であることがより好まし
く、10〜50%であることがさらに好ましい。本発明
方法においては、紫外線照射後の塩素分子を含有するガ
スを紫外線反応槽に少量返送することにより、有機塩素
化合物の分解率が飛躍的に向上するが、ガス返送率が
0.1%未満であると、本発明方法の効果が十分に得ら
れないおそれがある。また、ガス返送率が70%を超え
ても、有機塩素化合物の分解率はガス返送率の増加にと
もなっては向上せず、ガス返送のためのエネルギー消費
量が大きくなり、紫外線反応槽内における圧損が大きく
なるおそれがある。Chlorine molecules produced by the photodecomposition reaction have a maximum absorption peak at a wavelength of about 330 nm, and the absorbance decreases sharply on the shorter wavelength side, but on the longer wavelength side, the decrease of the absorbance up to the visible region is compared. Since it is relatively small, it absorbs little of the wavelength of 254 nm, which is absorbed by trichlorethylene or tetrachloroethylene, but absorbs part of the relatively long wavelength ultraviolet and visible light that is not absorbed by trichlorethylene or tetrachloroethylene. To do. Therefore, when the gas containing chlorine molecules generated by the decomposition reaction is returned to the ultraviolet reaction tank, the chlorine molecules are photoexcited without interfering with the light absorption of trichlorethylene or tetrachloroethylene. The photoexcited chlorine molecule is cleaved into chlorine atoms, attacking unreacted trichlorethylene molecule and tetrachloroethylene molecule,
Subsequently, these are oxidatively decomposed. Therefore, the photolysis of the organic chlorine compound occurs efficiently in the ultraviolet reaction tank, and the treatment in the compact reaction tank becomes possible. In the method of the present invention, the gas return rate after irradiation with ultraviolet rays is preferably 0.1 to 70%, more preferably 5 to 60%, and further preferably 10 to 50%. In the method of the present invention, by returning a small amount of gas containing chlorine molecules after irradiation of ultraviolet rays to the ultraviolet reaction tank, the decomposition rate of the organic chlorine compound is dramatically improved, but the gas return rate is less than 0.1%. If so, the effect of the method of the present invention may not be sufficiently obtained. Further, even if the gas return rate exceeds 70%, the decomposition rate of the organochlorine compound does not improve with the increase in the gas return rate, and the energy consumption for returning the gas increases, which causes The pressure loss may increase.
【0008】[0008]
【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 トリクロロエチレン約500ppmを含有する空気を用い
て、紫外線照射後のガスの返送率とトリクロロエチレン
の分解率の関係を調べた。図1は、本実施例に用いた紫
外線反応槽の断面図であり、図2は、本実施例に用いた
装置の説明図である。紫外線反応槽1は、内部に直径2
cmの石英管2を備えた直径10cm、高さ20cmのパイレ
ックスガラス製内部照射型円筒状反応容器3であり、石
英管には殺菌ランプ4[東芝(株)製、GL 6(6
W)]を挿入し、点燈した。紫外線反応槽1の下部に設
けたガス入口5よりトリクロロエチレンを含有する空気
を毎分1リットル導入し、紫外線反応槽の上部に設けた
紫外線照射後のガス出口6にバイパスを設け、ポンプ7
により紫外線照射後のガスの一部を紫外線反応槽に返送
した。紫外線照射後のガス返送量は流量計8により測定
し、返送率を算出した。図2のA点及びB点においてガ
スをサンプリングし、反応が定常状態になったときの、
反応容器入口と出口のガスのトリクロロエチレン濃度
を、FID検出器付きガスクロマトグラフで測定した。
紫外線照射後のガスの返送を行わない場合、トリクロロ
エチレンの分解率は87.5%であったが、ガス返送率
を5%とするとトリクロロエチレンの分解率は一挙に9
7.4%に向上した。さらに、ガス返送率を10%、3
0%、50%とすると、トリクロロエチレンの分解率は
それぞれ98.6%、99.0%、98.8%となった。
結果を第1表及び図3に示す。EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 Using air containing about 500 ppm of trichlorethylene, the relationship between the gas return rate after ultraviolet irradiation and the trichlorethylene decomposition rate was investigated. FIG. 1 is a cross-sectional view of the ultraviolet reaction tank used in this example, and FIG. 2 is an explanatory view of the apparatus used in this example. The ultraviolet reaction tank 1 has a diameter of 2 inside.
An internal irradiation type cylindrical reaction vessel 3 made of Pyrex glass having a diameter of 10 cm and a height of 20 cm equipped with a quartz tube 2 of cm, and a sterilization lamp 4 [made by Toshiba Corporation, GL 6 (6
W)] was inserted and turned on. 1 liter / min of air containing trichlorethylene was introduced from a gas inlet 5 provided in the lower part of the ultraviolet reaction tank 1, and a bypass was provided in a gas outlet 6 after ultraviolet irradiation provided in an upper part of the ultraviolet reaction tank, and a pump 7
Then, a part of the gas after ultraviolet irradiation was returned to the ultraviolet reaction tank. The amount of gas returned after ultraviolet irradiation was measured by the flow meter 8 to calculate the return rate. When the gas is sampled at the points A and B in FIG. 2 and the reaction reaches a steady state,
The trichloroethylene concentration of the gas at the inlet and the outlet of the reaction vessel was measured by a gas chromatograph equipped with an FID detector.
When the gas was not returned after UV irradiation, the decomposition rate of trichlorethylene was 87.5%, but if the gas return rate was 5%, the decomposition rate of trichlorethylene was 9 at a stretch.
It improved to 7.4%. Furthermore, the gas return rate is 10%, 3
At 0% and 50%, the decomposition rates of trichlorethylene were 98.6%, 99.0% and 98.8%, respectively.
The results are shown in Table 1 and FIG.
【0009】[0009]
【表1】 [Table 1]
【0010】第1表及び図3の結果から、紫外線照射後
のガスを紫外線反応槽にごく少量返送することによって
もトリクロロエチレンの分解率が飛躍的に向上し、ガス
返送率が10%を超えるとトリクロロエチレンの分解率
はほぼ一定となることが分かる。From the results shown in Table 1 and FIG. 3, the decomposition rate of trichlorethylene was drastically improved by returning a very small amount of the gas after irradiation with ultraviolet rays to the ultraviolet reaction tank, and when the gas returning rate exceeded 10%. It can be seen that the decomposition rate of trichlorethylene becomes almost constant.
【0011】[0011]
【発明の効果】本発明方法によれば、紫外線照射後のガ
スに含まれている塩素分子が、紫外線反応槽において有
機塩素化合物には吸収されない波長の長い紫外線を有効
に吸収し、有機塩素化合物の分解に寄与するので、ガス
中の有機塩素化合物を効率的に分解除去することができ
る。本発明方法は、特に有機塩素化合物により汚染され
た地下水や土壌の浄化に有効であり、コンパクトな反応
槽を用いて有機塩素化合物によって汚染された土壌や地
下水を経済的に浄化することができる。EFFECTS OF THE INVENTION According to the method of the present invention, chlorine molecules contained in a gas after being irradiated with ultraviolet rays effectively absorb ultraviolet rays having a long wavelength which are not absorbed by the organic chlorine compounds in the ultraviolet reaction tank, and the chlorine compounds are Since it contributes to the decomposition of, the organic chlorine compound in the gas can be efficiently decomposed and removed. The method of the present invention is particularly effective for purification of groundwater and soil contaminated with organic chlorine compounds, and can economically purify soil and groundwater contaminated with organic chlorine compounds using a compact reaction tank.
【図1】図1は、実施例に用いた紫外線反応槽の断面図
である。FIG. 1 is a sectional view of an ultraviolet reaction tank used in Examples.
【図2】図2は、実施例に用いた装置の説明図である。FIG. 2 is an explanatory diagram of an apparatus used in Examples.
【図3】図3は、ガス返送率とトリクロロエチレンの分
解率の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the gas return rate and the decomposition rate of trichlorethylene.
1 紫外線反応槽 2 石英管 3 内部照射型円筒状反応容器 4 殺菌ランプ 5 ガス入口 6 ガス出口 7 ポンプ 8 流量計 1 UV reaction tank 2 Quartz tube 3 Internal irradiation type cylindrical reaction vessel 4 Sterilization lamp 5 Gas inlet 6 Gas outlet 7 Pump 8 Flow meter
Claims (1)
応槽に導き、紫外線を照射して有機塩素化合物を分解す
る方法において、紫外線照射後のガスの一部を紫外線反
応槽に返送することを特徴とする有機塩素化合物の光分
解法。1. A method of introducing a gas containing an organic chlorine compound into an ultraviolet reaction tank and irradiating it with ultraviolet rays to decompose the organic chlorine compound, wherein a part of the gas after ultraviolet irradiation is returned to the ultraviolet reaction tank. Photolysis method for organic chlorine compounds.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8069262A JPH09234338A (en) | 1996-02-29 | 1996-02-29 | Photolysis of organochlorine compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8069262A JPH09234338A (en) | 1996-02-29 | 1996-02-29 | Photolysis of organochlorine compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09234338A true JPH09234338A (en) | 1997-09-09 |
Family
ID=13397624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8069262A Pending JPH09234338A (en) | 1996-02-29 | 1996-02-29 | Photolysis of organochlorine compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09234338A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000017687A (en) * | 1999-04-30 | 2000-04-06 | 최수현 | Photocatalyst-coated thin film photoreactor system for the simultaneous or the respective treatment of SOx and NOx |
EP1010453A1 (en) * | 1998-12-16 | 2000-06-21 | Canon Kabushiki Kaisha | Method and apparatus for decomposing gaseous aliphatic hydrocarbon halide compound |
EP1163946A1 (en) * | 2000-06-16 | 2001-12-19 | Canon Kabushiki Kaisha | Process and system for decomposing pollutants |
JP2002136867A (en) * | 2000-05-30 | 2002-05-14 | Canon Inc | Adsorbent regeneration treatment process and equipment for the same |
JP2002273173A (en) * | 2001-03-21 | 2002-09-24 | Adeka Engineering & Consutruction Co Ltd | Apparatus and method for decomposing and removing volatile organic compound |
US6616815B2 (en) | 1998-06-22 | 2003-09-09 | Canon Kabushiki Kaisha | Method of decomposing halogenated aliphatic hydrocarbon compounds or aromatic compounds and apparatus to be used for the same as well as method of clarifying exhaust gas and apparatus to be used for the same |
US7018514B2 (en) | 2001-11-12 | 2006-03-28 | Canon Kabushiki Kaisha | Method and apparatus for processing substances to be decomposed |
US7108837B2 (en) * | 2000-02-29 | 2006-09-19 | Canon Kabushiki Kaisha | Polluted soil remediation apparatus and pollutant degrading apparatus |
US7163615B2 (en) | 2001-11-12 | 2007-01-16 | Canon Kabushiki Kaisha | Method of treating substance to be degraded and its apparatus |
-
1996
- 1996-02-29 JP JP8069262A patent/JPH09234338A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6616815B2 (en) | 1998-06-22 | 2003-09-09 | Canon Kabushiki Kaisha | Method of decomposing halogenated aliphatic hydrocarbon compounds or aromatic compounds and apparatus to be used for the same as well as method of clarifying exhaust gas and apparatus to be used for the same |
EP1010453A1 (en) * | 1998-12-16 | 2000-06-21 | Canon Kabushiki Kaisha | Method and apparatus for decomposing gaseous aliphatic hydrocarbon halide compound |
US6497795B1 (en) | 1998-12-16 | 2002-12-24 | Canon Kabushiki Kaisha | Method and apparatus for decomposing gaseous aliphatic hydrocarbon halide compound |
US7163665B2 (en) | 1998-12-16 | 2007-01-16 | Canon Kabushiki Kaisha | Apparatus for decomposing gaseous aliphatic hydrocarbon halide compounds |
KR20000017687A (en) * | 1999-04-30 | 2000-04-06 | 최수현 | Photocatalyst-coated thin film photoreactor system for the simultaneous or the respective treatment of SOx and NOx |
US7108837B2 (en) * | 2000-02-29 | 2006-09-19 | Canon Kabushiki Kaisha | Polluted soil remediation apparatus and pollutant degrading apparatus |
JP2002136867A (en) * | 2000-05-30 | 2002-05-14 | Canon Inc | Adsorbent regeneration treatment process and equipment for the same |
EP1163946A1 (en) * | 2000-06-16 | 2001-12-19 | Canon Kabushiki Kaisha | Process and system for decomposing pollutants |
US6699370B2 (en) | 2000-06-16 | 2004-03-02 | Canon Kabushiki Kaisha | Process and system for decomposing pollutants |
JP2002273173A (en) * | 2001-03-21 | 2002-09-24 | Adeka Engineering & Consutruction Co Ltd | Apparatus and method for decomposing and removing volatile organic compound |
US7018514B2 (en) | 2001-11-12 | 2006-03-28 | Canon Kabushiki Kaisha | Method and apparatus for processing substances to be decomposed |
US7163615B2 (en) | 2001-11-12 | 2007-01-16 | Canon Kabushiki Kaisha | Method of treating substance to be degraded and its apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3402101B2 (en) | Organochlorine photolysis equipment | |
JPH0611378B2 (en) | Method for removing volatile organic chlorine compounds | |
JPH08504666A (en) | Contaminated water treatment method | |
JPH09234338A (en) | Photolysis of organochlorine compound | |
US20040071589A1 (en) | Odor control through air-facilitated injection of hydroxyl radicals | |
JPH08243351A (en) | Decomposition method of organic chlorine compound | |
JPH09299753A (en) | Organic chlorine compound photolysis device | |
JPH11300334A (en) | Decomposing and removing method of organic chlorine compound such as dioxins in soil | |
JP2000325971A (en) | Polluted water treatment method and apparatus | |
JP3384464B2 (en) | Method for treating volatile organic chlorine compounds | |
JP3699055B2 (en) | Equipment for decomposing gaseous organic compounds | |
JP2669375B2 (en) | Decomposition equipment for organic chlorine compounds in water | |
JP3739169B2 (en) | Organochlorine compound decomposition equipment | |
Kargar et al. | Kinetics of degradation of perchloroethylene under ultrasonic irradiation and photooxidation in aqueous solution | |
JP2001240559A (en) | Decomposition method of organic chlorine compounds and decomposition apparatus therefor | |
JP2001259664A (en) | Method and device for cleaning contaminated water and polluted gas | |
JPH09234339A (en) | Photodecomposition of organochlorine compound | |
JPH11262780A (en) | Decomposition treatment of organohalogen compound | |
JPH06182151A (en) | Treatment of exhaust gas | |
JPH0871548A (en) | Method and apparatus for treating aqueous solution containing organochlorine compound | |
JPH02184393A (en) | Oxidation of organic compound in water | |
JP3997949B2 (en) | Purification method of contaminated water | |
JP2001220358A (en) | Method for photolyzing organochlorine compound and photolyzing apparatus | |
JP2005103519A (en) | Method and apparatus for decomposing pollutant | |
JP3854898B2 (en) | Decomposition product decomposition method and apparatus |