[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0921871A - Semiconductor laser distance measuring device - Google Patents

Semiconductor laser distance measuring device

Info

Publication number
JPH0921871A
JPH0921871A JP17077895A JP17077895A JPH0921871A JP H0921871 A JPH0921871 A JP H0921871A JP 17077895 A JP17077895 A JP 17077895A JP 17077895 A JP17077895 A JP 17077895A JP H0921871 A JPH0921871 A JP H0921871A
Authority
JP
Japan
Prior art keywords
signal
pulse
distance
measurement
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17077895A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikefuchi
博 池淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17077895A priority Critical patent/JPH0921871A/en
Publication of JPH0921871A publication Critical patent/JPH0921871A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To conduct rough measurement and accurate measurement at the same time, and make measurement of long distance possible with high accuracy and in a short time in a distance measuring device using a semiconductor laser. SOLUTION: A reference pulse 15 sent from a clock generating part 1 and a pulse signal 16 sent from a pulse producing part 2 are inputted to an AND computing element 3, a light projection signal 17 is outputted, projected to an object in a laser driving part 4 and a semiconductor laser 5, its reflection is received with a light-receiving element 8 and an amplifier 8, then inputted to a phase detecting device 11 and a light-receiving timing detection part 10. In accurate measurement, phase difference to the reference pulse 15 is measured with the phase detecting device 11, and in rough measurement, time difference to a pulse signal 16 is measured with a time measuring part at the same time, both outputs 20, 21 are operated with an operation part 13 to calculate distance, then the distance obtained is displayed in a display part 14. Long distance can be measured with a semiconductor laser, with high accuracy, in a short time, and in large output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体レーザを用い
た距離の測定に適用され、特に測距範囲が10cm以上の
長距離を高精度で測定できる半導体レーザ距離測定装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to distance measurement using a semiconductor laser, and more particularly to a semiconductor laser distance measuring device capable of measuring a long distance with a distance measuring range of 10 cm or more with high accuracy.

【0002】[0002]

【従来の技術】従来の半導体レーザを用いた距離測定の
方法としては、(a)単一パルス光を用いて、発光して
から物体に反射して返ってくるまでの飛行時間を計測す
る方法(飛行時間計測方式)、(b)単一周波数の変調
光を用いて、発光してから物体に反射して返ってくる間
の位相差を検知する方法(位相差検知方式)が用いられ
ている。
2. Description of the Related Art As a conventional distance measuring method using a semiconductor laser, (a) a method of measuring the flight time from the emission of light to the reflection and return of an object using a single pulsed light (Time-of-flight measurement method), (b) A method (phase difference detection method) of detecting the phase difference between the light emission and the reflection and return to the object using the modulated light of a single frequency is used. There is.

【0003】図8はこのような従来の半導体レーザを用
いた距離計測方式の構成を示す図であり、発光信号40
でドライバ42を駆動し、半導体レーザ43からレーザ
光を発し、光学系44を通して距離Lにある物体37に
照射する。物体37より反射したレーザ光は受光系45
で集光して受光素子46で受光し、アンプ47で増幅さ
れて受光信号48となる。
FIG. 8 is a diagram showing the configuration of a distance measuring system using such a conventional semiconductor laser.
The driver 42 is driven by to emit a laser beam from the semiconductor laser 43, and the laser beam is emitted to the object 37 at the distance L through the optical system 44. The laser light reflected from the object 37 receives the light receiving system 45.
And the light is received by the light receiving element 46 and amplified by the amplifier 47 to become the light receiving signal 48.

【0004】図9(a)はこのような距離測定の方法の
1つとして前述した飛行時間計測方式の計測原理を示
し、前述の発光信号40と受光信号48が物体37から
反射して返ってくるまでの時間Δtを測定し、距離を;
L=(C/2)×Δtとして求める。但し、Cは光速で
ある。
FIG. 9 (a) shows the measurement principle of the above-mentioned flight time measurement method as one of such distance measuring methods. The light emission signal 40 and the light reception signal 48 are reflected from the object 37 and returned. Measure the time Δt to arrive and measure the distance;
It is calculated as L = (C / 2) × Δt. However, C is the speed of light.

【0005】図9(b)は前述の位相差検出方式の原理
を示し、発光信号40としては周波数f1 のパルス列で
あり、受光信号48はこのパルス列が物体37に反射し
て返ってくると位相差θが生ずるので、距離を;L=
(C/2f1 )×(θ/2π)として求める。但し、C
は光速である。
FIG. 9B shows the principle of the above-mentioned phase difference detection method. The light emission signal 40 is a pulse train of frequency f 1 , and the light reception signal 48 is returned when this pulse train is reflected by the object 37. Since the phase difference θ is generated, the distance is; L =
It is determined as (C / 2f 1 ) × (θ / 2π). Where C
Is the speed of light.

【0006】[0006]

【発明が解決しようとする課題】前述の従来の図9
(a)に示す飛行時間計測方式では、パルス半導体レー
ザを使用することにより高出力が得られ、長距離の測距
が可能である。しかしながら、1cmの精度を得るために
は数100psの時間分解能が必要となるが、高分解能
の時間計測カウンタ及び短発光パルス生成の実現性及び
受光レベル変化による受光タイミング検出時間ずれの誤
差により、高精度化が困難である。現状、携行型のもの
では精度5cm程度のものが製品化されている。
The above-mentioned prior art FIG.
In the time-of-flight measurement method shown in (a), high output is obtained by using a pulse semiconductor laser, and long-distance measurement is possible. However, a time resolution of several hundred ps is required to obtain an accuracy of 1 cm, but the high resolution time measurement counter and the feasibility of generating a short light emission pulse and the error in the light reception timing detection time difference due to the change in the light reception level cause a high error. Precision is difficult. Currently, the portable type has been commercialized with an accuracy of about 5 cm.

【0007】図9(b)で説明の位相差検出方式では、
位相検出器を使用することにより高精度の測距が可能で
ある。現状では測量用として精度5mm程度のものが製品
化されている。しかしながら、CW半導体レーザを使用
するために低出力であり、長距離の測距が困難であり、
反射板を目標物とする場合が多い。
In the phase difference detection method described with reference to FIG. 9B,
High accuracy distance measurement is possible by using the phase detector. Currently, products with an accuracy of about 5 mm have been commercialized for surveying. However, since the CW semiconductor laser is used, the output is low, and it is difficult to measure a long distance.
The target is often a reflector.

【0008】また、この位相差検出方式では位相が2π
ずれると同位相となるため0〜2πに相当する距離しか
計測できず、長距離の測距を行うためには、2種以上の
周波数に対して位相差を検出し、演算する必要があるた
め、1回の距離出力に対して、数回の計測が必要であり
時間がかかるという問題がある。
In this phase difference detection method, the phase is 2π.
When they are deviated, they have the same phase, so only distances corresponding to 0 to 2π can be measured, and in order to measure a long distance, it is necessary to detect and calculate phase differences for two or more types of frequencies. There is a problem that several measurements are required for one distance output and it takes time.

【0009】[0009]

【課題を解決するための手段】本発明は、このような課
題を解決するために、クロック発生部、パルス生成部、
駆動部、パルス半導体レーザ装置、受光部、受光部から
の信号により精測位相信号を出力する位相検出部、同じ
く受光部からの信号より粗測時間信号を出力する時間計
測部、これら精測位相信号及び粗測時間信号を入力し、
距離を算出する演算部及び表示部からなることを特徴と
する。
In order to solve such a problem, the present invention provides a clock generator, a pulse generator,
Drive unit, pulse semiconductor laser device, light receiving unit, phase detection unit that outputs a precise measurement phase signal from the signal from the light receiving unit, time measurement unit that also outputs a rough measurement time signal from the signal from the light receiving unit, these precise measurement phases Input the signal and the rough measurement time signal,
It is characterized by comprising a calculation unit for calculating the distance and a display unit.

【0010】即ち、本発明は、基準信号となるクロック
パルスを発生するクロック発生部と、出力パルスを発生
するパルス生成部と、同パルス生成部からの出力パルス
の間で前記クロックパルスを出力させて投光信号とする
駆動部と、同駆動部からの投光信号で物体に向けてパル
スレーザ光を発するパルス半導体レーザ装置と、同パル
ス半導体レーザ装置から発し、前記物体から反射するパ
ルスレーザ光を受光する受光部と、同受光部からの受光
信号を入力し、前記クロックパルスとの位相差を検出
し、精測位相信号を出力する位相検出部と、前記受光部
からの受光信号を入力し、前記出力パルス生成部からの
出力パルス信号と比較し、それとの時間差を求め、粗測
時間信号を出力する時間計測部と、前記位相検出部から
の精測位相信号及び前記時間計測部からの粗測時間信号
を入力し、精測距離及び粗測距離を求めると共に、これ
らの値に基づいて前記物体までの距離を算出する演算部
と、同演算部の出力を受け、これを表示する表示部とを
具備してなることを特徴とする半導体レーザ距離測定装
置を提供する。
That is, according to the present invention, a clock generator for generating a clock pulse as a reference signal, a pulse generator for generating an output pulse, and the clock pulse output between the output pulses from the pulse generator. And a pulse semiconductor laser device that emits a pulse laser beam toward an object by a light emission signal from the drive unit, and a pulse laser beam that is emitted from the pulse semiconductor laser device and reflected from the object A light receiving part for receiving the light receiving signal and a light receiving signal from the same light receiving part are input, a phase detection part for detecting a phase difference with the clock pulse and outputting a precise phase signal, and a light receiving signal from the light receiving part are input. Then, comparing with the output pulse signal from the output pulse generation unit, to obtain the time difference from it, a time measuring unit for outputting a rough measurement time signal, and a precise measurement phase signal from the phase detection unit and The rough measurement time signal from the time measurement unit is input, the precise measurement distance and the rough measurement distance are calculated, and the calculation unit that calculates the distance to the object based on these values and the output of the calculation unit are received. The present invention provides a semiconductor laser distance measuring device comprising a display section for displaying the same.

【0011】本発明はこのような手段により次のような
作用を奏する。クロック発生部からは基準信号となるク
ロックパルスが発しており、まず、パルス生成部が出力
パルスを発すると駆動部がこの出力パルス幅の間でクロ
ックパルスを出力させる投光信号を出力する。パルス半
導体レーザ装置はこの駆動部の投光信号を受け、物体に
対してパルスレーザ光を発する。
The present invention has the following operations by such means. A clock pulse serving as a reference signal is emitted from the clock generation unit. First, when the pulse generation unit issues an output pulse, the drive unit outputs a light projecting signal for outputting the clock pulse within the output pulse width. The pulsed semiconductor laser device receives the light projection signal from the drive unit and emits pulsed laser light to the object.

【0012】物体から反射し、戻ってくるパルスレーザ
光は受光部で受光され、位相検出部と時間計測部に受光
信号を出力する。この受光信号により位相検出部では受
光信号とクロックパルスとを比較し、位相を計測するこ
とにより、精測位相信号を出力し、位相差検出方式と同
等の精度の距離計測を可能とする。同時に時間計測部で
は受光信号と出力パルス信号とを比較し、その時間を計
測することにより粗測時間信号を出力し、おおまかな距
離計測を可能とする。
The pulsed laser light reflected from the object and returning is received by the light receiving section and outputs a light receiving signal to the phase detecting section and the time measuring section. The phase detection unit compares the received light signal with the clock pulse by the received light signal and measures the phase to output a precise measurement phase signal, which enables distance measurement with the same accuracy as the phase difference detection method. At the same time, the time measuring unit compares the light receiving signal with the output pulse signal and outputs the rough measurement time signal by measuring the time, which enables rough distance measurement.

【0013】これら精測位相信号と粗測時間信号とを演
算部に入力し、演算部では、光速、周波数により精測距
離及び粗測距離を算出し、これらの精測距離の結果と粗
測距離の結果を演算することにより物体の距離を距離に
制限なく位相差検出方式と同等の精度で計測可能とな
る。これらの距離情報は必要に応じて表示部に表示され
る。
These precise measurement phase signal and rough measurement time signal are input to a calculation unit, and the calculation unit calculates a precise measurement distance and a rough measurement distance according to the speed of light and frequency, and the result of the precise measurement distance and the rough measurement distance are calculated. By calculating the result of the distance, the distance of the object can be measured with the same accuracy as the phase difference detection method without being limited to the distance. These pieces of distance information are displayed on the display unit as needed.

【0014】また、粗測と精測は1回の発光で同時に処
理できるため、計測時間が短い。さらに高出力のパルス
半導体レーザ装置を使用することにより長距離の距離計
測が可能である。
Further, since the rough measurement and the precise measurement can be simultaneously processed by one light emission, the measuring time is short. It is possible to measure a long distance by using a pulsed semiconductor laser device of high output.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施の一形態に係る半導体レーザ距離測定装置の構成を示
すブロック図である。図において、1はクロックパルス
を発生するクロック発生部、2はクロック発生部1から
の基準信号15を受け、パルス信号16を発生するパル
ス生成部、3は基準信号15とパルス生成部2からのパ
ルス信号16とを入力し、投光信号17を出力するAN
D演算器、4はこの投光信号17によりパルス半導体レ
ーザ5を駆動するレーザ駆動部、5は前述のパルスレー
ザ光を発するパルス半導体レーザ、6は物体にレーザ光
を投光する投光光学系である。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a semiconductor laser distance measuring device according to an embodiment of the present invention. In the figure, 1 is a clock generator that generates a clock pulse, 2 is a pulse generator that receives a reference signal 15 from the clock generator 1, and generates a pulse signal 16, and 3 is a reference signal 15 and a pulse generator 2. AN for inputting the pulse signal 16 and outputting a light projecting signal 17
D arithmetic unit, 4 is a laser drive unit for driving the pulse semiconductor laser 5 by the light projection signal 17, 5 is a pulse semiconductor laser for emitting the above-mentioned pulse laser light, and 6 is a projection optical system for projecting the laser light on an object. Is.

【0016】7は物体より反射して戻ってくるパルスレ
ーザ光を受ける受光光学系、8は受光素子、9は増幅
器、10は受光タイミング検出部、11は増幅器9で増
幅された受光信号18と基準信号15とを入力し、位相
差を検出する位相検出部、12は受光タイミング検出部
10からの受光タイミング信号19とパルス生成部2か
らのパルス信号16とを入力し、時間差を計測する時間
計測部、13は位相検出部11からの精測位相出力20
と時間計測部12からの粗測時間出力21とを入力し、
距離を演算する演算部、14は演算部13からの測距出
力22を受け、これを表示する表示部である。
Reference numeral 7 is a light receiving optical system for receiving the pulsed laser light reflected back from the object, 8 is a light receiving element, 9 is an amplifier, 10 is a light receiving timing detecting section, and 11 is a light receiving signal 18 amplified by the amplifier 9. A phase detection unit that receives the reference signal 15 and detects a phase difference, and a time 12 that receives the light reception timing signal 19 from the light reception timing detection unit 10 and the pulse signal 16 from the pulse generation unit 2 and measures the time difference. The measuring unit 13 is the precise measurement phase output 20 from the phase detecting unit 11.
And the rough measurement time output 21 from the time measuring unit 12,
A calculation unit for calculating the distance, and 14 is a display unit for receiving the distance measurement output 22 from the calculation unit 13 and displaying it.

【0017】図2は図1に示す距離測定装置における各
信号とそれらのタイミングを示す波形図であり、(a)
はクロック発生部1の発生する基準信号15を、(b)
はパルス生成部2が発生し、パルス幅24を有するパル
ス信号16を、(c)は基準信号15とパルス信号16
とによりAND演算器3が出力する投光信号17を、
(d)は受光素子8で受光し、増幅器9で増幅された受
光信号18と基準信号15との位相差θを、(e)は受
光タイミング検出部10で検出された受光タイミング信
号19とパルス信号16からの時間おくれΔt26とを
それぞれ示す。
FIG. 2 is a waveform diagram showing signals and their timings in the distance measuring device shown in FIG.
Is the reference signal 15 generated by the clock generator 1, (b)
Is a pulse signal 16 generated by the pulse generator 2 and having a pulse width 24. (c) is a reference signal 15 and a pulse signal 16
And the light emission signal 17 output from the AND calculator 3 is
(D) shows the phase difference θ between the light receiving signal 18 received by the light receiving element 8 and amplified by the amplifier 9 and the reference signal 15, and (e) shows the pulse with the light receiving timing signal 19 detected by the light receiving timing detecting section 10. The time delay Δt 26 from the signal 16 is shown.

【0018】このような距離測定装置において、クロッ
ク発生部1より周波数f1 の基準信号15が出力され、
この基準信号15とパルス生成部2より出力されたパル
ス信号16とがAND演算器3に入力し、ここでAND
演算が行われ、投光信号17が生成される。この投光信
号17は図2(b),(c)に示すように基準信号15
のパルスのうちパルス信号16のパルス幅24の間だけ
パルスを発生させる。この投光信号17でレーザ駆動部
4を駆動し、パルス半導体レーザ5からレーザ光を発す
る。
In such a distance measuring device, the clock generator 1 outputs the reference signal 15 having the frequency f 1 .
The reference signal 15 and the pulse signal 16 output from the pulse generator 2 are input to the AND operator 3, where the AND signal is output.
The calculation is performed and the light projection signal 17 is generated. This light projection signal 17 is a reference signal 15 as shown in FIGS.
The pulse is generated only during the pulse width 24 of the pulse signal 16 of the pulse of. The laser drive unit 4 is driven by the light projecting signal 17, and laser light is emitted from the pulse semiconductor laser 5.

【0019】パルス半導体レーザ5からの光は投光光学
系6を通して物体に反射し、受光光学系7で集光して受
光素子8に入射した後、増幅器9により受光信号18と
なる。
The light from the pulse semiconductor laser 5 is reflected by an object through a light projecting optical system 6, condensed by a light receiving optical system 7 and made incident on a light receiving element 8, and then a light receiving signal 18 is produced by an amplifier 9.

【0020】受光信号18を受け、距離を求める場合
に、まず、精測方法について説明を行う。受光信号18
は位相検出部11により基準信号15と位相比較され
る。図3に位相検出部11の内部構成を示す。
In the case of receiving the light receiving signal 18 and obtaining the distance, the precise measuring method will be described first. Light reception signal 18
Is compared in phase with the reference signal 15 by the phase detector 11. FIG. 3 shows the internal configuration of the phase detector 11.

【0021】図3において、基準信号15をsin(2
πf1 t)と表したとき、受光信号18はsin(2π
1 −θ)と表される。これらの信号15と18を入力
した乗算器27の出力はcos(4πf1 t−θ)とc
osθの成分からなる。この出力を積分器28により積
分するとcosθが精測位相出力20として出力され
る。これを演算部13において逆変換することによりθ
が求まり、次の(1)式に示す位相差θと距離R1 の関
係により精測距離R1 が求められる。
In FIG. 3, the reference signal 15 is set to sin (2
When expressed as πf 1 t), the received light signal 18 is sin (2π
f 1 −θ). The output of the multiplier 27 to which these signals 15 and 18 are input is cos (4πf 1 t−θ) and c
It consists of a component of osθ. When this output is integrated by the integrator 28, cos θ is output as the precise measurement phase output 20. This is inversely transformed in the arithmetic unit 13 to obtain θ
Then, the precise measurement distance R 1 is obtained from the relationship between the phase difference θ and the distance R 1 shown in the following equation (1).

【0022】[0022]

【数1】 [Equation 1]

【0023】ここで、d1 は光学系及び回路における位
相遅れに対する距離補正値であり、あらかじめ距離が既
知の物体を計測又はミラー等により投光した光を直接受
光することにより求められる。
Here, d 1 is a distance correction value for the phase delay in the optical system and the circuit, and is obtained by measuring an object whose distance is known in advance or directly receiving the light projected by a mirror or the like.

【0024】次に、粗測方法について説明を行う。受光
信号18は受光タイミング検出部10に入力され、受光
タイミングが検出される。図4,図5,図6に受光タイ
ミング検出部10の代表的な構成を示す。
Next, the rough measuring method will be described. The light reception signal 18 is input to the light reception timing detection unit 10 and the light reception timing is detected. 4, 5 and 6 show typical configurations of the light reception timing detection unit 10.

【0025】図4は(a)に示すようにコンパレータ2
9、ラッチ30、リセット信号33で受光信号18の立
上り時間を計測し、(b)に示すように受光タイミング
信号19を出力する(方法1)。
FIG. 4 shows the comparator 2 as shown in FIG.
9, the rise time of the light receiving signal 18 is measured by the latch 30 and the reset signal 33, and the light receiving timing signal 19 is output as shown in (b) (method 1).

【0026】図5は(a)に示すように、受光信号18
を検波器31で検波し、検波信号32を出力し、これを
コンパレータ29で比較し、ラッチ30、リセット信号
33とでしきい値を超えると受光タイミング信号19を
出力する。この方法は(b)に示すように、受光信号1
8の検波信号32と所定のしきい値35とを比較し、時
間おくれΔt′36を求め、この時間Δt′で受光タイ
ミング信号19を出力する(方法2)。
FIG. 5 shows, as shown in FIG.
Is detected by the wave detector 31, a detection signal 32 is output, and this is compared by the comparator 29. When the latch 30 and the reset signal 33 exceed the threshold value, the light reception timing signal 19 is output. In this method, as shown in (b), the received light signal 1
The detection signal 32 of No. 8 is compared with a predetermined threshold value 35 to obtain a time delay Δt ′ 36, and the light reception timing signal 19 is output at this time Δt ′ (method 2).

【0027】図6は(a)に示すように受光信号18を
検波器31で検波し、検波信号32を出力し、これを微
分器33で微分し、微分信号34をコンパレータ29に
入力して検波信号32のピークを求め、ラッチ30とリ
セット信号33でこのピーク時に受光タイミング信号1
9を出力する。この方法は(b)に示すように、受光信
号18を検波した検波信号32を微粉した微分信号34
を求め、この信号により検波信号32のピークとなる時
間を時間おくれΔt′36とし、このΔt′で受光タイ
ミング信号19を出力する。
As shown in FIG. 6A, the received light signal 18 is detected by the wave detector 31, the wave detection signal 32 is output, and this is differentiated by the differentiator 33, and the differentiated signal 34 is input to the comparator 29. The peak of the detection signal 32 is obtained, and the latch 30 and the reset signal 33 are used to detect the light reception timing signal 1 at this peak.
9 is output. In this method, as shown in (b), a differential signal 34 obtained by finely detecting a detection signal 32 obtained by detecting the light reception signal 18 is obtained.
Then, the time at which the peak of the detection signal 32 is reached by this signal is set as a time delay Δt ′ 36, and the light reception timing signal 19 is output at this Δt ′.

【0028】ここで、図5,図6の方法の場合、受光タ
イミング検出部10内での時間おくれΔt′36が図2
(e)に示す受光タイミング信号の時間おくれΔt26
に含まれる。図1に戻り、パルス信号16の立上りより
受光タイミング信号19の立上りまでの時間おくれΔt
26が時間計測部12により計測され、粗測時間出力2
1として出力される。これを次の(2)式により演算部
13において時間おくれΔt26と距離R2 の関係から
粗測距離R2 が求められる。
Here, in the case of the method of FIGS. 5 and 6, the time delay Δt'36 in the light receiving timing detection unit 10 is shown in FIG.
Time delay Δt26 of the light receiving timing signal shown in (e)
include. Returning to FIG. 1, there is a time delay Δt from the rise of the pulse signal 16 to the rise of the light receiving timing signal 19.
26 is measured by the time measuring unit 12, and the rough measurement time output 2
Output as 1. The rough distance R 2 is calculated from the relationship between the time delay Δt 26 and the distance R 2 in the calculation unit 13 by the following equation (2).

【0029】[0029]

【数2】 [Equation 2]

【0030】ここで、d2 は光学系及び回路(受光タイ
ミング検出部における時間遅れΔt′36を含む)にお
ける時間遅れに対する距離補正値であり、精測距離にお
けるd1 と同様な方法で求められる。
Here, d 2 is a distance correction value for the time delay in the optical system and the circuit (including the time delay Δt'36 in the light receiving timing detection unit), and is obtained by the same method as d 1 in the precise measurement distance. .

【0031】次に精測距離R1 と粗測距離R2 より物体
の距離Rを求める方法について説明を行う。ここで精測
距離誤差を±ΔR1 、粗測距離誤差を±ΔR2 とする。
精測は位相が2πずれると同位相になることによる距離
のくり返しがあり、物体の距離Rは次の(3)式のよう
に表される。
Next, a method of obtaining the object distance R from the precise measurement distance R 1 and the rough measurement distance R 2 will be described. Here, the precision distance error is ± ΔR 1 and the rough distance error is ± ΔR 2 .
In the precise measurement, when the phase shifts by 2π, there is a repetition of the distance due to the same phase, and the distance R of the object is expressed by the following equation (3).

【0032】[0032]

【数3】 (Equation 3)

【0033】図7に精測・粗測距離と物体の距離の関係
を示す。この(3)式において、粗測距離R2 との差が
最小になるnを求めることにより、物体37の距離Rが
求められる。ただし、周波数f1 は次の(4)式を満足
するように選定される。この条件のときの距離精度は±
ΔR1 となる。
FIG. 7 shows the relationship between the precise / coarse measurement distance and the object distance. In this equation (3), the distance R of the object 37 is obtained by finding n that minimizes the difference from the rough measurement distance R 2 . However, the frequency f 1 is selected so as to satisfy the following expression (4). The distance accuracy under this condition is ±
It becomes ΔR 1 .

【0034】[0034]

【数4】 (Equation 4)

【0035】図1において、以上により求められた物体
の位置Rが測距出力22として表示部14に渡され、外
部に表示又は出力される。また、このような距離測定装
置においては、精測と粗測は同時に処理されるため、1
回の発光で測距が可能である。
In FIG. 1, the position R of the object obtained as described above is passed to the display unit 14 as a distance measurement output 22 and displayed or output to the outside. Further, in such a distance measuring device, precise measurement and rough measurement are processed at the same time.
Distance can be measured with one flash.

【0036】以上説明の実施の形態によれば、クロック
発生部1、パルス生成部2、AND演算器3、レーザ駆
動部4及びパルス半導体レーザ5でパルスを発生し、受
光素子8、増幅器9、受光タイミング検出部10及び時
間計測部12で物体に反射して返ってくるまでの時間を
計測することによりおおまかな距離計測(粗測)が可能
であり、基準パルス15内の変調信号の位相を位相検出
部11で計測することにより位相差検出方式と同等の精
度の距離計測(精測)が可能である。これらの粗測結果
と精測結果を演算部13で演算することにより物体の距
離Rを距離に制限なく位相差検出方式と同等の精度で計
測可能となる。
According to the embodiment described above, pulses are generated by the clock generator 1, the pulse generator 2, the AND operator 3, the laser driver 4, and the pulse semiconductor laser 5, and the light receiving element 8, the amplifier 9, A rough distance measurement (coarse measurement) is possible by measuring the time required for the light reception timing detection unit 10 and the time measurement unit 12 to reflect the object and return it, and the phase of the modulation signal in the reference pulse 15 can be calculated. By measuring with the phase detection unit 11, it is possible to perform distance measurement (precision measurement) with accuracy equivalent to that of the phase difference detection method. By calculating the rough measurement result and the precise measurement result by the calculation unit 13, the distance R of the object can be measured with the same accuracy as the phase difference detection method without limiting the distance.

【0037】また、粗測と精測は1回の発光で同時に処
理できるため、計測時間が短い。さらに、高出力のパル
ス半導体レーザ5を使用することにより長距離の距離計
測が可能である。
Further, since the rough measurement and the precise measurement can be simultaneously processed by one light emission, the measuring time is short. Furthermore, by using the high-power pulse semiconductor laser 5, it is possible to measure a long distance.

【0038】[0038]

【発明の効果】以上、具体的に説明したように本発明
は、クロック発生部、パルス生成部、駆動部、パルス半
導体レーザ装置、受光部、受光部からの信号により精測
位相信号を出力する位相検出部、同じく受光部からの信
号より粗測時間信号を出力する時間計測部、これら精測
位相信号及び粗測時間信号を入力し、距離を算出する演
算部及び表示部からなることを特徴とする半導体レーザ
距離測定装置を特徴とするので、パルスの遅れ時間測定
(粗測)と位相差検出(精測)により、距離に制限なく
位相差検出方式と同等の精度で短時間に計測が可能とな
る。また、パルス半導体レーザを使用することにより長
距離の距離計測が可能である。
As described above in detail, according to the present invention, the precise phase signal is output by the signals from the clock generator, the pulse generator, the driver, the pulse semiconductor laser device, the light receiver, and the light receiver. A phase detection unit, a time measurement unit that also outputs a rough measurement time signal from a signal from the light receiving unit, a calculation unit that inputs the precise measurement phase signal and the rough measurement time signal, and a display unit Since it is characterized by a semiconductor laser distance measuring device, pulse delay time measurement (coarse measurement) and phase difference detection (precision measurement) enable measurement in a short time with the same accuracy as the phase difference detection method regardless of distance. It will be possible. In addition, it is possible to measure a long distance by using a pulse semiconductor laser.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態に係る半導体レーザ距離
測定装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a semiconductor laser distance measuring device according to an embodiment of the present invention.

【図2】本発明の実施の一形態に係る半導体レーザ距離
測定装置における信号のタイミングと波形図である。
FIG. 2 is a signal timing and waveform diagram in the semiconductor laser distance measuring apparatus according to the embodiment of the present invention.

【図3】図1における位相検出部の内部の詳細なブロッ
ク図である。
FIG. 3 is a detailed block diagram of the inside of the phase detection unit in FIG.

【図4】図1における(a)受光タイミング検出部内部
の詳細なブロック図(方法1)と(b)その波形図であ
る。
4A is a detailed block diagram (method 1) of the inside of a light receiving timing detection unit in FIG. 1A and FIG. 4B is a waveform diagram thereof.

【図5】図1における(a)受光タイミング検出部内部
の詳細なブロック図(方法2)と(b)その波形図であ
る。
5 (a) is a detailed block diagram (method 2) inside the light receiving timing detection unit in FIG. 1 and (b) is a waveform diagram thereof.

【図6】図1における(a)受光タイミング検出部内部
の詳細なブロック図(方法3)と(b)その波形図であ
る。
6A is a detailed block diagram (method 3) inside the light receiving timing detection unit in FIG. 1A, and FIG. 6B is a waveform diagram thereof.

【図7】本発明の実施の一形態に係る半導体レーザ距離
測定装置における精測距離、粗測距離と物体の距離との
関係を示す図である。
FIG. 7 is a diagram showing a relationship between an accurate distance and a rough distance and an object distance in the semiconductor laser distance measuring device according to the embodiment of the present invention.

【図8】従来の距離計測方式の構成図である。FIG. 8 is a configuration diagram of a conventional distance measuring method.

【図9】従来の距離計測方式の原理を示し、(a)は飛
行時間計測方式、(b)は位相差検出方式を示す図であ
る。
9A and 9B are diagrams showing the principle of a conventional distance measuring method, FIG. 9A showing a flight time measuring method, and FIG. 9B showing a phase difference detecting method.

【符号の説明】[Explanation of symbols]

1 クロック発生部 2 パルス生成部 3 AND演算器 4 レーザ駆動部 5 パルス半導体レーザ 8 受光素子 9 増幅器 10 受光タイミング検出器 11 位相検出部 12 時間計測部 13 演算部 14 表示部 15 基準信号 16 パルス信号 17 投光信号 18 受光信号 19 受光タイミング信号 20 精測位相出力 21 粗測時間出力 22 測距出力 1 Clock Generation Section 2 Pulse Generation Section 3 AND Operation Unit 4 Laser Driving Section 5 Pulse Semiconductor Laser 8 Light-Receiving Element 9 Amplifier 10 Light-Reception Timing Detector 11 Phase Detection Section 12 Time Measurement Section 13 Calculation Section 14 Display Section 15 Reference Signal 16 Pulse Signal 17 Light emitting signal 18 Light receiving signal 19 Light receiving timing signal 20 Precise measurement phase output 21 Coarse measurement time output 22 Distance measurement output

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基準信号となるクロックパルスを発生す
るクロック発生部と、出力パルスを発生するパルス生成
部と、同パルス生成部からの出力パルスの間で前記クロ
ックパルスを出力させて投光信号とする駆動部と、同駆
動部からの投光信号で物体に向けてパルスレーザ光を発
するパルス半導体レーザ装置と、同パルス半導体レーザ
装置から発し、前記物体から反射するパルスレーザ光を
受光する受光部と、同受光部からの受光信号を入力し、
前記クロックパルスとの位相差を検出し、精測位相信号
を出力する位相検出部と、前記受光部からの受光信号を
入力し、前記出力パルス生成部からの出力パルス信号と
比較し、それとの時間差を求め、粗測時間信号を出力す
る時間計測部と、前記位相検出部からの精測位相信号及
び前記時間計測部からの粗測時間信号を入力し、精測距
離及び粗測距離を求めると共に、これらの値に基づいて
前記物体までの距離を算出する演算部と、同演算部の出
力を受け、これを表示する表示部とを具備してなること
を特徴とする半導体レーザ距離測定装置。
1. A light emitting signal which outputs a clock pulse between a clock generating section for generating a clock pulse serving as a reference signal, a pulse generating section for generating an output pulse, and an output pulse from the pulse generating section. And a pulse semiconductor laser device that emits a pulse laser beam toward an object by a light emission signal from the drive unit, and a light receiving device that receives the pulse laser beam emitted from the pulse semiconductor laser device and reflected from the object Section and the light receiving signal from the same light receiving section,
The phase difference with the clock pulse is detected, the phase detection unit that outputs a precise measurement phase signal, and the light reception signal from the light reception unit are input, and compared with the output pulse signal from the output pulse generation unit. The time difference is obtained, and the time measurement unit that outputs the rough measurement time signal, the precise measurement phase signal from the phase detection unit, and the coarse measurement time signal from the time measurement unit are input, and the precise measurement distance and the coarse measurement distance are obtained. In addition, the semiconductor laser distance measuring device is provided with a calculation unit that calculates the distance to the object based on these values, and a display unit that receives the output of the calculation unit and displays it. .
JP17077895A 1995-07-06 1995-07-06 Semiconductor laser distance measuring device Withdrawn JPH0921871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17077895A JPH0921871A (en) 1995-07-06 1995-07-06 Semiconductor laser distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17077895A JPH0921871A (en) 1995-07-06 1995-07-06 Semiconductor laser distance measuring device

Publications (1)

Publication Number Publication Date
JPH0921871A true JPH0921871A (en) 1997-01-21

Family

ID=15911205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17077895A Withdrawn JPH0921871A (en) 1995-07-06 1995-07-06 Semiconductor laser distance measuring device

Country Status (1)

Country Link
JP (1) JPH0921871A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063573A (en) * 2007-09-07 2009-03-26 Samsung Electronics Co Ltd Distance measuring method and apparatus
JP2011257402A (en) * 2010-06-09 2011-12-22 Thomson Licensing Flight time image pickup apparatus
CN102323591A (en) * 2011-08-04 2012-01-18 长春理工大学 Picosecond-pulse-based high-precision laser distance measuring device
CN112711009A (en) * 2020-12-21 2021-04-27 苏州易行电子科技有限公司 Composite laser ranging method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063573A (en) * 2007-09-07 2009-03-26 Samsung Electronics Co Ltd Distance measuring method and apparatus
JP2011257402A (en) * 2010-06-09 2011-12-22 Thomson Licensing Flight time image pickup apparatus
US9188663B2 (en) 2010-06-09 2015-11-17 Thomson Licensing Time-of-flight imager
CN102323591A (en) * 2011-08-04 2012-01-18 长春理工大学 Picosecond-pulse-based high-precision laser distance measuring device
CN112711009A (en) * 2020-12-21 2021-04-27 苏州易行电子科技有限公司 Composite laser ranging method

Similar Documents

Publication Publication Date Title
US7911589B2 (en) Optical distance measuring method and corresponding optical distance measurement device
US7095490B2 (en) Electric distance meter
US7940378B2 (en) Hand-held laser distance measuring device with a pulse reflection mixing method
JP2006521536A (en) High-precision distance measuring apparatus and method
US9041918B2 (en) Measuring apparatus and referencing method for a digital laser distance meter, and laser distance meter
EP3882659A1 (en) Method of calculating distance-correction data, range-finding device, and mobile object
EP1321740B1 (en) Light-wave rangefinder using a pulse method
US7777865B2 (en) Time difference measuring device, measuring method, distance measuring device, and distance measuring method
JPH0921871A (en) Semiconductor laser distance measuring device
JP2000346941A (en) Distance measuring device
JP2000206244A (en) Distance-measuring apparatus
JP7257105B2 (en) Absolute distance measuring device and method
JP2853350B2 (en) Laser distance measuring device
JP7192959B2 (en) Ranging device and ranging method
US20060132754A1 (en) Hand-held laser distance measuring device with a pulse reflection mixing method
JP3236941B2 (en) Distance measurement method for lightwave distance meter
JPH10253759A (en) Range finder
JPH08105971A (en) Ranging method using multi-pulse and device therefor
US7714990B2 (en) Hand-held laser distance measuring device with a pulse reflection mixing method
JPH0381687A (en) Laser distance measuring instrument
JP7271762B2 (en) Absolute distance measuring device and method
US7548829B2 (en) Hand-held pulse laser distance measuring device
JP2000214260A (en) Distance measuring device
EP3715903B1 (en) Laser distance meter and method of measuring a distance
JPS6371675A (en) Laser distance measuring instrument

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001