JPH09227212A - Production of ni/ysz cermet raw material - Google Patents
Production of ni/ysz cermet raw materialInfo
- Publication number
- JPH09227212A JPH09227212A JP8065147A JP6514796A JPH09227212A JP H09227212 A JPH09227212 A JP H09227212A JP 8065147 A JP8065147 A JP 8065147A JP 6514796 A JP6514796 A JP 6514796A JP H09227212 A JPH09227212 A JP H09227212A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- raw material
- calcination
- ysz
- material powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9066—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Inert Electrodes (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、固体電解質型燃料
電池(以下SOFCとも言う)の燃料電極材料等に用い
られるNi/YSZサーメット原料粉末の製造方法に関
する。特には、SOFCの発電特性及び耐久性の向上に
寄与し得る、粉体の組成と組織の均一性が向上しかつ焼
結性が適度にコントロールされたNi/YSZサーメッ
ト原料粉末の製造方法に関する。さらには、そのような
Ni/YSZサーメット原料粉末を用いたSOFCの製
造方法に関する。TECHNICAL FIELD The present invention relates to a method for producing a Ni / YSZ cermet raw material powder used as a fuel electrode material for a solid oxide fuel cell (hereinafter also referred to as SOFC). In particular, the present invention relates to a method for producing a Ni / YSZ cermet raw material powder which can contribute to the improvement of the power generation characteristics and durability of SOFC and which has an improved uniformity of the composition and structure of the powder and an appropriately controlled sinterability. Furthermore, the present invention relates to a method for manufacturing SOFC using such Ni / YSZ cermet raw material powder.
【0002】[0002]
【従来の技術】SOFCの燃料電極用材料を例にとって
従来技術を説明する。SOFCの燃料電極用材料として
は、NiOとY2 O3 安定化ZrO2 (YSZ)とを混
合複合化した複合粉末の焼結膜が主に用いられている
(特開昭61−153280、特開昭61−19857
0等)。なお、焼結膜中のNiOは、SOFCの運転中
に還元されてNiとなり、該膜はNi/YSZサーメッ
ト膜となる。2. Description of the Related Art A conventional technique will be described by taking an SOFC fuel electrode material as an example. As a fuel electrode material for SOFC, a sintered film of a composite powder obtained by mixing and compositing NiO and Y 2 O 3 stabilized ZrO 2 (YSZ) is mainly used (Japanese Patent Laid-Open No. 61-153280, Japanese Patent Laid-Open No. 63-153280). Sho 61-19857
0 etc.). The NiO in the sintered film is reduced to Ni during the operation of SOFC, and the film becomes a Ni / YSZ cermet film.
【0003】このようなNi/YSZサーメット用の原
料粉末の製造方法としては、一般的に、NiO粉とYS
Z粉を両者とも固体の状態で混合し、その後昇温(仮
焼)して若干焼結することにより複合化する方法(固体
混合法)が採られている。さらに、仮焼後に複合粉を粉
砕してスラリー塗布用の原料粉末を得る方法も知られて
いる(特開平6−295731)。混合方法としては、
ボールミルを用いるものや、メカノケミカル的機械混合
によるものが知られている。また、Ni、Zr、Yをイ
オン状態で混合し、これを熱分解する方法も提案されて
いる(特開平7−29575)。As a method for producing such a raw material powder for Ni / YSZ cermet, NiO powder and YS are generally used.
A method (solid mixing method) in which both Z powders are mixed in a solid state and then heated (calcined) and slightly sintered to form a composite (solid mixing method) is adopted. Further, a method of pulverizing the composite powder after calcination to obtain a raw material powder for slurry application is also known (JP-A-6-295731). As a mixing method,
The one using a ball mill and the one using mechanochemical mechanical mixing are known. Further, a method of mixing Ni, Zr, and Y in an ionic state and thermally decomposing the mixture has also been proposed (JP-A-7-29575).
【0004】Ni/YSZサーメットは、各成分(Ni
とYSZの)が交錯した微構造を有するが、Niが網目
のようにつながっているものは導電性が良く、NiやY
SZ粒の凝集が生じて、Niの網目が切断されているも
のは導電性が悪い。SOFCの燃料電極の導電性が悪い
とSOFCの発電効率は低下する。したがって、Niや
YSZの凝集がなく、Niの網目構造がしっかりと形成
されうるようなNiO/YSZ複合粉末が求められる。
さらに、NiはSOFCの運転中にも焼結凝集を起こそ
うとするので、Niの網目は均一でなければならないと
いう要請もある。なおNiが凝集すると、Ni、固体電
解質、気相(燃料ガス)の三相界面が減少して酸素イオ
ンと燃料ガスとの反応が低下するという不利も伴う。Ni / YSZ cermet is composed of various components (Ni
And YSZ) have a microstructure in which Ni and YSZ are connected to each other like a mesh has good conductivity, and Ni or Y
If the SZ grains are aggregated and the Ni network is cut, the conductivity is poor. If the conductivity of the SOFC fuel electrode is poor, the power generation efficiency of the SOFC decreases. Therefore, there is a demand for a NiO / YSZ composite powder in which Ni and YSZ are not aggregated and a Ni network structure can be firmly formed.
Further, since Ni tends to cause sinter aggregation even during the operation of SOFC, there is also a demand that the mesh of Ni should be uniform. Note that when Ni is aggregated, the three-phase interface of Ni, the solid electrolyte, and the gas phase (fuel gas) decreases, and the reaction between oxygen ions and the fuel gas decreases, which is also disadvantageous.
【0005】[0005]
【発明が解決しようとする課題】上述の従来の製造方法
にあっては、次のような問題があった。 ボールミル混合法:混合粉のうち、比重の大きな成
分(NiO)や粒径の大きな成分が沈降して、粉末の組成む
らが起こりやすい。特に、液体を媒体として湿式混合を
行う場合、混合処理後の乾燥工程で、このような沈降現
象が起こりやすい。スラリー状態から噴霧乾燥等を行っ
ても、粒径差や比重差によって堆積速度が異なってくる
ので均一な粉体を得ることは困難である。また、SOF
Cの燃料極に適していると考えられている数μm 以下の
粉体を混合する場合には、乾式混合では粉体の凝集を一
次粒子レベルで解くことは困難である。The above-mentioned conventional manufacturing method has the following problems. Ball mill mixing method: Among the mixed powders, a component having a large specific gravity (NiO) or a component having a large particle size is precipitated, and the composition of the powder tends to be uneven. In particular, when wet mixing is performed using a liquid as a medium, such a sedimentation phenomenon is likely to occur in the drying step after the mixing process. Even if spray drying or the like is performed from the slurry state, it is difficult to obtain a uniform powder because the deposition rate varies due to the difference in particle size and the difference in specific gravity. Also, SOF
When powders of several μm or less, which are considered to be suitable for the fuel electrode of C, are mixed, it is difficult to deagglomerate the powders at the primary particle level by dry mixing.
【0006】 メカノケミカル的機械混合:この方法
は、一例を挙げれば、容器中に回転刃が設置され、容器
または回転刃自体の回転による遠心力、攪拌によって粉
末混合を促進するものである。このとき自然発生する熱
により自然に温度が上がった状態、または強制的に温度
を上げた状態で粉末同士の混合を行う。つまり熱によっ
て粉末間の結合を促進させることがメカノケミカル手法
の大きな特徴である。そして、この手法は、主には粗粉
体と微粉体との混合において、粗粉体表面上に微粉体を
吸着させて、殻と核から構成される複合粉末を作成する
表面改質手法として今日広く用いられるようになってき
ている。Mechanochemical mechanical mixing: In this method, for example, a rotary blade is installed in a container, and the powder mixing is promoted by centrifugal force and agitation by the rotation of the container or the rotary blade itself. At this time, the powders are mixed with each other in a state where the temperature is naturally raised by the heat generated naturally or the state where the temperature is forcibly raised. In other words, it is a major feature of the mechanochemical method that the bonding between the powders is promoted by heat. Then, this method is mainly used as a surface modification method in which a fine powder is adsorbed on the surface of the coarse powder in the mixing of the coarse powder and the fine powder to create a composite powder composed of a shell and a nucleus. It is becoming widely used today.
【0007】しかし、このメカノケミカル表面改質手法
は、粗粒子表面に微粒子を固着させるといった粒径差を
利用する場合が多く、そのために使用原料に制限が加え
られ、同等の粒径を有する材料間の混合といった目的に
対しては効果は発揮され難い。However, this mechanochemical surface modification method often utilizes the difference in particle size such that fine particles are fixed to the surface of coarse particles, and therefore the raw materials used are limited, and materials having the same particle size are used. It is difficult to exert the effect for the purpose such as mixing between.
【0008】熱分解法等の湿式法による原料粉は、固体
混合法による粉体よりは均一性に優れる。しかし、粉の
粒径のみならず、焼結性(収縮率、BET値等)を制御
しなければ、燃料電極の焼成時における焼成収縮により
セルの基体に加わる応力や、NiOのNiへの還元収縮
時の応力によって発生するクラック等によって、形成さ
れた膜が電極として機能しえなくなる。Raw material powders obtained by a wet method such as a thermal decomposition method are more uniform than powders obtained by a solid mixing method. However, if not only the particle size of the powder but also the sinterability (shrinkage rate, BET value, etc.) is controlled, the stress applied to the cell substrate due to firing shrinkage during firing of the fuel electrode and the reduction of NiO to Ni. The formed film cannot function as an electrode due to a crack or the like generated by the stress at the time of contraction.
【0009】本発明は、SOFCの発電特性及び耐久性
の向上に寄与し得る、粉体の組成と組織の均一性が向上
しかつ焼結性が適度にコントロールされたNi/YSZ
サーメット原料粉末の製造方法を提供することを目的と
する。The present invention is a Ni / YSZ having improved composition of powder and uniformity of structure and moderately controlled sinterability, which can contribute to improvement of power generation characteristics and durability of SOFC.
An object is to provide a method for producing a cermet raw material powder.
【0010】[0010]
【課題を解決するための手段】上記課題を解決するた
め、本発明のNi/YSZサーメット原料粉末の製造方
法は、 焼成・還元工程の後にNi/YSZサーメット
となるNi/YSZサーメット原料粉末(NiO/YS
Z複合粉末)を製造する方法であって; 湿式法によ
り、Ni、Zr、Y及び酸素を含む混合物を得る湿式混
合工程と、 該混合物を分解して上記各金属の酸化物を
含む粉粒体を得る分解工程と、 該粉粒体を仮焼する一
次仮焼工程と、 仮焼後の粉粒体(NiO/YSZ複合
粉末)を粉砕する粉砕工程と、 この粉砕工程で得られ
た粉砕粉を再度仮焼する二次仮焼工程と、 を含むこと
を特徴とする。つまり、湿式混合によって各元素の分散
性を高め、仮焼工程と粒度調整工程で原料粉末の焼結性
を調整するのである。この際、粉砕をはさんで複数回仮
焼をすることによって、小径でかつ焼結性の抑制され
た、SOFCの燃料極の成膜用に適した粉を得ることが
できる。すなわち、このような粉を用いて成膜した燃料
極は、導電性、通気性、耐久性に優れたものとなる。In order to solve the above problems, a method for producing a Ni / YSZ cermet raw material powder according to the present invention comprises a Ni / YSZ cermet raw material powder (NiO) which becomes a Ni / YSZ cermet after a firing / reduction step. / YS
Z composite powder); a wet mixing step of obtaining a mixture containing Ni, Zr, Y and oxygen by a wet method, and a granular material containing the oxide of each metal by decomposing the mixture. A primary calcination step of calcination of the powder and granules, a pulverization step of pulverizing the powder and granules (NiO / YSZ composite powder) after calcination, and a pulverized powder obtained in this pulverization step And a secondary calcination step of calcination again. That is, the dispersibility of each element is increased by wet mixing, and the sinterability of the raw material powder is adjusted in the calcining step and the grain size adjusting step. At this time, by performing calcination a plurality of times through pulverization, it is possible to obtain a powder having a small diameter and suppressed sinterability, which is suitable for film formation of the SOFC fuel electrode. That is, the fuel electrode formed by using such powder has excellent conductivity, air permeability, and durability.
【0011】[0011]
【発明の実施の形態】本発明の一態様のNi/YSZサ
ーメット原料粉末の製造方法は、 焼成・還元工程の後
にNi/YSZサーメットとなるNi/YSZサーメッ
ト原料粉末(NiO/YSZ複合粉末)を製造する方法
であって; Niイオン、Zrイオン、Yイオンを所望
割合で含む原料溶液を調整する溶液調整工程と、 共沈
溶液を上記原料溶液に混合して、上記各金属の1種以上
及び酸素を含む固体物質(共沈物質)を上記原料溶液か
ら共沈させる共沈工程と、 該共沈物質を分解して上記
各金属の酸化物を含む粉粒体を得る分解工程と、 該粉
粒体を仮焼する一次仮焼工程と、 仮焼後の粉粒体(N
iO/YSZ複合粉末)を粉砕する粉砕工程と、この粉
砕工程で得られた粉砕粉を再度仮焼する二次仮焼工程
と、 を含むことを特徴とする。なお、前述のとおり、
湿式混合工程→熱分解によりNi、Zr、Yの酸化物を
含む粉粒体を得ることとしてもよい。しかし、共沈粉の
方が粒径の均一性、組織の均一性に優れるので好まし
い。BEST MODE FOR CARRYING OUT THE INVENTION A method for producing a Ni / YSZ cermet raw material powder according to one aspect of the present invention is a method for producing a Ni / YSZ cermet raw material powder (NiO / YSZ composite powder) which becomes Ni / YSZ cermet after a firing / reduction step. A method for producing; a solution adjusting step of adjusting a raw material solution containing Ni ions, Zr ions, and Y ions in a desired ratio; and a coprecipitation solution is mixed with the raw material solution, and one or more of each metal and A coprecipitation step in which a solid substance containing oxygen (coprecipitation substance) is coprecipitated from the raw material solution; a decomposition process in which the coprecipitation substance is decomposed to obtain a granular material containing the oxide of each metal; Primary calcination step of calcining the granules, and powder and granules (N
The iO / YSZ composite powder) is pulverized, and the pulverized powder obtained in this pulverization step is secondarily calcined again. As mentioned above,
Wet mixing step → Pyrolysis may be performed to obtain a powder or granular material containing oxides of Ni, Zr, and Y. However, the coprecipitated powder is preferable because it is excellent in the uniformity of the particle size and the uniformity of the structure.
【0012】この態様(共沈法)のNi/YSZサーメ
ット原料粉末の製造方法においては、原料溶液として硝
酸水溶液をベースとする溶液を用い、共沈溶液として蓚
酸水溶液を用いることができる。この場合、以下のよう
な共沈反応が生じる。 Ni2++(COOH)2 →Ni(COO)2 ↓+2H+ Zr4++2(COOH)2 →Zr(COO)4 ↓+4H+ 2Y3++3(COOH)2 →Y2 (COO)6 ↓+6H+ In the method for producing the Ni / YSZ cermet raw material powder of this aspect (coprecipitation method), a nitric acid aqueous solution-based solution can be used as the raw material solution, and an oxalic acid aqueous solution can be used as the coprecipitation solution. In this case, the following coprecipitation reaction occurs. Ni 2+ + (COOH) 2 → Ni (COO) 2 ↓ + 2H + Zr 4+ +2 (COOH) 2 → Zr (COO) 4 ↓ + 4H + 2Y 3+ +3 (COOH) 2 → Y 2 (COO) 6 ↓ + 6H +
【0013】上記態様のNi/YSZサーメット原料粉
末の製造方法においては、原料溶液及び共沈溶液をあら
かじめ60℃〜沸点に昇温させてから混合することが好
ましい。上記反応のうち蓚酸Niの沈降反応は、一般的
には、常温においては生じにくい。そのため、均一な組
成の共沈物質を得にくい。それに対して、上記温度域に
おいては、上述の3反応がほぼ均等に起こるため、均一
に成分が分散した共沈物質を能率よく得ることができ
る。In the method for producing the Ni / YSZ cermet raw material powder of the above aspect, it is preferable that the raw material solution and the coprecipitation solution are heated to 60 ° C. to the boiling point in advance and then mixed. Of the above reactions, the precipitation reaction of Ni oxalate is generally unlikely to occur at room temperature. Therefore, it is difficult to obtain a coprecipitated substance having a uniform composition. On the other hand, in the above temperature range, the above-mentioned three reactions occur almost uniformly, so that the coprecipitated substance in which the components are uniformly dispersed can be efficiently obtained.
【0014】本発明のNi/YSZサーメット原料粉末
をSOFCの燃料電極材として用いる場合には、該粉末
中におけるNiOとYSZとの重量比が30:70〜7
0:30であることが好ましい。YSZの比が70を越
えると粉末の焼成膜の導電率が低くなるので好ましくな
い。このような観点からは、上記混合物(原料溶液)中
における酸化ニッケル重量(換算値)と、YSZ重量
(換算値)との比が、50:50〜70:30であるこ
とがより好ましい。しかし、固体電解質膜と燃料極との
間の傾斜層用としては、低Niのものが、膜そのものの
導電率は小さいが、高Ni含有層と電解質との間の熱膨
張差に起因する応力を緩和できるので好ましい。When the Ni / YSZ cermet raw material powder of the present invention is used as a fuel electrode material for SOFC, the weight ratio of NiO and YSZ in the powder is 30: 70-7.
It is preferably 0:30. If the YSZ ratio exceeds 70, the conductivity of the powder fired film becomes low, which is not preferable. From this point of view, the ratio of the nickel oxide weight (converted value) to the YSZ weight (converted value) in the mixture (raw material solution) is more preferably 50:50 to 70:30. However, for the graded layer between the solid electrolyte membrane and the fuel electrode, a low Ni one has a low electric conductivity of the membrane itself, but a stress caused by a difference in thermal expansion between the high Ni content layer and the electrolyte. Can be relaxed, which is preferable.
【0015】本発明のNi/YSZサーメット原料粉末
をSOFCの燃料電極材として用いる場合には、Ni/
YSZサーメット原料粉末の粒径を0.1〜10μm と
することが好ましい。ガス透過性と導電率とのバランス
が良好だからである。この際、燃料電極の上層を比較的
粗い粒を用い、下層を比較的細かい粒を用いて形成する
こともできる。また、その場合、Ni/YSZサーメッ
ト原料粉末のBET値を0.8〜12.0とすることが
好ましい。BET値がこれより大きい場合には焼結が進
んで焼成クラックが入りやすくなり、またこれよりも小
さい場合には、焼結させるために焼成温度を上げる必要
性がある。しかし、SOFCのセル作製においては、セ
ルを構成する他の材料と焼成温度の整合をとらなければ
ならず、燃料極の焼成温度は、その燃料極を塗布する基
板の焼成温度以下とする必要があるので、燃料極の焼成
温度を上げることには制限がある。When the Ni / YSZ cermet raw material powder of the present invention is used as a SOFC fuel electrode material, Ni / YSZ
The particle size of the YSZ cermet raw material powder is preferably 0.1 to 10 μm. This is because the balance between gas permeability and conductivity is good. At this time, the upper layer of the fuel electrode may be formed using relatively coarse particles, and the lower layer may be formed using relatively fine particles. In that case, it is preferable that the BET value of the Ni / YSZ cermet raw material powder is 0.8 to 12.0. If the BET value is larger than this value, the sintering proceeds and firing cracks easily occur. If the BET value is smaller than this, it is necessary to raise the firing temperature for sintering. However, in the fabrication of SOFC cells, the firing temperature must be matched with the other materials that make up the cell, and the firing temperature of the fuel electrode must be below the firing temperature of the substrate on which the fuel electrode is applied. Therefore, raising the firing temperature of the fuel electrode is limited.
【0016】本発明のNi/YSZサーメット原料粉末
の製造方法においては、二次仮焼した後に、所望の粒度
やBET値が得られないときには、さらに粉砕、三次仮
焼、粉砕、四次仮焼、粉砕、五次仮焼へと進んでもよ
い。ただし、回数を繰り返しても粉砕によって微粒化さ
れるので粉体特性はある粒度、BET値に収束するので
大きな変化は現れなくなり、その処理効果は小さいもの
となる。また、工程数が増えるので製造条件上コスト高
となってくる。さらに、粉の形が丸みを帯びたものとな
り焼結性が低くなった場合には、SOFCセル基板の焼
成温度以上に昇温しなければ燃料極膜を成膜できない状
況になる可能性がある。このような理由から、工程繰り
返し数は5回以下に留めることが好ましい。In the method for producing the Ni / YSZ cermet raw material powder of the present invention, when the desired particle size and BET value cannot be obtained after the secondary calcination, further pulverization, tertiary calcination, pulverization and quaternary calcination are carried out. You may proceed to crushing and fifth calcination. However, even if the number of times is repeated, the particles are pulverized into fine particles, and the powder characteristics converge to a certain particle size and BET value, so that a large change does not appear and the treatment effect is small. Further, since the number of steps is increased, the cost is increased due to manufacturing conditions. Further, if the powder has a rounded shape and the sinterability is low, there is a possibility that the fuel electrode membrane cannot be formed unless the temperature is raised to the firing temperature of the SOFC cell substrate or higher. . For this reason, it is preferable to keep the number of process repetitions to 5 or less.
【0017】仮焼条件については一次仮焼の条件が(8
00〜1,250℃)×(2〜10Hr)であり、二次仮
焼の条件が(700〜1,050℃)×(2〜10Hr)
が好ましい。さらには一次仮焼の仮焼条件が(900〜
1,200℃)×(2〜10Hr)であり、二次仮焼の仮
焼条件が(800〜1,000℃)×(2〜10Hr)が
より好ましい。その理由は、一次仮焼の際には、800
℃以下の熱処理(仮焼)温度であると、硝酸成分が残る
可能性があって原料粉末の純度が落ちることと、このよ
うな熱処理の場合には、粉末が結晶化せずに焼結も進ま
ない微粒子のままの状態で残り、後のSOFC燃料極成
膜(焼成)の際に過剰に焼結して剥離やクラックの原因
となるからである。また、1,250℃以上の仮焼では
仮焼粉が固くなるので次工程での粉砕効率が低下し、製
造工程上好ましくない。二次仮焼の際には、温度が70
0℃以下では、粉末が殆ど焼結しないので二次仮焼の効
果が小さい。また、1,050℃以上であると、焼結が
進んで再び粒径の大きな粉体となり易い。したがって、
二次仮焼後の粒径がSOFCセルへの成膜に好ましい粒
度範囲に納まるように制御することが重要である。二次
仮焼の温度は一次仮焼の温度よりも低くする、つまり一
次仮焼よりも二次仮焼の条件を穏やかにすることが一般
的である。なぜならば、二次仮焼条件が高温、長時間で
あれば、一次仮焼終了粉よりも粒径の大きな粒子が生成
し、SOFCセルへの成膜に好ましくないからである。Regarding the calcination conditions, the condition of the primary calcination is (8
0 to 1,250 ° C.) × (2 to 10 hr), and the secondary calcination condition is (700 to 1,050 ° C.) × (2 to 10 hr)
Is preferred. Furthermore, the calcination conditions for the primary calcination (900 ~
1,200 ° C.) × (2 to 10 hr), and the calcination condition of the secondary calcination is more preferably (800 to 1,000 ° C.) × (2 to 10 hr). The reason is 800 at the time of primary calcination
If the heat treatment (calcination) temperature is ℃ or less, the nitric acid component may remain and the purity of the raw material powder decreases, and in the case of such heat treatment, the powder does not crystallize and is not sintered. This is because the fine particles that do not progress remain as they are, and excessively sinter during the subsequent SOFC fuel electrode film formation (calcination), which causes peeling and cracks. Further, calcination at 1,250 ° C. or higher causes the calcinated powder to become hard, which reduces the pulverization efficiency in the next step, which is not preferable in the manufacturing process. During the secondary calcination, the temperature is 70
Below 0 ° C., the powder hardly sinters, so the effect of secondary calcination is small. On the other hand, when the temperature is 1,050 ° C. or higher, the sintering proceeds and the powder having a large particle size is likely to be formed again. Therefore,
It is important to control the particle size after the secondary calcination so that it falls within a particle size range suitable for film formation on an SOFC cell. It is general that the temperature of the secondary calcination is lower than that of the primary calcination, that is, the condition of the secondary calcination is milder than that of the primary calcination. This is because if the secondary calcination conditions are high temperature and long time, particles having a larger particle size than the primary calcination finished powder are generated, which is not preferable for film formation on the SOFC cell.
【0018】また、本発明のNi/YSZサーメット原
料粉末をSOFCの燃料電極材として用いる場合には、
一次仮焼後の粉砕時に粒径を2μm 以下とすることが好
ましい。このとき、粉砕粒径が大きいと次工程の二次仮
焼にてより大きな粒子が生成し、SOFCセルへの成膜
材料として好ましくない。仮焼後あるいは粉砕後に必要
に応じて分級を行ってもよい。When the Ni / YSZ cermet raw material powder of the present invention is used as a fuel electrode material for SOFC,
At the time of pulverization after the primary calcination, the particle size is preferably 2 μm or less. At this time, if the pulverized particle size is large, larger particles are generated in the secondary calcination in the next step, which is not preferable as a film forming material for the SOFC cell. After calcination or crushing, classification may be carried out if necessary.
【0019】[0019]
【実施例】以下、本発明の実施例を説明する。図1は、
本発明の標準的な実施例に係るNi/YSZサーメット
原料粉末の製造方法及びその評価方法の工程を示すフロ
ーチャートである。このフローチャートを参照しつつ説
明する。Embodiments of the present invention will be described below. FIG.
It is a flowchart which shows the process of the manufacturing method of Ni / YSZ cermet raw material powder and its evaluation method which concern on the standard Example of this invention. Description will be made with reference to this flowchart.
【0020】(1) 原料溶液調整:YSZ原料としての硝
酸ジルコニウム・イットリウム水溶液(8mol%Y2 O3
含有、酸化物換算含有量23.4wt% )、NiO原料と
しての硝酸ニッケル6水和物結晶、共沈物質濃度を調整
するための純水をNiO/YSZ組成が65/35wt%
となるように混合し、よく攪拌した。(1) Preparation of raw material solution: zirconium nitrate / yttrium aqueous solution (8 mol% Y 2 O 3 as a YSZ raw material)
Content, oxide conversion content 23.4 wt%), nickel nitrate hexahydrate crystals as NiO raw material, pure water for adjusting the coprecipitating substance concentration is NiO / YSZ composition 65/35 wt%
And mixed well so that
【0021】(2) 共沈溶液調整:本実施例においては、
共沈溶液として蓚酸水溶液を用いた。容器に純水を取
り、約80℃程度に加熱する。この温水を攪拌しながら
蓚酸2水和物結晶を徐々に添加して溶解し、80℃〜9
0℃に保持した。蓚酸水溶液の量については、共沈工程
において金属イオンが完全に沈殿するように、蓚酸量を
化学量論比よりもわずかに過剰となるようすることが好
ましい。今回の過剰量は約5mol%とした。(2) Preparation of coprecipitation solution: In this example,
An oxalic acid aqueous solution was used as a coprecipitation solution. Pure water is taken into the container and heated to about 80 ° C. While stirring the warm water, oxalic acid dihydrate crystals were gradually added and dissolved.
It was kept at 0 ° C. Regarding the amount of the oxalic acid aqueous solution, it is preferable that the amount of oxalic acid is slightly in excess of the stoichiometric ratio so that the metal ions are completely precipitated in the coprecipitation step. The excess amount this time was about 5 mol%.
【0022】(3) 溶液混合→共沈:硝酸ニッケルと蓚酸
水溶液を室温で反応させても蓚酸ニッケル結晶は生成し
にくい。したがって、蓚酸ニッケルは硝酸塩などのニッ
ケル含有水溶液を加熱した状態で硝酸を加えることで生
成速度が速くなる。原料溶液(NiO/YSZ複合粉末
水溶液)を80℃〜90℃に加熱し、これを80℃〜9
0℃に加熱保持した硝酸水溶液中に、よく攪拌しながら
徐々に添加していくことで、蓚酸共沈法による沈殿生成
を行った。反応により、粉体が生成するので、溶液の攪
拌にはトルクのある攪拌機を使用することが好ましい。
この共沈反応により溶液は発熱反応を起こすので、反応
後は溶液温度が初期状態よりも10〜20℃程度上昇す
ることが普通である。全溶液を混合し終えた後、室温ま
で攪拌を継続しながら自然冷却した。(3) Solution mixing → coprecipitation: Nickel oxalate crystals are difficult to form even when nickel nitrate and an aqueous solution of oxalic acid are reacted at room temperature. Therefore, the production rate of nickel oxalate is increased by adding nitric acid in a state where a nickel-containing aqueous solution such as nitrate is heated. The raw material solution (NiO / YSZ composite powder aqueous solution) is heated to 80 ° C to 90 ° C, and this is heated to 80 ° C to 9 ° C.
A precipitate was formed by the oxalic acid coprecipitation method by gradually adding it to an aqueous nitric acid solution which was heated and maintained at 0 ° C. with good stirring. Since powder is produced by the reaction, it is preferable to use a stirrer having a torque for stirring the solution.
Since the solution causes an exothermic reaction due to the coprecipitation reaction, the temperature of the solution usually rises by about 10 to 20 ° C. from the initial state after the reaction. After all the solutions were mixed, the solution was naturally cooled while continuing to stir to room temperature.
【0023】(4) 乾燥:乾燥機内に反応物を静置し、1
20℃の熱風を送り沈殿物の水分を蒸発させた。この際
に、ろ過装置を用いて粉体(沈殿)と水分を分離しても
構わない。 (5) 熱分解:乾燥後の試料は500℃、5時間の熱処理
により、硝酸成分と残留蓚酸を除去した。その際の反応
は以下と推定される。 Ni(COO)2 →NiO+CO+CO2 Zr(COO)4 →ZrO2 +2CO+2CO2 Y2 (COO)6 →Y2 O3 +3CO+3CO2 (4) Drying: The reaction product was allowed to stand in a dryer for 1
Hot air at 20 ° C. was sent to evaporate the water content of the precipitate. At this time, the powder (precipitation) and the water may be separated by using a filtering device. (5) Pyrolysis: The dried sample was heat-treated at 500 ° C. for 5 hours to remove nitric acid components and residual oxalic acid. The reaction at that time is estimated as follows. Ni (COO) 2 → NiO + CO + CO 2 Zr (COO) 4 → ZrO 2 + 2CO + 2CO 2 Y 2 (COO) 6 → Y 2 O 3 + 3CO + 3CO 2
【0024】(6) 粉砕(解砕):2φと3φのPSZボ
ールを用いた湿式粉砕処理を行った。これは、二次粒子
の紛砕と均一化を目的とする。ただし、本共沈法による
粉末は、湿式レーザー回折粒度分布測定によれば、1μ
m 以下の粒子が全体の約80%を占め、二次粒子の大き
なものでさえその粒径は10〜20μm にあることか
ら、このボールミル粉砕処理を省略することも可能であ
る。(6) Pulverization (crushing): Wet pulverization treatment was performed using PSZ balls of 2φ and 3φ. This aims at crushing and homogenizing the secondary particles. However, the powder obtained by this coprecipitation method has a particle size of 1 μm according to the wet laser diffraction particle size distribution measurement.
It is also possible to omit this ball milling process, since particles of m or less account for about 80% of the total, and even large secondary particles have a particle size of 10 to 20 μm.
【0025】(7) 一次仮焼:得られた粉末を、1100
℃×5hr、1150℃×5hr,1200℃×5hr、14
00℃×5hrの各条件で一次仮焼(熱処理)を行った。
仮焼時には、主にNiOの微粉が焼結現象により他のN
iO粉に合体する。また、Y2 O3 がZrO2に徐々に
固溶して結晶化する。一次仮焼後の粉粒径、BET値を
表1に示す。(7) Primary calcination: The obtained powder was treated with 1100
℃ × 5hr, 1150 ℃ × 5hr, 1200 ℃ × 5hr, 14
Primary calcination (heat treatment) was performed under each condition of 00 ° C. × 5 hr.
At the time of calcination, NiO fine powder is mainly mixed with other N due to the sintering phenomenon.
Combine with iO powder. Further, Y 2 O 3 is gradually solid-dissolved in ZrO 2 and crystallized. Table 1 shows the powder particle size and the BET value after the primary calcination.
【0026】[0026]
【表1】 [Table 1]
【0027】(8) 粉砕:以下諸元の気流粉砕により一次
仮焼した粉を径2μm 以下に粉砕した。粉砕後の粒径及
びBET値についても表1に示す。なお、粉砕方法は、
微粉砕が可能であれば、ボールミル粉砕等の他の手段を
用いることができる。一次仮焼温度と粉砕との関係で
は、仮焼温度1,400℃のA4粉の場合、粒径2μm
以下にするのにきわめて長時間を要し、粉砕が困難であ
った。(8) Pulverization: The powder preliminarily calcined by air stream pulverization having the following specifications was pulverized to a diameter of 2 μm or less. Table 1 also shows the particle size and BET value after pulverization. The crushing method is
If fine pulverization is possible, other means such as ball mill pulverization can be used. Regarding the relationship between the primary calcination temperature and crushing, the particle size is 2 μm for A4 powder with a calcination temperature of 1400 ° C.
It took an extremely long time to make the amount below, and it was difficult to pulverize.
【0028】(9) 二次仮焼:粉砕した粉を1,000℃
×5hrの条件で二次仮焼した。この二次仮焼は、粉砕粉
を再び軽く焼結させることにより、粉砕粉の焼結性を抑
制することを目的とする。表1に示されているように、
二次仮焼によってBET値が減少している。なお、A4
粉において二次仮焼後もBET値が同じなのは、二次粉
砕によって粉末の凝集が解かれても、1,000℃×5
hrの二次仮焼では焼結が起こらないまでに一次仮焼によ
って粒子表面の活性低下が起こったことによる。(9) Secondary calcination: milled powder at 1,000 ° C
Secondary calcination was performed under the condition of × 5 hr. This secondary calcination aims to suppress the sinterability of the pulverized powder by lightly sintering the pulverized powder again. As shown in Table 1,
The BET value has decreased due to the secondary calcination. In addition, A4
The BET value of the powder remains the same after the secondary calcination, even though the powder is agglomerated by the secondary pulverization.
This is because the activity of the particle surface decreased due to the primary calcination before the sintering occurred in the secondary calcination of hr.
【0029】(10)成膜・焼成:得られたNi/YSZサ
ーメット原料粉末27部と、有機溶剤としてのエタノー
ルを68部、分散剤としてのポリカルボン酸型高分子界
面活性剤を1部、消泡剤としてのジアルキルスルホコハ
ク酸塩を1部、バインダーとしてのセルロースを3部混
合してスラリーを作製した。このスラリーをYSZ電解
質の基板上にディッピングによりスラリーコートした。
これを乾燥後1,400℃で焼成した。得られたサーメ
ット膜の厚さは80μm 、気孔率は27%であった。(10) Film formation and firing: 27 parts of the obtained Ni / YSZ cermet raw material powder, 68 parts of ethanol as an organic solvent, 1 part of a polycarboxylic acid type polymer surfactant as a dispersant, A slurry was prepared by mixing 1 part of dialkyl sulfosuccinate as an antifoaming agent and 3 parts of cellulose as a binder. This slurry was slurry-coated on a YSZ electrolyte substrate by dipping.
This was dried and then baked at 1,400 ° C. The obtained cermet film had a thickness of 80 μm and a porosity of 27%.
【0030】(11)導電率測定:サーメット膜をH2 雰囲
気、1,000℃×5Hrで還元後に四端子法により導電
率を測定した。その結果をも表1に示す。この結果で
は、A2の条件の粉が最も高い導電率(1,600s/c
m)を示した。従来の固体混合法による原料粉末を用い
た膜では導電率は1,100s/cm近辺なので、A2の実
施例の場合は、これよりも45%も向上した。[0030] (11) conductivity measurement: cermet film of H 2 atmosphere, and the conductivity was measured by the four probe method after reduction at 1,000 ° C. × 5 Hr. The results are also shown in Table 1. This result shows that the powder of A2 has the highest conductivity (1,600s / c
m). In the case of the film using the raw material powder by the conventional solid mixing method, the conductivity is around 1100 s / cm, so in the case of the example of A2, it is improved by 45%.
【0031】(12)セル製造・発電評価 表1に示すA2の粉末を使用して発電試験セルを作製し
て評価した。まず上記(10)と同様にNiO/YSZ複合
粉末スラリーを作製した。これを空気極(LaSrMn
O3 )と電解質(YSZ)からなる基体管に塗膜、乾
燥、1,400℃で焼成して、3%H2 雰囲気、1,0
00℃で還元処理した。燃料;11%H2O,89%H2
、酸化剤;空気4倍等量、燃料利用率40%、温度
1,000℃の運転条件で発電評価した結果、最大出力
0.5W/cm2 の高出力を示し、従来の粉末混合による粉
末を用いて作製したセルの最大出力(約0.42W/cm
2 )より高いことが確認された。(12) Cell production and power generation evaluation A power generation test cell was prepared using the powder of A2 shown in Table 1 and evaluated. First, a NiO / YSZ composite powder slurry was prepared in the same manner as (10) above. This is the air electrode (LaSrMn
O 3) and coating the substrate tube consisting of the electrolyte (YSZ), dried, and calcined at 1,400 ℃, 3% H 2 atmosphere, 1,0
Reduction treatment was carried out at 00 ° C. Fuel: 11% H 2 O, 89% H 2
, Oxidizer; 4 times equivalent amount of air, fuel utilization rate 40%, power generation evaluation under the operating conditions of temperature 1,000 ℃, the maximum output was 0.5 W / cm 2 and high output was shown. The maximum output of the cell made by using (about 0.42W / cm
2 ) It was confirmed that it was higher.
【0032】[0032]
【発明の効果】以上の説明から明らかなように、本発明
のNi/YSZサーメット原料粉末の製造方法は以下の
効果を発揮する。 焼結性の抑制された微粉を作製できるので、細粒・
多孔質のNi/YSZサーメットを得ることができる。
そのため、微細構造、通気性、導電性を合せもつ燃料極
用サーメットを提供でき、SOFCの発電性能を向上す
ることができる。 同じ組成の従来粉体よりも導電率が大きいので、S
OFC燃料電極を薄膜化することができ、それによっ
て、SOFCの発電性能を向上することができる。 焼結体及び焼成膜の組織の分散性に優れているた
め、高温環境下においてもNiやYSZの凝集が生じな
いため、導電特性の経時劣化を防止し信頼性を向上する
ことができる。 SOFCセルを作製する際の焼成温度の制約から、
要望される特性を有する粉体を得る為にも熱処理と粉砕
の繰り返しによる粉体調整は有効である。 燃料極自体の層構成要素別に熱処理、粉砕条件を変
えることで、各層に最適な焼成条件を有する粉体を与え
ることができ、電極特性を良好なものに保つことができ
る。As is clear from the above description, the method for producing the Ni / YSZ cermet raw material powder of the present invention exhibits the following effects. Since fine powder with suppressed sinterability can be produced,
A porous Ni / YSZ cermet can be obtained.
Therefore, it is possible to provide a cermet for a fuel electrode having a fine structure, air permeability, and conductivity, and it is possible to improve the power generation performance of SOFC. Since the conductivity is higher than that of the conventional powder of the same composition, S
The OFC fuel electrode can be thinned, and thereby the power generation performance of the SOFC can be improved. Since the sintered body and the fired film are excellent in dispersibility, Ni and YSZ do not aggregate even in a high temperature environment, so that deterioration of the conductive characteristics with time can be prevented and reliability can be improved. Due to the limitation of the firing temperature when manufacturing an SOFC cell,
In order to obtain a powder having desired characteristics, it is effective to adjust the powder by repeating heat treatment and pulverization. By changing the heat treatment and pulverization conditions for each layer constituent element of the fuel electrode itself, it is possible to give powder having optimum firing conditions to each layer, and it is possible to maintain good electrode characteristics.
【図1】本発明の一実施例にかかるNiO/YSZ複合
粉末の製造及び評価工程の一例を示す図である。FIG. 1 is a diagram showing an example of a manufacturing and evaluation process of NiO / YSZ composite powder according to an example of the present invention.
Claims (10)
メットとなるNi/YSZサーメット原料粉末(NiO
/YSZ複合粉末)を製造する方法であって;湿式法に
より、Ni、Zr、Y及び酸素を含む混合物を得る湿式
混合工程と、 該混合物を分解して上記各金属の酸化物を含む粉粒体を
得る分解工程と、 該粉粒体を仮焼する一次仮焼工程と、 仮焼後の粉粒体(NiO/YSZ複合粉末)を粉砕する
粉砕工程と、 この粉砕工程で得られた粉砕粉を再度仮焼する二次仮焼
工程と、 を含むことを特徴とするNi/YSZサーメット原料粉
末の製造方法。1. A raw material powder of Ni / YSZ cermet (NiO that becomes Ni / YSZ cermet after the firing / reduction process).
/ YSZ composite powder); a wet mixing step of obtaining a mixture containing Ni, Zr, Y and oxygen by a wet method, and powder particles containing an oxide of each of the above metals by decomposing the mixture. Decomposing step for obtaining a body, primary calcination step for calcination of the powder and granules, crushing step for crushing the powder and granules (NiO / YSZ composite powder) after calcination, and crushing obtained by this crushing step A secondary calcination step of calcining the powder again, and a method for producing a Ni / YSZ cermet raw material powder, comprising:
メットとなるNi/YSZサーメット原料粉末(NiO
/YSZ複合粉末)を製造する方法であって;Niイオ
ン、Zrイオン、Yイオンを所望割合で含む原料溶液を
調整する溶液調整工程と、 共沈溶液を上記原料溶液に混合して、上記各金属の1種
以上及び酸素を含む固体物質(共沈物質)を上記原料溶
液から共沈させる共沈工程と、 該共沈物質を分解して上記各金属の酸化物を含む粉粒体
を得る分解工程と、 該粉粒体を仮焼する一次仮焼工程と、 仮焼後の粉粒体(NiO/YSZ複合粉末)を粉砕する
粉砕工程と、 この粉砕工程で得られた粉砕粉を再度仮焼する二次仮焼
工程と、 を含むことを特徴とするNi/YSZサーメット原料粉
末の製造方法。2. A raw material powder of Ni / YSZ cermet (NiO which becomes a Ni / YSZ cermet after the firing / reduction step).
/ YSZ composite powder); a solution adjusting step of adjusting a raw material solution containing Ni ions, Zr ions, and Y ions in a desired ratio; A coprecipitation step of coprecipitating a solid substance (coprecipitated substance) containing one or more kinds of metals and oxygen from the raw material solution, and decomposing the coprecipitated substance to obtain a granular material containing an oxide of each metal. The decomposition step, the primary calcination step of calcination of the powder and granules, the pulverization step of pulverizing the powder and granules (NiO / YSZ composite powder) after the calcination, and the pulverized powder obtained in this pulverization step again A method for producing a Ni / YSZ cermet raw material powder, comprising: a secondary calcination step of calcination.
る溶液であり、 上記共沈溶液が蓚酸水溶液であり、 各水溶液をあらかじめ60℃〜沸点に昇温させてから混
合する請求項2記載のNi/YSZサーメット原料粉末
の製造方法。3. The method according to claim 2, wherein the raw material solution is a solution based on a nitric acid aqueous solution, the coprecipitation solution is an oxalic acid aqueous solution, and each aqueous solution is heated to 60 ° C. to a boiling point in advance and then mixed. A manufacturing method of Ni / YSZ cermet raw material powder.
50℃)×(2〜10Hr)であり、二次仮焼の仮焼条件
が(700〜1,050℃)×(2〜10Hr)である請
求項1、2又は3記載のNi/YSZサーメット原料粉
末の製造方法。4. The calcination condition of the primary calcination is (800 to 1,2)
Ni / YSZ cermet according to claim 1, 2 or 3, wherein the calcination condition of the secondary calcination is (700 to 1,050 ° C) x (2 to 10Hr). Method of manufacturing raw material powder.
00℃)×(2〜10Hr)であり、二次仮焼の仮焼条件
が(800〜1,000℃)×(2〜10Hr)である請
求項1、2又は3記載のNi/YSZサーメット原料粉
末の製造方法。5. The calcination condition of the primary calcination is (900 to 1,2)
Ni / YSZ cermet according to claim 1, 2 or 3, wherein (00 ° C) x (2 to 10 hr) and the secondary calcination calcination condition is (800 to 1,000 ° C) x (2 to 10 hr). Method of manufacturing raw material powder.
低い請求項1〜5いずれか1項記載のNi/YSZサー
メット原料粉末の製造方法。6. The method for producing a Ni / YSZ cermet raw material powder according to claim 1, wherein the secondary calcination temperature is lower than the primary calcination temperature.
で、合計五回以内繰り返す請求項1〜6いずれか1項記
載のNi/YSZサーメット原料粉末の製造方法。7. The method for producing a Ni / YSZ cermet raw material powder according to claim 1, wherein the calcining step is repeated within a total of five times with a crushing step interposed therebetween.
とする請求項1〜7いずれか1項記載のNi/YSZサ
ーメット原料粉末の製造方法。8. The method for producing a Ni / YSZ cermet raw material powder according to claim 1, wherein the particle size is 2 μm or less when pulverized after the primary calcination.
YSZ組成が30/70〜70/30の範囲にある請求
項1〜8いずれか1項記載のNi/YSZサーメット原
料粉末の製造方法。9. The NiO / YSZ composite powder of NiO /
The method for producing a Ni / YSZ cermet raw material powder according to claim 1, wherein the YSZ composition is in the range of 30/70 to 70/30.
/YSZサーメット原料粉末の製造方法により製造され
たNi/YSZサーメット原料粉末を、スラリーコート
法によりYSZ固体電解質膜上に成膜する工程を含むこ
とを特徴とする固体電解質型燃料電池の製造方法。10. Ni according to any one of claims 1 to 9.
/ YSZ cermet raw material powder manufacturing method, Ni / YSZ cermet raw material powder is formed on the YSZ solid electrolyte membrane by a slurry coating method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06514796A JP3336851B2 (en) | 1996-02-28 | 1996-02-28 | Method for producing Ni / YSZ cermet raw material powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06514796A JP3336851B2 (en) | 1996-02-28 | 1996-02-28 | Method for producing Ni / YSZ cermet raw material powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09227212A true JPH09227212A (en) | 1997-09-02 |
JP3336851B2 JP3336851B2 (en) | 2002-10-21 |
Family
ID=13278488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06514796A Expired - Fee Related JP3336851B2 (en) | 1996-02-28 | 1996-02-28 | Method for producing Ni / YSZ cermet raw material powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3336851B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007524187A (en) * | 2003-12-24 | 2007-08-23 | ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ | Solid oxide fuel cell |
JP2008088495A (en) * | 2006-09-29 | 2008-04-17 | Dainippon Printing Co Ltd | Manufacturing method of cermet laminate, and cermet laminate |
JP2011098848A (en) * | 2009-11-04 | 2011-05-19 | Sumitomo Osaka Cement Co Ltd | Zirconia-based composite ceramic fine particles, method for producing the same and zirconia-based composite ceramic fine particle dispersion |
JP2013079190A (en) * | 2004-07-13 | 2013-05-02 | Hyundai Motor Co Ltd | Method for producing nio-ceramic composite powder and nio-ceramic composite fuel electrode |
JP2018503215A (en) * | 2015-09-18 | 2018-02-01 | エルジー・ケム・リミテッド | Electrode slurry for solid oxide fuel cell, green sheet for electrode for solid oxide fuel cell, electrode for solid oxide fuel cell, solid oxide fuel cell, and method for producing electrode for solid oxide fuel cell |
JP2019029101A (en) * | 2017-07-26 | 2019-02-21 | 住友金属鉱山株式会社 | Method of producing fuel electrode material for solid oxide fuel cell |
US11594739B2 (en) * | 2019-03-27 | 2023-02-28 | Jingdezhen Ceramic Institute | Method for preparing SOFC anti-coking Ni-YSZ anode materials |
-
1996
- 1996-02-28 JP JP06514796A patent/JP3336851B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007524187A (en) * | 2003-12-24 | 2007-08-23 | ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ | Solid oxide fuel cell |
JP2007524188A (en) * | 2003-12-24 | 2007-08-23 | ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ | Solid oxide fuel cell |
JP4709652B2 (en) * | 2003-12-24 | 2011-06-22 | ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ | Solid oxide fuel cell |
JP4709651B2 (en) * | 2003-12-24 | 2011-06-22 | ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ | Solid oxide fuel cell |
JP2013079190A (en) * | 2004-07-13 | 2013-05-02 | Hyundai Motor Co Ltd | Method for producing nio-ceramic composite powder and nio-ceramic composite fuel electrode |
JP2008088495A (en) * | 2006-09-29 | 2008-04-17 | Dainippon Printing Co Ltd | Manufacturing method of cermet laminate, and cermet laminate |
JP2011098848A (en) * | 2009-11-04 | 2011-05-19 | Sumitomo Osaka Cement Co Ltd | Zirconia-based composite ceramic fine particles, method for producing the same and zirconia-based composite ceramic fine particle dispersion |
JP2018503215A (en) * | 2015-09-18 | 2018-02-01 | エルジー・ケム・リミテッド | Electrode slurry for solid oxide fuel cell, green sheet for electrode for solid oxide fuel cell, electrode for solid oxide fuel cell, solid oxide fuel cell, and method for producing electrode for solid oxide fuel cell |
US10615420B2 (en) | 2015-09-18 | 2020-04-07 | Lg Chem, Ltd. | Electrode slurry of solid oxide fuel cell, green sheet for electrode of solid oxide fuel cell, electrode of solid oxide fuel cell, and method for manufacturing solid oxide fuel cell and electrode of solid oxide fuel cell |
JP2019029101A (en) * | 2017-07-26 | 2019-02-21 | 住友金属鉱山株式会社 | Method of producing fuel electrode material for solid oxide fuel cell |
US11594739B2 (en) * | 2019-03-27 | 2023-02-28 | Jingdezhen Ceramic Institute | Method for preparing SOFC anti-coking Ni-YSZ anode materials |
Also Published As
Publication number | Publication date |
---|---|
JP3336851B2 (en) | 2002-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3193294B2 (en) | Composite ceramic powder, method for producing the same, electrode for solid oxide fuel cell, and method for producing the same | |
Zhu et al. | Low temperature sintering of 8YSZ electrolyte film for intermediate temperature solid oxide fuel cells | |
JP5306726B2 (en) | Fuel cell electrode-electrolyte composite powder and preparation method thereof | |
Zhang et al. | Sinterability and ionic conductivity of coprecipitated Ce0. 8Gd0. 2O2− δ powders treated via a high-energy ball-milling process | |
JP5520210B2 (en) | Air electrode material powder for solid oxide fuel cell and method for producing the same | |
JP6161467B2 (en) | Composite oxide powder for solid oxide fuel cell and method for producing the same | |
JP7201446B2 (en) | composite oxide powder | |
JP3336851B2 (en) | Method for producing Ni / YSZ cermet raw material powder | |
CN109650873B (en) | Ca-W mixed doped Bi2O3Method for preparing solid electrolyte | |
JP5574881B2 (en) | Air electrode material powder for solid oxide fuel cell and method for producing the same | |
JP2006040612A (en) | Fuel electrode raw material powder of solid electrolyte fuel cell, its manufacturing method, fuel electrode, and solid electrolyte fuel cell | |
JP5543297B2 (en) | Air electrode material powder for solid oxide fuel cell and method for producing the same | |
JP2000353530A (en) | MANUFACTURE OF NiO AND/OR Ni/YSZ COMPOSITE POWDER AND MANUFACTURE OF SOLID ELECTROLYTE FUEL CELL USING THEREOF | |
CN112490475A (en) | Method for synthesizing electrolyte powder based on complexation-freeze drying method and obtained electrolyte powder | |
JP3604210B2 (en) | Method for producing NiO / YSZ composite powder | |
JP2022184894A (en) | composite oxide powder | |
JP2008071668A (en) | Composite particle powder and its manufacturing method, electrode for solid oxide fuel cell and its manufacturing method, and solid oxide fuel battery cell | |
JPH11343123A (en) | Production of ni or nio/ysz composite powder, and formation of fuel electrode membrane using the same | |
JPH09302438A (en) | Nickel/ysz cermet and its manufacture | |
JP7477729B2 (en) | Composite oxide powder and its manufacturing method | |
JP3748084B2 (en) | Method for producing NiO / YSZ composite powder | |
WO2023079877A1 (en) | Oxide ion–conducting solid electrolyte | |
WO2023038018A1 (en) | Perovskite composite oxide powder, air electrode for solid oxide fuel cells using same, and solid oxide fuel cell | |
WO2023079892A1 (en) | Oxide ion–conducting solid electrolyte | |
WO2023032787A1 (en) | Oxide ion conductive solid electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |