JPH09218133A - Method for inspecting anisotropic thin film - Google Patents
Method for inspecting anisotropic thin filmInfo
- Publication number
- JPH09218133A JPH09218133A JP4932096A JP4932096A JPH09218133A JP H09218133 A JPH09218133 A JP H09218133A JP 4932096 A JP4932096 A JP 4932096A JP 4932096 A JP4932096 A JP 4932096A JP H09218133 A JPH09218133 A JP H09218133A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- polarization state
- light
- reflected light
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims description 52
- 239000010408 film Substances 0.000 claims abstract description 173
- 230000010287 polarization Effects 0.000 claims description 90
- 239000004973 liquid crystal related substance Substances 0.000 claims description 62
- 238000009826 distribution Methods 0.000 claims description 20
- 238000007689 inspection Methods 0.000 claims description 19
- 238000004458 analytical method Methods 0.000 claims description 13
- 239000012528 membrane Substances 0.000 claims 3
- 238000005259 measurement Methods 0.000 abstract description 84
- 239000011521 glass Substances 0.000 abstract description 48
- 230000000737 periodic effect Effects 0.000 abstract description 2
- 238000003780 insertion Methods 0.000 abstract 1
- 230000037431 insertion Effects 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 48
- 229920001721 polyimide Polymers 0.000 description 33
- 239000004642 Polyimide Substances 0.000 description 22
- 230000003287 optical effect Effects 0.000 description 19
- 239000004744 fabric Substances 0.000 description 17
- 239000011159 matrix material Substances 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 239000013307 optical fiber Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 230000008033 biological extinction Effects 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000005291 magnetic effect Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000000572 ellipsometry Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000002460 vibrational spectroscopy Methods 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明はセンサーや配線材
料に用いられる有機薄膜、および液晶表示素子において
液晶分子の配向を制御する有機薄膜を評価する方法およ
び装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic thin film used for sensors and wiring materials, and a method and apparatus for evaluating an organic thin film for controlling the orientation of liquid crystal molecules in a liquid crystal display device.
【0002】[0002]
【従来の技術】有機薄膜の膜中分子の配向状態はそれを
用いたデバイスの機能に与える影響が大きい。特に液晶
表示素子において液晶分子の配向を制御する液晶表示素
子で液晶分子に初期配向を与えるのに用いられる有機薄
膜においては有機薄膜分子の配向と液晶分子の配向に密
接な関係があることが知られ(石原他 リキッド クリ
スタルズ(Liquid Crystals)4巻6号
669ページ1989年)、有機薄膜の分子配向が高い
ほど、液晶分子の配向規制力が大きいとされる。このた
めに有機薄膜の分子配向の定量的測定はデバイスの機能
を評価する上で重要である。2. Description of the Related Art The orientation of molecules in an organic thin film has a great effect on the function of a device using the same. In particular, in an organic thin film used to give an initial alignment to liquid crystal molecules in a liquid crystal display device for controlling the alignment of liquid crystal molecules in a liquid crystal display device, it is known that there is a close relationship between the alignment of the organic thin film molecules and the alignment of the liquid crystal molecules. (Ishihara et al., Liquid Crystals, Vol. 4, No. 6, page 669, 1989), the higher the molecular orientation of the organic thin film, the greater the alignment regulating force of the liquid crystal molecules. For this reason, quantitative measurement of the molecular orientation of the organic thin film is important for evaluating the function of the device.
【0003】有機薄膜(特に液晶配向膜)の評価は赤外
線吸収分光法やラマン散乱分光法などの分子振動から分
子の状態を観測する方法が中心である。薄膜内の分子配
向度や配向方向についての知見は分子配向に起因する膜
の光学的異方性を光の偏光を利用した二色比の測定を行
なうことで評価している(特開平6−160862号公
報 江沢他「液晶表示装置とその配向膜の特性評価方
法」)。The evaluation of organic thin films (particularly liquid crystal alignment films) is centered on methods of observing the state of molecules from molecular vibrations such as infrared absorption spectroscopy and Raman scattering spectroscopy. The knowledge about the degree of molecular orientation and the orientation direction in the thin film is evaluated by measuring the optical anisotropy of the film due to the molecular orientation by measuring the dichroic ratio using the polarization of light (JP-A-6- No. 160862, Ezawa et al. "Method for evaluating characteristics of liquid crystal display device and its alignment film").
【0004】振動分光法以外にも試料を透過した光の複
屈折位相差の異方性によって光学異方性を評価すること
が行なわれている(特開平6−102512号公報 倉
井他「液晶表示素子の配向評価装置および液晶表示素子
の製造方法」)。また、偏光方向が膜表面に水平、また
はそれと直交する直線偏光を入射し、その反射光強度の
差から分子配向によって生じる膜の面内の屈折率異方性
を観測する方法が提案されている(特開平4−9584
5号公報 石原「配向膜の液晶配向能評価方法」)。In addition to the vibrational spectroscopy, the optical anisotropy is evaluated by the anisotropy of the birefringence phase difference of the light transmitted through the sample (JP-A-6-102512, Kurai et al., "Liquid Crystal Display"). Device orientation evaluation device and liquid crystal display device manufacturing method "). In addition, a method has been proposed in which the in-plane refractive index anisotropy of the film caused by the molecular orientation is observed by injecting linearly polarized light whose polarization direction is horizontal to the film surface or orthogonal thereto. (JP-A-4-9584
No. 5 publication Ishihara "Method for evaluating liquid crystal alignment ability of alignment film").
【0005】これら以外の方法として、原子間力顕微鏡
や走査トンネル顕微鏡によって薄膜表面の形状を二次元
的に測定することが行なわれている(磯野他 日本学術
振興会142委員会A部会特別研究会試料34ページ1
994年)。As a method other than these, the shape of the thin film surface is two-dimensionally measured by an atomic force microscope or a scanning tunneling microscope (Isono et al. Japan Society for the Promotion of Science 142 Committee A Section Special Research Group) Sample 34 Page 1
994).
【0006】[0006]
【発明が解決しようとする課題】赤外吸収等の光を用い
た振動分光による方法は、ガラス基板上に透明電極膜を
作製し、その上に液晶配向膜がある液晶表示素子を測定
する際に、ガラス基板や透明電極膜の影響を避けること
ができない。特に1500cm-1より低波数の赤外線は
ガラスを透過しないために吸収スペクトルの測定ができ
ない。これまでの赤外分光による液晶配向膜の分子配向
の観測は1240cm-1の吸収に注目して測定を行なっ
ているので(沢他 ジャパニーズジャーナルオブアプラ
イドフィジクス Japanese Journal
of Applied Physics 33巻627
3ページ 1994年)、実際に使用されている液晶表
示素子の配向膜の検査を行なうことができない。The method based on vibrational spectroscopy using light such as infrared absorption is used to measure a liquid crystal display device having a transparent electrode film formed on a glass substrate and a liquid crystal alignment film formed thereon. In addition, the influence of the glass substrate and the transparent electrode film cannot be avoided. In particular, infrared rays having a wave number lower than 1500 cm -1 do not pass through the glass, so that the absorption spectrum cannot be measured. The observation of the molecular orientation of the liquid crystal alignment film by infrared spectroscopy has been conducted by paying attention to the absorption at 1240 cm -1 (Sawa et al., Japanese Journal of Applied Physics, Japanese Journal).
of Applied Physics Volume 33 627
Page 3, 1994), it is impossible to inspect the alignment film of the liquid crystal display element actually used.
【0007】複屈折位相差の測定を行なう場合、通常ガ
ラス基板自身が歪等による複屈折性をもつので配向膜自
身の複屈折位相差を測定するのは困難である。従って、
従来から知られている方法で配向膜中の分子の配向状態
を正確に評価することはできない。これに加えて、複屈
折位相差φは複屈折率Δn、膜厚d、光の波長λとの間
に φ=2π(Δn・d)/λ (1) なる関係があるので、複屈折位相差φの測定から得られ
る量は、膜厚dと分子配向によって生じる複屈折率Δn
の積であることを示している。液晶表示素子に配向膜と
して広く使われているラビング処理したポリイミド膜
は、膜全体が配向するのではなく、表面付近が配向する
ことが知られている(沢他 ジャパニーズジャーナルオ
ブアプライドフィジクス Japanese Jour
nal ofApplied Physics 33巻
6273ページ 1994年)ので、配向した部分の厚
さが測定できなければ分子配向を定量的に知ることがで
きない。When the birefringence phase difference is measured, it is difficult to measure the birefringence phase difference of the alignment film itself because the glass substrate itself usually has birefringence due to strain or the like. Therefore,
It is not possible to accurately evaluate the alignment state of molecules in the alignment film by a method known in the related art. In addition to this, the birefringence phase difference φ has a relationship of φ = 2π (Δn · d) / λ (1) among the birefringence Δn, the film thickness d, and the wavelength λ of light. The amount obtained from the measurement of the phase difference φ is the birefringence Δn caused by the film thickness d and the molecular orientation.
It is shown to be the product of It is known that the rubbing-treated polyimide film, which is widely used as an alignment film in liquid crystal display devices, is aligned not on the entire film but on the surface (Sawa et al., Japanese Journal of Applied Physics Japanes Jourse.
nal of Applied Physics, Vol. 33, p. 6273, 1994), molecular orientation cannot be quantitatively known unless the thickness of the oriented portion can be measured.
【0008】膜からの反射光強度の入射光の偏光状態と
膜の面内入射方向の依存性から膜の面内屈折率異方性を
測定して分子配向を測定する方法が提案されているが
(特開平4−95845号公報 石原「配向膜の液晶配
向能評価方法」)、複屈折位相差測定と同様に配向した
部分の膜厚を測定することができないので分子配向を測
定することができない。更に測定を行なう際の技術的な
困難として表面形状の異方性の効果が挙げられる。液晶
配向膜として広く用いられるポリイミド膜はラビングに
より膜の分子が配向するばかりでなく、表面にラビング
方向に沿って走る微細な溝状の形態が形成されることが
知られている(磯野他 日本学術振興会142委員会A
部会特別研究会試料34ページ1994年など報告多
数)。この溝の存在のために膜表面に入射した光は正反
射方向以外に散乱される光の量に面内異方性が表れるた
めに、反射光強度の入射方向の面内異方性は膜の分子配
向によって生じた光学的異方性を正確に反映した量では
ない。A method has been proposed in which the in-plane refractive index anisotropy of the film is measured from the dependence of the intensity of reflected light from the film on the polarization state of the incident light and the in-plane incident direction of the film to measure the molecular orientation. However, it is not possible to measure the film thickness of the aligned portion similarly to the birefringence retardation measurement, since molecular weight can be measured in the same manner as the birefringence phase difference measurement (Japanese Patent Laid-Open No. 4-95845, Ishihara “Method for evaluating liquid crystal alignment ability of alignment film”). Can not. Further, the technical difficulty in carrying out the measurement includes the effect of the anisotropy of the surface shape. It is known that a polyimide film, which is widely used as a liquid crystal alignment film, not only has the molecules of the film aligned by rubbing, but also has a fine groove-like shape that runs along the rubbing direction on the surface (Isono et al. Japan. 142 Committee A, Japan Society for the Promotion of Science
Special report of the working group, 34 pages, many reports such as 1994). Because of the presence of this groove, the light incident on the surface of the film exhibits in-plane anisotropy in the amount of light scattered in directions other than the specular reflection direction. The amount does not accurately reflect the optical anisotropy caused by the molecular orientation of.
【0009】原子間力顕微鏡による観察は表面の荒さと
いった表面形態が観測されているにすぎず配向膜におい
て原子レベルの分解能で観察された例はない。液晶配向
膜の場合、この方法で観察された表面形状が液晶分子の
配向状態には殆ど影響を与えず、膜中の分子配向とも相
関がないことが報告されている(磯野他 日本学術振興
会142委員会A部会特別研究会試料34ページ199
4年)。更に、ラビングした膜の表面をアセトン等の有
機溶媒で処理した膜では、液晶分子の配向規制力はある
ものの、ラビングで生じた表面の溝状の形態がないこと
が知られている。この様に表面形態観察は液晶配向膜の
もつ液晶分子の配向規制力に対して直接的な情報を与え
ないので、適当な評価法ではない。Observation by an atomic force microscope only shows surface morphology such as surface roughness, and there is no example observed with an atomic level resolution in an alignment film. In the case of a liquid crystal alignment film, it has been reported that the surface shape observed by this method has almost no effect on the alignment state of liquid crystal molecules and has no correlation with the molecular alignment in the film (Isono et al., Japan Society for the Promotion of Science). 142 Committee A Subcommittee Special Study Group Sample 34 pages 199
4 years). Further, it is known that a film obtained by treating the surface of a rubbed film with an organic solvent such as acetone has a force for regulating the alignment of liquid crystal molecules, but does not have a groove-like form on the surface caused by the rubbing. Thus, the surface morphology observation is not an appropriate evaluation method because it does not give direct information to the alignment control force of the liquid crystal molecules of the liquid crystal alignment film.
【0010】一方、薄膜の光学的評価法として一定の方
向と入射角および偏光状態で試料表面に光を入射したと
きに生じる反射光の偏光状態から膜厚、屈折率、吸収率
等を測定するエリプソメトリが広く行なわれている。こ
の手法は、屈折率、吸収率が既知で等方的な基板上の一
層の薄膜の膜厚、屈折率、吸収率の3つの量のうちの2
つ以下の量を、反射光のS偏光成分(試料表面に平行な
偏光成分)とそれに垂直なP偏光成分の位相差Δと強度
比 (tan ψ)2、入射角、光の波長から計算する(アザ
ム(Azzam) 他 「エリプソメトリアンドポーラライズド
ライト」(Ellipsometry and Polalized light) ノー
スホーランド(North-Holland) 1987 年及び ザグラウ
ル(Zaghloul)他 アプライドオプチックス(Applied Opt
ics )21巻4号739ページ 1987 年)。この計算に
あたっては基板及び薄膜ともに光学的に等方的な物質と
して扱っている。On the other hand, as an optical evaluation method for a thin film, the film thickness, the refractive index, the absorptance, etc. are measured from the polarization state of the reflected light generated when the light is incident on the surface of the sample in a certain direction, the incident angle and the polarization state. Ellipsometry is widely practiced. This method uses two of the three quantities of film thickness, refractive index, and absorptance on a isotropic substrate whose refractive index and absorptivity are known.
The following amount is calculated from the phase difference Δ and intensity ratio (tan ψ) 2 of the S-polarized component of the reflected light (polarized component parallel to the sample surface) and the P-polarized component perpendicular to it, the incident angle, and the wavelength of the light. (Azzam and others "Ellipsometry and Polalized light" North-Holland 1987 and Zaghloul and others Applied Opts (Applied Opt)
ics) Vol. 21, No. 4, p. 739, 1987). In this calculation, both the substrate and the thin film are treated as optically isotropic substances.
【0011】一方、液晶配向膜は基板上に等方的な部分
の上に光学的異方性をもつ部分が存在し、実質的には2
層の膜が基板上にあり、さらに一方は光学的に非等方的
であるので、従来のエリプソメトリでは等方的部分と非
等方的部分のそれぞれの厚さや屈折率は測定できない。On the other hand, the liquid crystal alignment film has a portion having optical anisotropy on an isotropic portion on the substrate, and is substantially 2
Since the film of layers is on the substrate and one is optically anisotropic, conventional ellipsometry cannot measure the thickness and refractive index of each of the isotropic and anisotropic portions.
【0012】それ故、本発明の第1の課題は、ガラス基
板上に作製された配向膜中の分子配向の状態を評価する
ことが可能な方法と装置を提供することにある。Therefore, a first object of the present invention is to provide a method and apparatus capable of evaluating the state of molecular orientation in an alignment film formed on a glass substrate.
【0013】本発明の第2の課題は、ガラス基板上に作
製された液晶配向膜の最表面の分子配向した部分の厚
さ、主座標系、主誘電率(誘電率テンソルが対角行列と
して表現される座標系とその対角成分の値 (吉原「物
理光学」 共立出版 昭和41年 186ページ))の
膜表面に対する配置、および無配向部分の屈折率と厚さ
を測定し、液晶配向膜表面の分子配向を評価することが
可能な方法と装置を提供することにある。A second object of the present invention is to provide the thickness of the molecularly oriented portion of the outermost surface of the liquid crystal alignment film formed on the glass substrate, the main coordinate system, and the main dielectric constant (dielectric constant tensor as a diagonal matrix). The orientation of the coordinate system to be expressed and the value of its diagonal component (Yoshihara “Physical Optics” Kyoritsu Shuppan, 1986, p. 186), and the refractive index and thickness of the non-aligned part were measured, and the liquid crystal alignment film It is an object of the present invention to provide a method and a device capable of evaluating the molecular orientation of a surface.
【0014】[0014]
【課題を解決するための手段】前記第1の課題を解決す
るために、本発明は薄膜試料表面に一定の偏光状態の単
色光を入射し、それによって生じた反射光の偏光状態を
測定することで、薄膜の分子配向を測定する。本発明で
は反射光を観察しているので、歪をもったガラス基板の
上に作製された薄膜の分子配向を測定することができ
る。In order to solve the above-mentioned first problem, the present invention measures the polarization state of reflected light generated by injecting monochromatic light having a constant polarization state onto the surface of a thin film sample. By doing so, the molecular orientation of the thin film is measured. In the present invention, since the reflected light is observed, it is possible to measure the molecular orientation of the thin film formed on the strained glass substrate.
【0015】本発明は反射光の強度でなく、偏光状態を
測定するので荒れや溝等の表面形状の異方性に起因する
散乱光強度の変化に影響されずに膜の光学的異方性が測
定できる。Since the present invention measures not the intensity of the reflected light but the polarization state, the optical anisotropy of the film is not affected by the change in the scattered light intensity due to the anisotropy of the surface shape such as roughness and grooves. Can be measured.
【0016】通常、空間のある固定した位置で観測され
る角周波数ωの光の時刻tでの電場ベクトル強度は光の
伝搬方向に対し垂直な面上に定義された互いに直交する
2つの方向XYについて x成分 A1×exp(i(ωt+δ1)) y成分 A2×exp(i(ωt+δ2)) (2) と表される。δ1、δ2はそれぞれの方向の初期位置、
A1,A2はそれぞれの方向の振幅である。強度の絶対
値を除いた偏光状態はこの2成分の比 (A1/A2)×exp(i(δ1−δ2)) (3) となり、 tanψ=(A1/A2) Δ=(δ1−δ2) (4) で定義される2つの量ψ、Δで表される。この2つのパ
ラメータに影響を与えるのは膜の屈折率、吸収係数およ
び膜厚であるが、通常、液晶配向膜に使われるようなポ
リイミド膜の吸収係数は可視光領域で1/1000未満
であり、波長依存性も小さいために吸収はない物質とし
て扱うことができる。そこで、測定された2つのパラメ
ータ(ψ、Δ)から膜の状態を表す2つのパラメータ
(屈折率、膜厚)を決定できる。Usually, the electric field vector intensity of light of angular frequency ω observed at a fixed position in space at time t is two directions XY orthogonal to each other defined on a plane perpendicular to the propagation direction of light. X component A1 × exp (i (ωt + δ1)) y component A2 × exp (i (ωt + δ2)) (2) δ1 and δ2 are the initial positions in each direction,
A1 and A2 are amplitudes in the respective directions. The polarization state excluding the absolute value of the intensity is the ratio of these two components (A1 / A2) × exp (i (δ1-δ2)) (3), and tan ψ = (A1 / A2) Δ = (δ1-δ2) ( 4) It is represented by two quantities ψ and Δ defined in. It is the refractive index, absorption coefficient and film thickness of the film that affect these two parameters, but the absorption coefficient of a polyimide film, which is usually used for liquid crystal alignment film, is less than 1/1000 in the visible light region. Since the wavelength dependence is small, it can be treated as a substance that does not absorb. Therefore, two parameters (refractive index, film thickness) representing the state of the film can be determined from the two measured parameters (ψ, Δ).
【0017】この方法では、複屈折位相差測定や反射光
強度異方性測定では知ることができない、分子が配向し
ている部分の膜厚と屈折率を独立に求めることができ、
分子配向について定量的な測定が可能である。According to this method, it is possible to independently obtain the film thickness and the refractive index of the portion where the molecules are oriented, which cannot be known by the birefringence phase difference measurement or the reflected light intensity anisotropy measurement.
Quantitative measurement of molecular orientation is possible.
【0018】反射光の偏光状態の入射光波長依存性や入
射角依存性を測定することで既知量が増えることから、
膜の屈折率の深さ方向の分布を、測定した条件の数に応
じて求めることができる。Since the known quantity is increased by measuring the incident light wavelength dependence and the incident angle dependence of the polarization state of the reflected light,
The distribution of the refractive index of the film in the depth direction can be obtained according to the number of measured conditions.
【0019】なお、透過光の偏光状態を測定する複屈折
位相差測定では、膜を支えるガラス基板歪が大きく影響
するという問題があったが、反射光の場合は歪んだガラ
ス基板のように異方性がある物質の表面での反射の際に
発生する位相変化は、反射を起こす媒質と入射光および
反射光が伝搬する物質の屈折率の大小関係のみで決定す
るため、歪によって発生した屈折率の異方性によって反
射光の位相が変化することは殆どない。この様な事情に
よって、反射光の位相変化の異方性を測定することでガ
ラス基板の歪等の下地基板の光学的異方性に影響され
ず、表面付近の膜の異方性を測定できる。Incidentally, in the birefringence phase difference measurement for measuring the polarization state of the transmitted light, there was a problem that the strain of the glass substrate supporting the film had a great influence, but in the case of the reflected light, it was different like the distorted glass substrate. Since the phase change that occurs when the material is anisotropic is reflected by the surface, it is determined only by the magnitude relationship between the reflective medium and the refractive index of the material through which incident light and reflected light propagate. The phase of the reflected light hardly changes due to the anisotropy of the ratio. Under such circumstances, by measuring the anisotropy of the phase change of the reflected light, the anisotropy of the film near the surface can be measured without being affected by the optical anisotropy of the underlying substrate such as the distortion of the glass substrate. .
【0020】反射光の異方性を測定するには、まず光源
からの光を分光器と偏光子を通過させることによって偏
光状態と波長が一定の入射光をつくって試料表面に入射
させたときに発生する反射光の偏光状態を検光子を用い
て測定する。異方性の測定は、試料を面内回転すること
で光の入射方向を変え、反射光の偏光状態依存性を測定
したり、それぞれが試料表面上の同じ点で交差し、試料
への入射方向が違う複数の光線の反射光の偏光状態を測
定することで同時に異方性の測定を行う。なお、入射光
と反射光の偏光状態は試料表面に平行な成分とそれに直
交する成分で表す。入射光は表面に水平な部分とそれに
直交する成分の値が等しい状態のψ=π/4、の場合が
膜厚と屈折率を同時に求める場合に最適である。To measure the anisotropy of the reflected light, first, the light from the light source is made to pass through a spectroscope and a polarizer to form incident light having a constant polarization state and wavelength, and the incident light is made incident on the sample surface. The polarization state of the reflected light generated in 1 is measured using an analyzer. Anisotropy is measured by rotating the sample in-plane to change the incident direction of the light and measuring the polarization state dependence of the reflected light. Anisotropy is measured at the same time by measuring the polarization state of the reflected light of a plurality of light rays with different directions. The polarization states of incident light and reflected light are represented by a component parallel to the sample surface and a component orthogonal thereto. In the case where the incident light is ψ = π / 4 in a state where the value of the component that is horizontal to the surface and the component that is orthogonal to it are the same, it is most suitable for simultaneously obtaining the film thickness and the refractive index.
【0021】前記第2の課題を解決するために、本発明
は、液晶配向膜試料表面に一定の偏光状態の単色光を入
射し、それによって生じた反射光の偏光状態(S偏光成
分とP偏光成分の位相差と強度比)を試料面内の複数の
方向から観測し、反射光の偏光状態の入射方向依存性か
ら膜の分子配向状態を直接反映した配向部分の主誘電
率、主座標系の膜表面に対する角度、厚さと、ラビング
処理によっても分子配向を生じない非配向部分の屈折率
と厚さを求めることで液晶配向膜表面の分子配向を評価
する。In order to solve the above-mentioned second problem, the present invention makes monochromatic light having a constant polarization state incident on the surface of a liquid crystal alignment film sample, and causes the polarization state of reflected light (S polarization component and P (Phase difference and intensity ratio of polarization components) are observed from multiple directions in the sample plane, and the principal permittivity and principal coordinates of the orientation part that directly reflects the molecular orientation state of the film from the incident direction dependence of the polarization state of the reflected light. The molecular orientation of the liquid crystal alignment film surface is evaluated by obtaining the angle and thickness of the system with respect to the film surface, and the refractive index and thickness of the non-aligned portion that does not cause molecular alignment even by rubbing treatment.
【0022】歪が存在しても光の吸収が極く小さい基板
表面での反射ではS偏光成分とP偏光成分の位相差には
変化が生じないので、歪のあるガラス基板に成膜された
液晶配向膜試料からの反射光のS偏光成分とP偏光成分
の位相差の面内入射方向依存性は液晶配向膜の分子配向
状態に対応した配向部分の主誘電率、主座標系の膜表面
に対する角度、厚さと、ラビング処理によっても分子配
向を生じない非配向部分の屈折率を正確に反映する。こ
のような理由により反射光の偏光状態の面内入射方向依
存性を観測する本発明は、歪のあるガラス基板上の液晶
配向膜の分子配向を評価できる。Even if there is strain, the phase difference between the S-polarized component and the P-polarized component does not change when reflected on the substrate surface where light absorption is extremely small. Therefore, the film was formed on a strained glass substrate. Liquid crystal alignment film The in-plane incident direction dependence of the phase difference between the S-polarized light component and the P-polarized light component of the reflected light from the sample is the main dielectric constant of the alignment portion corresponding to the molecular alignment state of the liquid crystal alignment film, the film surface of the main coordinate system It accurately reflects the angle, the thickness, and the refractive index of the non-oriented portion that does not cause molecular orientation even by the rubbing treatment. For this reason, the present invention, which observes the in-plane incident direction dependence of the polarization state of reflected light, can evaluate the molecular orientation of a liquid crystal orientation film on a glass substrate having distortion.
【0023】本発明では反射光の強度の面内入射方向依
存性ではなく、偏光状態の面内入射方向依存性を測定す
るので、膜表面の荒れや溝等の表面形態の異方性に起因
する反射光強度の変化に影響されずに、膜の分子配向に
対応する光学的異方性の測定ができる。In the present invention, the dependence of the intensity of the reflected light on the in-plane incident direction of the polarization state is measured, and therefore the in-plane incident direction dependency of the polarization state is measured. The optical anisotropy corresponding to the molecular orientation of the film can be measured without being affected by the change in the reflected light intensity.
【0024】S偏光成分とP偏光成分の面内入射方向依
存性を測定するには、光源からの光を分光器と偏光子を
通過させることによって偏光状態と波長が一定の光をつ
くる。この光を液晶配向膜試料表面の同一の点に複数の
面内方向入射させたときに発生する反射光の偏光状態
(S波、P波の位相差と振幅比)をそれぞれの面内入射
方向について検光子を用いて測定する。複数の面内入射
角での測定は、試料面上の光が当っている点を通る軸を
中心に試料を面内回転させたり、複数の光源を試料表面
上に同時に当てることで行なう。入射光はS偏光成分と
P偏光成分の振幅比が等しい偏光状態の時、解析がやや
簡単になる。In order to measure the in-plane incident direction dependence of the S-polarized component and the P-polarized component, light from a light source is made to pass through a spectroscope and a polarizer to produce light having a constant polarization state and wavelength. The polarization state of the reflected light (phase difference and amplitude ratio of S wave and P wave) generated when a plurality of in-plane directions of this light are made incident on the same point on the surface of the liquid crystal alignment film sample is determined by the respective in-plane incident directions. Is measured using an analyzer. The measurement at a plurality of in-plane incident angles is performed by rotating the sample in-plane about an axis passing through the point on the sample surface where the light is incident, or simultaneously applying a plurality of light sources to the sample surface. When the incident light has a polarization state in which the amplitude ratios of the S-polarized component and the P-polarized component are equal, the analysis becomes a little easier.
【0025】ラビング処理によって形成された液晶配向
膜は最表面相が異方性がある物質、その下の無配向相を
等方的な物質の2層からなる膜と考える。この様な構造
の膜表面で光が反射された際の反射光の偏光状態は異方
性層の主誘電率、主座標系の膜表面に対する角度、厚さ
と、非配向部分の屈折率と厚さ、および基板の屈折率に
依存する。この反射光の偏光状態は4×4行列法(ベル
マン (D. W. Berrman)ジャーナルオブディオプティカル
ソサエティオブアメリカ (Journal of the Optical Soc
iety of America)62巻4号502ページ 1972 年)を
用いて以下の様に計算される。The liquid crystal alignment film formed by the rubbing treatment is considered to be a film having two layers of a substance having an anisotropic outermost surface phase and a non-alignment phase below it. When light is reflected on the film surface of such a structure, the polarization state of the reflected light is the main dielectric constant of the anisotropic layer, the angle of the main coordinate system with respect to the film surface, the thickness, and the refractive index and the thickness of the non-oriented portion. And the refractive index of the substrate. The polarization state of this reflected light is determined by the 4 × 4 matrix method (DW Berrman Journal of the Optical Soc
Society of America) Vol. 62, No. 4, p. 502, 1972).
【0026】試料表面の法線ベクトルをZ軸、試料面と
入射面の両方に平行で光の進行する向きを正方向にX
軸、X軸Z軸に垂直にY軸とする座標系を定義する。光
の角周波数をω、光の電場ベクトルを(Ex,Ey,E
z)、磁場ベクトルを(Hx,Hy,Hz)は、 Ψ=t (Ex,Hy,Ey,−Hz) (2´) なる列ベクトルを導入して、下記の数式1で表される式
(3´)をみたす。The normal vector of the sample surface is the Z-axis, the direction in which light travels is parallel to both the sample surface and the incident surface, and X is the positive direction.
A coordinate system in which the Y axis is perpendicular to the Z axis and the X axis is defined. The angular frequency of light is ω, and the electric field vector of light is (Ex, Ey, E
z), the magnetic field vector (Hx, Hy, Hz) is Ψ = t (Ex, Hy, Ey, -Hz) (2 ') Introducing a column vector of the following expression (1) 3 ') is satisfied.
【0027】[0027]
【数1】 なお、式(3´)においてMは4行4列の行列であり、
光が伝播する媒質の光学的特性を反映する。[Equation 1] In the formula (3 ′), M is a matrix with 4 rows and 4 columns,
It reflects the optical properties of the medium through which the light propagates.
【0028】MがZ=Z0 〜Z0 +dの範囲で一定の場
合は、 Ψ(Z0 +d)=exp(iωdM)Ψ(Z0 ) (4´) なる関係がある。When M is constant in the range of Z = Z0 to Z0 + d, there is a relation of Ψ (Z0 + d) = exp (iωdM) Ψ (Z0) (4 ').
【0029】配向膜表面をZ=0、光はZ<0側より入
射角φ0 で入射しZ<0側に反射し、表面の異方層の厚
さをd1 、それより深い等方層の厚さをd2 である場
合、配向膜とガラス基板の界面での光の状態Ψ(d1 +
d2 )は、異方層に対応する行列M1 、等方層の行列M
2 を用いて、 Ψ(d1 +d2 )=exp(iωd2 M2 )exp(iωd1 M1 )Ψ(0) (5´) となる。Z = 0 on the surface of the alignment film, light is incident from the Z <0 side at an incident angle φ0 and is reflected on the Z <0 side, and the thickness of the anisotropic layer on the surface is d1. When the thickness is d2, the light state Ψ (d1 + at the interface between the alignment film and the glass substrate)
d2) is a matrix M1 corresponding to the anisotropic layer and a matrix M of the isotropic layer
By using 2, Ψ (d1 + d2) = exp (iωd2 M2) exp (iωd1 M1) Ψ (0) (5 ').
【0030】ここで、Ψ(0)、Ψ(d1 +d2 )を入
射光のS偏光成分EisとP偏光成分のEip、及び反射光
のS偏光成分Ers、P偏光成分Eps、透過光のS偏光成
分Ets、P偏光成分Etpで表すと、大気の屈折率を1、
ガラス基板の屈折率をN2 として、 Ψ(0)=(( Eip−Erp) cosφ0 、 Eip+Erp、Eis+Ers、( Eip− Erp) cosφ0 ) (6´) Ψ(d1 +d2 )=(Etpcosφ2 、 N2 Etp、Ets、N2 Erpcosφ2 ) (7´) となる。ここでφ2 は、 sinφ0 =N2 sinφ2 (8´) を満たす。Here, Ψ (0) and Ψ (d1 + d2) are the S polarization component Eis of the incident light and the E polarization of the P polarization component, the S polarization component Ers of the reflected light, the P polarization component Eps, and the S polarization of the transmitted light. When expressed by the component Ets and the P-polarized component Etp, the refractive index of the atmosphere is 1,
Letting the refractive index of the glass substrate be N2, Ψ (0) = ((Eip−Erp) cosφ0, Eip + Erp, Eis + Ers, (Eip−Erp) cosφ0) (6 ′) Ψ (d1 + d2) = (Etpcosφ2, N2Etp, Ets , N2 Erpcos φ2) (7 '). Here, φ2 satisfies: sinφ0 = N2 sinφ2 (8 ').
【0031】式(6´)、(7´)を式(5´)に代入
し、Ψ(d1 +d2 )のEtp、Etsを消去すると、 t(Erp,Ers) =R t( Eip,Eis) (9´) なる2行2列の行列Rが得られる。入射光のS成分とP
成分の大きさが等しい場合に行列Rのi 行j 列成分を、
Ri,j で表すと反射光は、 Erp=R1,1 +R1,2 (10´) Ers=R2,1 +R2,2 (11´) となり、S偏光とP偏光の位相差Δと振幅比 tanψは、 tan ψ・exp(iΔ)=(R1,1 +R1,2 )/(R2,1 +R2,2 ) (13´ ) となる。Substituting equations (6 ') and (7') into equation (5 ') and erasing Etp and Ets of Ψ (d1 + d2), t (Erp, Ers) = Rt (Eip, Eis) A matrix R of 2 rows and 2 columns (9 ′) is obtained. S component of incident light and P
If the magnitudes of the components are equal, the i-row, j-column component of the matrix R is
In terms of Ri, j, the reflected light is Erp = R1,1 + R1,2 (10 ') Ers = R2,1 + R2,2 (11'), and the phase difference Δ and amplitude ratio tan ψ between S-polarized light and P-polarized light are , Tan ψ · exp (iΔ) = (R1,1 + R1,2) / (R2,1 + R2,2) (13 ′).
【0032】以上はガラス基板の上に直接液晶配向膜を
成膜した試料の場合を計算したが、液晶配向膜とガラス
基板の間に透明電極膜や保護膜がある場合には(5´)
式は以下の様に変形される。ガラス基板の表面の位置が
Z=Zg 、配向膜以外の層がh個あり、それぞれの光学
特性を示す行列が表面から内部に向ってH1 ,H
2,..,Hh ,膜厚がf1 ,f2 ,..,fh であると
き、 exp(iωd2 M2 )exp(iωd1 M1 )=L (14´) なる4行4列の行列Lと、 exp(iωfj Hj )=Kj (15´) なる4行4列Kj を導入して、 Ψ(Zg )=Kh ・Kh-1 ・...・K2 ・K1 ・LΨ(0) (16´) となる。The above was calculated for the case where the liquid crystal alignment film was formed directly on the glass substrate, but when there is a transparent electrode film or a protective film between the liquid crystal alignment film and the glass substrate (5 ').
The formula is transformed as follows. The position of the surface of the glass substrate is Z = Zg, there are h layers other than the alignment film, and the matrix showing the respective optical characteristics is H1 and H from the surface toward the inside.
2 ,. . , Hh, and film thicknesses f1, f2 ,. . , Fh, a 4 × 4 matrix L of exp (iωd2 M2) exp (iωd1 M1) = L (14 ′) and a 4 × 4 column Kj of exp (iωfj Hj) = Kj (15 ′) Introducing, Ψ (Zg) = Kh.Kh-1 .. . .・ K2 ・ K1 ・ LΨ (0) (16 ')
【0033】以上に示したようにして液晶配向膜からの
反射光の状態が計算できるので、測定された反射光の偏
光状態を再現するような異方性層の主誘電率、主座標系
の膜表面に対する角度、厚さと、非配向部分の屈折率と
厚さの最適値を求める。この値の最適化は非線形最小二
乗法で行なうと能率的である。Since the state of the reflected light from the liquid crystal alignment film can be calculated as described above, the principal permittivity of the anisotropic layer and the principal coordinate system of the anisotropic layer that reproduce the polarization state of the measured reflected light can be calculated. The optimum values of the angle and thickness with respect to the film surface, and the refractive index and thickness of the non-oriented portion are obtained. It is efficient to optimize this value using the nonlinear least squares method.
【0034】液晶配向膜の下地の構造と屈折率が既知の
場合、異方性層の主誘電率、主座標系の膜表面に対する
角度、厚さと、非配向部分の屈折率と厚さがより精度よ
く求められるが、下地の構造と屈折率が未知の場合で
も、それらの値を最適化されるべきパラメータとして扱
って、異方性層の主誘電率、主座標系の膜表面に対する
角度、厚さと、非配向部分の屈折率と厚さと同時に最適
値を求めることにより、精度が悪いながらも液晶配向膜
の状態を評価することができる。When the underlying structure and the refractive index of the liquid crystal alignment film are known, the main dielectric constant of the anisotropic layer, the angle of the main coordinate system with respect to the film surface, the thickness, and the refractive index and the thickness of the non-alignment portion are more significant. Accurately required, even if the underlying structure and refractive index are unknown, those values are treated as parameters to be optimized, and the main dielectric constant of the anisotropic layer, the angle with respect to the film surface of the main coordinate system, By obtaining the optimum values at the same time as the thickness, the refractive index and the thickness of the non-aligned portion, the state of the liquid crystal alignment film can be evaluated although the accuracy is poor.
【0035】[0035]
【発明の実施の形態】本発明の実施の形態を図面を用い
て以下に説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0036】実施の形態1 本発明の一実施例として入射光に単一波長の光線を用い
た装置について図1を参照して実施例を説明する。入射
光光源1から出た光は偏光子2によってψ=π/4、Δ
=0(ψ,Δは(4)式の定義のとおり)の直線偏光に
される。直線偏光にされた入射光は、試料表面の法線か
ら一定の入射角をもって試料6表面に入射される試料よ
り上流におかれた位相板3はΔの象現決定を行うために
出し入れする。本測定ではHe−Neレーザーの633
nmの光を光源に、位相板として1/4波長板を用い
た。光は必要があれば表面上の測定範囲を、スリット
4、レンズ5を用いて制限することができる。但し、レ
ンズを用いて集光を行うと試料に対する入射角のボケが
大きくなって測定精度が犠牲になる。試料6で反射した
光は検光子7に入り、そこを通過した光の強度は受光管
8で測定される。本測定では受光管としてフォトダイオ
ードを用いた。Embodiment 1 As an embodiment of the present invention, an apparatus using a light beam of a single wavelength as incident light will be described with reference to FIG. The light emitted from the incident light source 1 is ψ = π / 4, Δ by the polarizer 2.
= 0 (ψ and Δ are as defined in the equation (4)). The linearly polarized incident light is put in and taken out by the phase plate 3 upstream of the sample which is incident on the surface of the sample 6 at a constant incident angle from the normal to the surface of the sample in order to determine the phenotype of Δ. In this measurement, He-Ne laser 633
A 1/4 wavelength plate was used as a phase plate with a light of nm as a light source. If necessary, the measuring range of light on the surface can be limited by using the slit 4 and the lens 5. However, if light is collected using a lens, the blurring of the incident angle with respect to the sample becomes large, and the measurement accuracy is sacrificed. The light reflected by the sample 6 enters the analyzer 7, and the intensity of the light passing therethrough is measured by the light receiving tube 8. In this measurement, a photodiode was used as the light receiving tube.
【0037】検光子を回転させて、検光子の角度によっ
て光の強度を測定し、検光子を通過する光の強度を検光
子角についてのフーリェ和からψとΔを求める。周期関
数であるためにΔが2つの値をもつ。そこで、位相板を
入れて入射光の偏光状態を変えた測定を行い、位相板が
ない場合に求めたのと同じ値のΔを最終的な値として採
用する。The analyzer is rotated, the light intensity is measured by the angle of the analyzer, and the intensity of the light passing through the analyzer is determined from ψ and Δ from the Fourier sum for the analyzer angle. Since it is a periodic function, Δ has two values. Therefore, the measurement is performed with the phase plate inserted and the polarization state of the incident light is changed, and Δ, which is the same value as obtained without the phase plate, is adopted as the final value.
【0038】試料6は回転ステージ9の上にあり、ステ
ージを回転させることによって異方性の測定を行う。The sample 6 is placed on the rotary stage 9, and the anisotropy is measured by rotating the stage.
【0039】なお、本測定例では反射光の偏光状態を決
定するために回転検光子法を用いたが、同じ光学素子の
配置で検出される反射光強度が0になる検光子、偏光子
の角度から偏光状態を決める消光点法(大塚 日本金属
学会会報20巻7号614ページ1981年)でも測定
可能であると考えられる。In this measurement example, the rotation analyzer method is used to determine the polarization state of the reflected light. However, in the analyzer and the polarizer in which the reflected light intensity detected by the same arrangement of the optical elements is zero. It is considered that the measurement can also be performed by the extinction point method (Otsuka The Japan Institute of Metals, Vol. 20, No. 7, page 614, 1981), which determines the polarization state from the angle.
【0040】この装置を用いて以下の3種類の試料を測
定した。The following three types of samples were measured using this apparatus.
【0041】(試料A)コーニング社製7059ガラス
の表面にポリイミド原料液の日立化成LQ120(商品
名)をスピンコート装置を用いて塗布した後、250℃
で2時間加熱による焼成を行った。(Sample A) A polyimide raw material liquid Hitachi Chemical LQ120 (trade name) was applied to the surface of 7059 glass manufactured by Corning Co., Ltd. using a spin coater, and then 250 ° C.
Calcination was performed by heating for 2 hours.
【0042】(試料B)試料Aと同様な方法で焼成した
後、半径40mmバフ布ローラで、布の押込み長さ0.
4mm、回転数800rpm、移動速度20mm/sで
ラビングを行った。(Sample B) After being fired in the same manner as in Sample A, the indenting length of the cloth was 0.
Rubbing was performed at 4 mm, a rotation speed of 800 rpm, and a moving speed of 20 mm / s.
【0043】(試料C)ローラ回転数80rpmとした
以外は試料Bと同じラビング条件である。(Sample C) The rubbing conditions were the same as those of Sample B except that the roller rotation speed was 80 rpm.
【0044】図2は入射角度を70°として回転ステー
ジ9を回転させながら測定した試料A、B、CのΔと試
料回転角との関係を示す図である。縦軸はΔは356.
5°からの変化量を示している。FIG. 2 is a diagram showing the relationship between Δ of sample A, B and C and the sample rotation angle measured while rotating the rotary stage 9 with the incident angle of 70 °. The vertical axis represents Δ of 356.
The amount of change from 5 ° is shown.
【0045】図2から読取れるように、ラビング処理を
しない試料Aは分子配向がないために光学的異方性が観
測されないが、試料Bは角度依存がみられ分子の配向に
起因する光学異方性が特にΔについて顕著に観測され
る。As can be seen from FIG. 2, sample A without rubbing treatment has no molecular orientation, so that optical anisotropy is not observed, but sample B has an angle dependence and shows optical anisotropy due to molecular orientation. Anisotropy is especially observed for Δ.
【0046】図2の反射光の偏光状態はラビングの正方
向入射と逆方向入射で有意の差が認められる。この差は
膜中の分子が膜表面に対する配向方向が膜表面に平行で
ないことに起因し、その差から表面に対する分子の傾き
角度がわかる。Regarding the polarization state of the reflected light in FIG. 2, a significant difference is recognized between the normal direction incidence and the reverse direction incidence of rubbing. This difference is due to the fact that the molecules in the film have an orientation direction with respect to the film surface that is not parallel to the film surface, and the difference indicates the tilt angle of the molecule with respect to the surface.
【0047】試料Bの測定結果からポリイミド分子の配
向部分膜厚と分子の傾斜角を以下の様にして求めた。膜
構造の解析を行うにあたり、試料Bのポリイミド膜の構
造は表面付近のポリイミド分子が配向した層とそれより
深度の分子が配向していない(ランダム)領域の2つの
部分から成ると仮定し、それぞれの膜厚を求めた。表面
付近の分子が配向している部分は光学的異方性が極く小
さい単軸結晶として扱い、誘電率マトリックスの主軸方
向を求めてポリイミド分子の配向方向とした。この様な
構造をした試料からの反射光の偏光状態は以下の様にし
て計算される。From the measurement result of the sample B, the oriented partial film thickness of the polyimide molecule and the tilt angle of the molecule were determined as follows. In conducting the analysis of the film structure, it is assumed that the structure of the polyimide film of Sample B is composed of two parts, that is, a layer in the vicinity of the surface in which the polyimide molecules are oriented and a region in which the molecules in the depth are not oriented (random), The film thickness of each was determined. The portion where the molecules near the surface are oriented is treated as a uniaxial crystal with extremely small optical anisotropy, and the principal axis direction of the dielectric constant matrix is determined and used as the orientation direction of the polyimide molecules. The polarization state of the reflected light from the sample having such a structure is calculated as follows.
【0048】光を含む電磁波の伝搬はMaxwellの
方程式を解くことで記述される。角周波数ωの単色光の
場合の方程式は rotE=iωB rotH=iωD (5) となる。これを解くのにあたり電場E、磁場Hの正規直
交座標成分を成分とするベクトル G=(Ex,Ey,Ez,Hx,Hy,Hz) (6) と C=(Dx,Dy,Dz,Bx,By,Bz) (7) を導入する。光が伝搬する媒質の性質を示す誘電率テン
ソルと透磁率テンソルを対角部分にもつ6行6列のテン
ソルMを用いると C=MG (8) となる。一方、上の(5)式も左辺の回転操作に対応す
る非対角要素のみからなる行列Pを用いて、 PG=iωMG G=iω(P-1M)G=iωLG L=(P-1M) (9) となる。この式において、測定された光の状態はGに反
映されPは既知であるので、ポリイミド膜の状態を決定
することはMの成分を解くことに対応する。この試料B
の様に光学的特性が異なる構造では、 L=L1 L2 L3 (10) となり、L1 ,L2 ,L3 はそれぞれ、ガラス基板、ポ
リイミド膜の無配向部分、配向部分に対応する。このう
ちL1 ,L2 には既知の値を用いることができる。な
お、全てのテンソルに共通して、磁気的効果は殆どない
ため透磁率は等方的に1とした。具体的には4〜6行4
〜6列の9個の要素のうち対角要素が1で他は0とし
た。また、ポリイミド表面、およびポリイミド−ガラス
界面はZ軸に垂直、、ラビング方向がX軸となるように
座標系を定義した。The propagation of electromagnetic waves including light is described by solving Maxwell's equation. The equation for monochromatic light of angular frequency ω is rotE = iωB rotH = iωD (5). In solving this, a vector G = (Ex, Ey, Ez, Hx, Hy, Hz) (6) and C = (Dx, Dy, Dz, Bx, which have the orthonormal coordinate components of the electric field E and the magnetic field H as components, By, Bz) (7) is introduced. If a 6-row 6-column tensor M having diagonally the permittivity tensor and the permeability tensor showing the properties of the medium through which light propagates is used, C = MG (8). On the other hand, the above equation (5) also uses the matrix P consisting only of the non-diagonal elements corresponding to the rotation operation on the left side, and PG = iωMG G = iω (P −1 M) G = iωLG L = (P −1 M) (9) In this equation, since the measured light state is reflected in G and P is known, determining the state of the polyimide film corresponds to solving the M component. This sample B
In a structure with different optical characteristics such as, L = L 1 L 2 L 3 (10), and L 1 , L 2 and L 3 correspond to the glass substrate, the non-aligned portion and the aligned portion of the polyimide film, respectively. . Of these, known values can be used for L 1 and L 2 . Since all tensors have almost no magnetic effect, the magnetic permeability was set to 1 isotropically. Specifically, line 4-6
Of the nine elements in columns ˜6, the diagonal elements were 1 and the others were 0. The coordinate system was defined so that the polyimide surface and the polyimide-glass interface were perpendicular to the Z axis, and the rubbing direction was the X axis.
【0049】まず、ガラス基板の屈折率を知るためにポ
リイミド膜についてのすべての測定が終了した後、試料
A、B、Cの裏面をphotodevice社製エリプ
ソメータ MAXY−102で測定して、ガラス基板自
身の屈折率を求めたところ、1.5270±0.001
なる値を得た。これよりテンソルM1の1〜3行1〜3
行1〜3列の9個の要素のうち対角要素を2.331と
し、他は0とした。First, in order to know the refractive index of the glass substrate, after the measurement of all the polyimide films was completed, the back surfaces of the samples A, B, and C were measured with a photodevice ellipsometer MAXY-102 to obtain the glass substrate itself. The refractive index of 1.5270 ± 0.001
I got the value. From this, tensor M1 lines 1-3
Of the nine elements in rows 1 to 3, the diagonal element was 2.331 and the other elements were 0.
【0050】次いで試料Aのポリイミド膜をphoto
device社製エリプソメータMAXY−102で測
定した結果を、ガラス基板の屈折率1.5270として
計算すると屈折率1.61、膜厚1068Aを得た。な
お、この測定はガラス基板の裏面の測定に先立って行っ
た。テンソルM2は1〜3行1〜3列の9個の要素のう
ち対角要素を2.592として、他の要素は0と置い
た。Then, the polyimide film of Sample A was photo-coated.
When the result of measurement with a device Ellipsometer MAXY-102 was calculated as a refractive index of the glass substrate of 1.5270, a refractive index of 1.61 and a film thickness of 1068A were obtained. Note that this measurement was performed before the measurement of the back surface of the glass substrate. In the tensor M2, the diagonal element is set to 2.592 and the other elements are set to 0 out of the 9 elements in 1 to 3 rows and 1 to 3.
【0051】分子が配向した領域のテンソルは以下の様
に表した。分子の傾斜角をθ、ラビング方向に対する入
射光の面内角をψとする。ポリイミドの誘電率テンソル
を主軸表示して1行1列成分u2行2列および3行3列
成分をv他の非対角要素を0とする。このu,vを求め
ることになる。試料表面の法線がZ軸となる座標系にお
けるテンソルM3のi行j列の成分Mijは以下の様にな
る。The tensor of the region where the molecules are oriented is expressed as follows. Let θ be the tilt angle of the molecule and ψ be the in-plane angle of the incident light with respect to the rubbing direction. The dielectric constant tensor of polyimide is displayed on the principal axis, and the 1st row and 1st column component u, the 2nd row and 2nd column component, and the 3rd row and 3rd column component are v, and the other non-diagonal elements are set to 0. These u and v will be obtained. The component Mij at the i-th row and the j-th column of the tensor M3 in the coordinate system in which the normal to the sample surface is the Z axis is as follows.
【0052】 M11=u cos2 θ cos2 φ+v cosθ sin2 φ−v sin2 θ cosφ M12=−u cos2 θ sinφ cosφ−v sinφ cosφ M13=−u sinθcos θ cos2 φ+v sinθ sin2 θ+v sinθ cosθcos φ M21=u cos2 θ sinφ cosφ+v cosθ sinφ cosφ+v sin2 θ sinφ M22=u cosθ sin2 φ+v cos2 φ M23=−u sinθ cosθ sinφ cosφ +v sinθ sinφ cosφ+v sinθ cosθ sinφ M31=u sinθ cosθ cosφ−v sinθ cosθ M32=u sinθ sinφ M33=−u sin2 θ cosφ+v cos2 θ (11) となる。M11 = u cos 2 θ cos 2 φ + v cos θ sin 2 φ−v sin 2 θ cos φ M12 = −u cos 2 θ sin φ cos φ−v sin φ cos φ M13 = −u sin θ cos θ cos 2 φ + v sin θ sin 2 θ + v sin θ cos θ cos φ M21 = u cos 2 θ sinφ cosφ + v cosθ sinφ cosφ + v sin 2 θ sinφ M22 = u cosθ sin 2 φ + v cos 2 φ M23 = −u sinθ cosθ sinφ cosφ + v sinθ sinφ cosφ + v sinθ cosθ sinφ M31 = u sinθ cosinθ cosθ cosθ sinφ cos θ M32 = u sin θ sin φ M33 = −u sin 2 θ cos φ + v cos 2 θ (11)
【0053】左辺の演算子Pは、この場合は実質的にZ
成分についての微分になり、右辺の行列要素中のθの値
を測定値から求めることが分子配向を決定することに対
応する。しかし、解析的に求めるのは計算が繁雑で能率
が悪いので、パラメータを一定の値に決めて反射光の状
態をこの式にしたがって計算し、パラメータを少しずつ
変化させながら測定結果に近い計算値となる値を探し
た。このパラメータ最適化のプロセスは最小二乗法によ
って行うことがより能率的と考えられるが、今回は試行
錯誤で行った。The operator P on the left side is essentially Z in this case.
It is a derivative with respect to the component, and obtaining the value of θ in the matrix element on the right side from the measured value corresponds to determining the molecular orientation. However, calculation is complicated and inefficient to obtain analytically, so the parameters are set to constant values and the state of the reflected light is calculated according to this formula. I searched for the value. It is considered more efficient to perform this parameter optimization process by the least squares method, but this time it was done by trial and error.
【0054】第0近似 傾き角を0とすると M11=u cos2 φ+v sin2 φ M12=u sinφ cosφ−v sinφ cosφ M13=0 M21=−u sinφ cosφ+v sinφ cosφ M22=u sin2 φ+v cos2 φ M23=0 M31=0 M32=0 M33=v (12) となる。更にラビング方向のφ=0では M11=u M12=0 M13=0 M21=0 M22=v M23=0 M31=0 M32=0 M33=v (13) φ=90°の場合は M11=v M12=0 M13=0 M21=0 M22=u M23=0 M31=0 M32=0 M33=v (14) となって対角行列になり測定値との比較が容易になる。
しかし、この傾斜角θ=0とした近似では2回対称の角
度依存をもつことになって実際の状態をあらわさないの
で、θ=0°とφ=180°の平均値、φ=90°とφ
=180°の平均値を用いてu,vを解く。すると、こ
の場合はEzとDz,HzとBzの関係が恒等式となる
ので、それに関わる行列成分のMi3,M3j、Mi
6,M6jを無視できる。するとφ=0°、180°の
場合にテンソルMは対角要素のみになり、最表面の層が
屈折率(u)1/2 の均一な膜の試料について成立する式
と同じになる。φ=90°、270°の場合も同様に屈
折率が(u)1/2 の膜が最表面にのっている場合と同じ
になる。つまりu,vの第0近似値はφ=0°、180
°の測定値、φ=90°、270°の測定値から得られ
る。最表面の層(配向部)の膜厚とその下にある無配向
層の膜厚も未知なパラメータであるが、試料Aの測定か
らポリイミド膜全体の厚さが1070A程度と求められ
ているので、配向部分の厚さをd、その下の未配向部分
の厚さを1070−dと仮定すると、d,u,vを一義
的に決めることができる。試料Bの場合 u=(1.635)2 =2.673 v=(1.534)2 =2.353 d=150 A (15) となる。θ=0°、u=(1.635)2 =2.67
3、v=(1.534)2=2.353、d=150A
の場合のΔの変化を図3に○印で示す。0th approximation When the tilt angle is 0, M11 = u cos 2 φ + v sin 2 φ M12 = u sinφ cosφ−v sinφ cosφ M13 = 0 M21 = −u sinφ cosφ + v sinφ cosφ M22 = u sin 2 φ + v cos 2 φ M23 = 0 M31 = 0 M32 = 0 M33 = v (12) Further, when φ = 0 in the rubbing direction, M11 = u M12 = 0 M13 = 0 M21 = 0 M22 = v M23 = 0 M31 = 0 M32 = 0 M33 = v (13) When φ = 90 ° M11 = v M12 = 0 M13 = 0 M21 = 0 M22 = u M23 = 0 M31 = 0 M32 = 0 M33 = v (14), which is a diagonal matrix and facilitates comparison with measured values.
However, since the approximation with the inclination angle θ = 0 has a two-fold symmetry angle dependence and does not represent an actual state, the average value of θ = 0 ° and φ = 180 °, and φ = 90 ° φ
Solve u, v using the average value of = 180 °. Then, in this case, the relationship between Ez and Dz and Hz and Bz becomes an identity, so that the matrix elements Mi3, M3j, and Mi related thereto are Mi.
6, M6j can be ignored. Then, when φ = 0 ° and 180 °, the tensor M has only diagonal elements, which is the same as the equation that holds for a sample of a uniform film whose outermost layer has a refractive index (u) 1/2 . Similarly, in the case of φ = 90 ° and 270 °, it is the same as when the film having the refractive index (u) 1/2 is on the outermost surface. That is, the 0th approximation value of u and v is φ = 0 °, 180
Derived from the measured values of °, φ = 90 °, 270 °. The film thickness of the outermost layer (alignment portion) and the film thickness of the non-oriented layer thereunder are unknown parameters, but since the thickness of the entire polyimide film is determined to be about 1070A from the measurement of Sample A. Assuming that the thickness of the oriented portion is d and the thickness of the unoriented portion below is 1070-d, d, u, and v can be uniquely determined. In the case of sample B, u = (1.635) 2 = 2.673 v = (1.534) 2 = 2.353 d = 150 A (15) θ = 0 °, u = (1.635) 2 = 2.67
3, v = (1.534) 2 = 2.353, d = 150A
The change in Δ in the case of is shown by a circle in FIG.
【0055】第1近似このu,vを初期値として、θ、
u、v、dの値の最適化を図った。その手順としてφ=
0°では M11=u cos2 θ−v sin2 θ M12=0 M13=0 M21=0 M22=v M23=0 M31=0 M32=0 M33=v (16) φ=180°では M11=u cos2 θ+v sin2 θ M12=0 M13=0 M21=0 M22=v M23=0 M31=0 M32=0 M33=v (17) となる。0°と180°の見かけ上の屈折率の差はθを
微小量として展開し、近似的にvθ2 となる。θの2次
までを考慮する近似で解いてθ〜6°を得る。First approximation With u and v as initial values, θ,
The values of u, v, and d were optimized. Φ =
At 0 ° M11 = u cos 2 θ−v sin 2 θ M12 = 0 M13 = 0 M21 = 0 M22 = v M23 = 0 M31 = 0 M32 = 0 M33 = v (16) At φ = 180 ° M11 = u cos 2 θ + v sin 2 θ M12 = 0 M13 = 0 M21 = 0 M22 = v M23 = 0 M31 = 0 M32 = 0 M33 = v (17) The apparent difference in refractive index between 0 ° and 180 ° develops with θ as a minute amount, and approximately becomes vθ 2 . Solving by approximation considering up to the second order of θ, θ to 6 ° is obtained.
【0056】第2近似 u=(1.635)2 =2.673 v=(1.53
4)2 =2.353 d=150A θ=6°を初期値として、全測定点の値
に近くなる様にu,v,d,θの値を最適化する。この
プロセスは試行錯誤により、最終的に u=(1.648)2 =2.716 v=(1.501)2 =2.253 d=120 A θ=7° (18) を得た。この値より得られた計算値を図3に◇印で示
す。Second approximation u = (1.635) 2 = 2.673 v = (1.53
4) 2 = 2.353 d = 150 A With θ = 6 ° as an initial value, the values of u, v, d and θ are optimized so as to be close to the values at all measurement points. By this trial and error, this process finally obtained u = (1.648) 2 = 2.716 v = (1.501) 2 = 2.253 d = 120 A θ = 7 ° (18). Calculated values obtained from these values are indicated by ⋄ in FIG.
【0057】試料Cも同様な方法で u=2.658 v=2.440 d=120 A θ=7° (19) を得た。In the same manner as for sample C, u = 2.658 v = 2.440 d = 120 A θ = 7 ° (19) was obtained.
【0058】(比較例)図4は従来技術と比較のために
示した試料A、試料Bの複屈折位相差の測定例である。
この測定においても光源はHe−Neレーザーの633
nmの光を用いた。図4に示した透過で測定した複屈折
位相差の偏光状態の変化量は試料B最大で±0.15°
程度であるが、図2に示した反射光の場合は最大±0.
9°に達し、より敏感であることがわかる。図4におい
て角度300°が光がラビング方向に平行に入射した配
置であり、120°が逆向きに入射した場合に対応す
る。さらに図4に示した透過測定による複屈折位相差に
はラビング方向の正負に対応した有意な差は見られない
が、図2の反射光の偏光状態はラビングの正方向入射と
逆方向入射で有意の差が認められる。この差は膜中の分
子が膜表面に対する配向方向が平行でないことに起因
し、その差から表面に対する分子の傾き角度がわかる。(Comparative Example) FIG. 4 shows an example of measurement of the birefringence phase difference between Sample A and Sample B shown for comparison with the prior art.
Also in this measurement, the light source is a He-Ne laser 633.
nm light was used. The amount of change in the polarization state of the birefringence retardation measured by transmission shown in FIG. 4 is ± 0.15 ° at the maximum for sample B.
However, in the case of the reflected light shown in FIG. 2, the maximum is ± 0.
It reaches 9 °, which is more sensitive. In FIG. 4, an angle of 300 ° is an arrangement in which light is incident in parallel to the rubbing direction, and 120 ° corresponds to a case of incident in the opposite direction. Further, although there is no significant difference in the birefringence phase difference by the transmission measurement shown in FIG. 4 corresponding to the positive or negative in the rubbing direction, the polarization state of the reflected light in FIG. There is a significant difference. This difference is due to the fact that the molecules in the film are not oriented parallel to the film surface, and the difference indicates the tilt angle of the molecule with respect to the surface.
【0059】実施の形態2 基板歪が測定に与える影響を調べた。Embodiment 2 The influence of substrate strain on measurement was investigated.
【0060】(試料D)歪をもつと思われるソーダライ
ムガラスの表面にポリイミド原料液の日立化成LQ12
0(商品名)をスピンコート装置を用いて塗布した後、
250°で2時間加熱による焼成を行った。(Sample D) Hitachi Chemical LQ12 of polyimide raw material liquid on the surface of soda lime glass which seems to have strain
After applying 0 (trade name) using a spin coater,
Firing was performed by heating at 250 ° for 2 hours.
【0061】(試料E)同様な方法で焼成した後、半径
40mmバフ布ローラで、布の押込み長さ0.4mm、
回転数800rpm、移動速度20mm/sでラビング
を行ったものである。(Sample E) After firing in the same manner, a buff cloth roller having a radius of 40 mm was used to press the cloth in a length of 0.4 mm.
Rubbing was performed at a rotation speed of 800 rpm and a moving speed of 20 mm / s.
【0062】(比較例)試料D、Eについての透過によ
る複屈折位相差測定の結果を図5に示す。ラビングを行
った試料E(●)とラビングしない試料D(◇)差は極
く小さく、基板の歪の影響でポリイミドの分子配向の測
定は困難であることが示されている。(Comparative Example) FIG. 5 shows the results of birefringence phase difference measurement by transmission of Samples D and E. The difference between the rubbing sample E (●) and the non-rubbing sample D (⋄) is extremely small, which indicates that it is difficult to measure the molecular orientation of the polyimide due to the strain of the substrate.
【0063】同様の試料D、Eの表面に633nmの光
を入射角70°で入射したときに生じた反射光の偏光状
態の入射方向依存性を測定した。図6に反射光の位相差
の測定結果を示す。ラビングを行わない試料Dにおいて
反射光の位相差に異方性はなく(図6中の○)、一方、
ラビングした試料では実施例1の試料B、Cで観測され
たような分子配向に起因した異方性が見られた。このよ
うに反射光の位相差測定はガラス基板歪の影響を受けな
い。The incident direction dependence of the polarization state of the reflected light generated when light of 633 nm was incident on the surface of the same samples D and E at an incident angle of 70 ° was measured. FIG. 6 shows the measurement result of the phase difference of the reflected light. In the sample D not rubbed, the phase difference of the reflected light has no anisotropy (◯ in FIG. 6), while
In the rubbed sample, anisotropy due to the molecular orientation as observed in Samples B and C of Example 1 was observed. In this way, the phase difference measurement of reflected light is not affected by the distortion of the glass substrate.
【0064】実施の形態3 本発明の実施の形態として試料上で交差する2本の光線
を用いた装置について図7を用いて説明する。図7は試
料の法線方向から見た装置の配置を示し、2つの光線の
進行方向は互いに直交している。入射光光源1から出た
2本の光は偏光子2によってψ=π/4 Δ=0の直線
偏光にされる。試料より上流におかれた位相板3はΔの
象現決定を行うために出し入れする。本測定では光源は
水銀ランプを用い、回折格子とスリットを組合せたモノ
クロメーター36,46で単色化した。また、位相板と
して1/4波長板を用いた。光は表面上の測定範囲を、
スリット4、レンズ5を用いて制限し、2つの光線が試
料にあたる部分を一致させた。試料6で反射した光は検
光子7に入り、そこを通過した光の強度は受光管8で測
定される。本測定では受光管としてフォトダイオードを
用いた。この配置で偏光状態は回転検光子法、消光点法
のいずれでも測定できる。試料6は回転ステージ9の上
におかれた平行移動するXYステージ39の上におかれ
る。このステージを用いて配向部分の膜厚と任意の方向
の屈折率の面内分布を測定する。Embodiment 3 As an embodiment of the present invention, an apparatus using two light beams intersecting on a sample will be described with reference to FIG. FIG. 7 shows the arrangement of the device as seen from the normal direction of the sample, and the traveling directions of the two light beams are orthogonal to each other. The two lights emitted from the incident light source 1 are linearly polarized by ψ = π / 4 Δ = 0 by the polarizer 2. The phase plate 3 placed upstream of the sample is taken in and out to determine the delta phenotype. In this measurement, a mercury lamp was used as a light source, and monochromatization was performed by monochromators 36 and 46 in which a diffraction grating and a slit were combined. A quarter wave plate was used as the phase plate. The light measures the measuring range on the surface,
The slit 4 and the lens 5 were used to limit the distance, and the portions where the two light rays hit the sample were matched. The light reflected by the sample 6 enters the analyzer 7, and the intensity of the light passing therethrough is measured by the light receiving tube 8. In this measurement, a photodiode was used as the light receiving tube. With this arrangement, the polarization state can be measured by either the rotation analyzer method or the extinction point method. The sample 6 is placed on a parallel-moving XY stage 39 placed on a rotary stage 9. Using this stage, the film thickness of the oriented portion and the in-plane distribution of the refractive index in an arbitrary direction are measured.
【0065】この装置を用いて、コーニング社製705
9ガラスの表面に日立化成LQ120をスピンコート装
置を用いて塗布し、250℃で2時間加熱による焼成を
行ったのち、半径40mmバフ布ローラで、布の押込み
長さ4mm、回転数800rpm、移動速度10mm/
sのラビングを行った試料を測定した。測定波長に40
0nmと633nmを選択し入射角を50°、55°、
60°、70°に選んだ。Using this device, a Corning 705
9 Hitachi Kasei LQ120 was applied to the surface of glass using a spin coater and baked by heating at 250 ° C. for 2 hours, and then a buff cloth roller with a radius of 40 mm was used to push the cloth in a length of 4 mm, the rotation speed was 800 rpm, and moved. Speed 10 mm /
The sample subjected to rubbing of s was measured. 40 for measuring wavelength
0nm and 633nm are selected and the incident angle is 50 °, 55 °,
We chose 60 ° and 70 °.
【0066】2つの光線の方向をそれぞれX方向、Y方
向とする。試料のラビング方向にX方向の光線が平行に
なる配置で測定された各波長λおよび入射角でのX、Y
方向それぞれで観測されたΔ、ψを下記の表1及び表2
に記す。The directions of the two light rays are the X direction and the Y direction, respectively. X, Y at each wavelength λ and incident angle measured in an arrangement in which light rays in the X direction are parallel to the rubbing direction of the sample
Tables 1 and 2 below show Δ and ψ observed in each direction.
It writes in.
【0067】[0067]
【表1】 [Table 1]
【0068】[0068]
【表2】 この試料においては入射角60°の場合に偏光状態、特
にΔの異方性が最も大きく精度、感度ともに高い測定が
できることを示している。[Table 2] This sample shows that the polarization state, particularly the anisotropy of Δ, is the largest when the incident angle is 60 °, and the measurement can be performed with high accuracy and high sensitivity.
【0069】それぞれの波長において膜厚と屈折率を求
めることを試みた。実施例1の試料Bの結果から表面近
傍の120A程度の領域が配向していると考えられるの
で4層に分割しそれぞれの層の膜厚と屈折率を求めるこ
とを試みた。配向した部分が120A程度であることが
考えられるので、分子配向の深さ方向の分布を知るため
に表面近傍の160Aごとの屈折率(膜厚固定)とそれ
より深い部分の膜厚と屈折率を求めた。この解析では入
射方向が2方向のみであり、屈折率に関しても4つのパ
ラメータがあることから傾斜角を求めることはしなかっ
た。実施例1より求められた傾斜角は7°程度のために
屈折率に与える影響は小さいので(sinθ〜0.1の
ため10%程度)各層ともに屈折率が異なった等方的な
膜として扱った。表面から順番に各層を第1層、第2
層、第3層、第4層、第5層(バルク部分)として、そ
れぞれの層の屈折率をN1,N2,N3,N4,N5=
1.61として、第k層のテンソルM(k)のi行j列
の要素は [M(k)]11=[M(k)]22=Nk2 (k=1,〜5) [M(k)]i,j=0 (i≠) (20) となり、L=L(glass)L(5)L(4)L
(3)L(2)L(1)を得る。測定値にあう様に試行
錯誤でNkを決めた。Nkの初期値は最表面が膜厚12
0Aの一様な膜、その下が1050A、屈折率1.61
の均一な膜、基板の屈折率は1.527として、最表面
の屈折率を求めた。このモデルの近似が低いため入射角
の違いによって差があり、 X軸方向 1.71±0.6 Y軸方向 1.5
4±0.5 となった。試行錯誤が各層の値を最適化するにあたり、
先ず第4層の屈折率の適値を求め、最表面の方が初期値
よりX方向では大きな値、Y軸方向では小さな値となる
様にした。また、より深い層の屈折率はそれより上の層
の屈折率よりバルクの値に近くなるようにした。下記の
表3及び表4にその結果を示す。Attempts were made to determine the film thickness and refractive index at each wavelength. From the result of the sample B of Example 1, it is considered that the region of about 120 A near the surface is oriented. Therefore, it was tried to divide into 4 layers and obtain the film thickness and the refractive index of each layer. Since it is considered that the oriented portion is about 120 A, in order to know the distribution of molecular orientation in the depth direction, the refractive index (fixed film thickness) at every 160 A near the surface and the film thickness and refractive index of the deeper portion I asked. In this analysis, there are only two incident directions, and there are four parameters regarding the refractive index, so the tilt angle was not obtained. Since the tilt angle obtained from Example 1 is about 7 °, the influence on the refractive index is small (since sin θ is about 0.1, about 10%). Therefore, each layer is treated as an isotropic film having a different refractive index. It was First layer, second layer in order from the surface
As the layers, the third layer, the fourth layer, and the fifth layer (bulk portion), the refractive indexes of the respective layers are N1, N2, N3, N4, N5 =
As 1.61, the element in the i-th row and the j-th column of the k-th layer tensor M (k) is [M (k)] 11 = [M (k)] 22 = Nk 2 (k = 1, 5) [M (K)] i, j = 0 (i ≠) (20) and L = L (glass) L (5) L (4) L
(3) L (2) L (1) is obtained. Nk was decided by trial and error so as to match the measured value. The initial value of Nk is 12 at the outermost surface.
0A uniform film, 1050A underneath, refractive index 1.61
The uniform film and the refractive index of the substrate were 1.527, and the refractive index of the outermost surface was determined. Since the approximation of this model is low, there is a difference due to the difference in the incident angle. X-axis direction 1.71 ± 0.6 Y-axis direction 1.5
It became 4 ± 0.5. As trial and error optimize the values of each layer,
First, an appropriate value of the refractive index of the fourth layer was obtained, and the outermost surface had a larger value in the X direction and a smaller value in the Y axis direction than the initial value. Also, the refractive index of the deeper layer was made closer to the bulk value than the refractive index of the layers above it. The results are shown in Tables 3 and 4 below.
【0070】[0070]
【表3】 [Table 3]
【0071】[0071]
【表4】 このように、表面近傍の120Aでは分子配向は表面か
ら膜中にむかって徐々に変化するが、120〜160A
の深さ付近で不連続的に分子配向が失われることが屈折
率の変化からわかる。[Table 4] Thus, at 120A near the surface, the molecular orientation gradually changes from the surface to the inside of the film.
It can be seen from the change in refractive index that the molecular orientation is discontinuously lost near the depth of.
【0072】回転ステージを用いて、この状態から試料
を45°回転させた場合のΔ、ψの測定結果は、下記の
表5及び表6に示すように、As shown in Tables 5 and 6 below, the measurement results of Δ and ψ when the sample is rotated by 45 ° from this state using the rotary stage are as follows.
【0073】[0073]
【表5】 [Table 5]
【0074】[0074]
【表6】 となり、X軸方向とY軸方向の差が殆どみられない。解
析の結果も各層の屈折率は波長633nmでは、1.6
15〜1.621の範囲になり、400nmでは、1.
630〜1.633となった。[Table 6] Therefore, there is almost no difference between the X-axis direction and the Y-axis direction. The analysis result also shows that the refractive index of each layer is 1.6 at a wavelength of 633 nm.
The range is 15 to 1.621, and at 400 nm, 1.
It became 630 to 1.633.
【0075】実施の形態4 本発明の実施例として試料上で交差する2本の光線を用
いた装置について図8を用いて説明する。図8は試料の
法線方向から見た装置の配置を示し、2つの光線の進行
方向は互いに直交している。入射光光源1から出た2本
の光は偏光子2によってψ=π/4 Δ=0の直線偏光
にされる。試料より上流におかれた位相板3はΔの象現
決定を行うために出し入れする。本測定ではHe−Ne
レーザーの633nmの光を光源に、位相板として1/
4波長を用いた。光は表面上の測定範囲を、スリット
4、レンズ5を用いて制限し、2つの光線が試料にあた
る部分を一致させる。但し、レンズを用いて集光を行う
と試料に対する入射角のボケが大きくなって測定精度が
犠牲になる。試料6で反射した光は検光子7に入り、そ
こを通過した光の強度は受光管8で測定される。本測定
では受光管としてフォトダイオードを用いた。この配置
で偏光状態は回転検光子法、消光点法のいずれでも測定
できる。試料は平行移動するXYステージ19の上にお
かれる。このステージを用いて配向部分の膜厚と屈折率
の面内分布を測定する。Embodiment 4 As an example of the present invention, an apparatus using two light beams intersecting on a sample will be described with reference to FIG. FIG. 8 shows the arrangement of the device viewed from the normal direction of the sample, and the traveling directions of the two light rays are orthogonal to each other. The two lights emitted from the incident light source 1 are linearly polarized by ψ = π / 4 Δ = 0 by the polarizer 2. The phase plate 3 placed upstream of the sample is taken in and out to determine the delta phenotype. In this measurement, He-Ne
Laser light of 633 nm is used as a light source, and 1 /
Four wavelengths were used. The light limits the measuring range on the surface by using the slit 4 and the lens 5, and the two light beams are made to coincide with each other at the portion where they hit the sample. However, if light is collected using a lens, the blurring of the incident angle with respect to the sample becomes large, and the measurement accuracy is sacrificed. The light reflected by the sample 6 enters the analyzer 7, and the intensity of the light passing therethrough is measured by the light receiving tube 8. In this measurement, a photodiode was used as the light receiving tube. With this arrangement, the polarization state can be measured by either the rotation analyzer method or the extinction point method. The sample is placed on the XY stage 19 which moves in parallel. Using this stage, the in-plane distribution of the film thickness and the refractive index of the oriented portion is measured.
【0076】この装置を用いて以下の条件で作製した試
料F、Gの測定を行った。Using this apparatus, samples F and G produced under the following conditions were measured.
【0077】(試料F)コーニング社製7059ガラス
の表面にポリイミド原料の日産化学SE7311をスピ
ンコート装置を用いて塗布し、250℃で3時間加熱に
よる焼成を行った。(Sample F) NISSAN CHEMICAL SE7311, which is a polyimide raw material, was applied to the surface of 7059 glass manufactured by Corning Co., Ltd. using a spin coater, and baked at 250 ° C. for 3 hours.
【0078】(試料G)同様な方法で焼成した後、半径
40mmバフ布ローラで、布の押込み長さ4mm、回転
数600rpm、移動速度40mm/sでラビングを行
った。(Sample G) After firing in the same manner, rubbing was performed with a buff cloth roller having a radius of 40 mm at a pressing length of the cloth of 4 mm, a rotation speed of 600 rpm, and a moving speed of 40 mm / s.
【0079】測定は100mm×100mmの正方形の
範囲を縦横それぞれ20mm間隔で測定した。下記の表
7、表8、表9、及び表10に試料F、Gの測定結果を
示す。なお、測定位置XYの値は装置自身がもつ座標で
ある。試料Gはラビングの順方向が一方の光の進行方向
と一致するように配置した。表7は、試料FのX方向に
光線を入射させた時の測定結果、表8は試料FのY方向
に光線を入射させた時の測定結果、表9は試料GのX方
向に光線を入射させた時の測定結果、表10は試料Gの
Y方向に光線を入射させた時の測定結果を示す。In the measurement, a square area of 100 mm × 100 mm was measured at intervals of 20 mm in each length and width. The measurement results of Samples F and G are shown in Table 7, Table 8, Table 9, and Table 10 below. The values of the measurement position XY are coordinates that the device itself has. The sample G was arranged so that the forward direction of rubbing coincided with the traveling direction of one light. Table 7 is a measurement result when a light ray is incident in the X direction of the sample F, Table 8 is a measurement result when a light ray is incident in the Y direction of the sample F, and Table 9 is a light ray in the X direction of the sample G. Table 10 shows the measurement results when the light rays were incident on the sample G, and Table 10 shows the measurement results when the light rays were incident on the sample G in the Y direction.
【0080】[0080]
【表7】 [Table 7]
【0081】[0081]
【表8】 [Table 8]
【0082】[0082]
【表9】 [Table 9]
【0083】[0083]
【表10】 測定結果(表7、8、9、10)が示すようにラビング
処理した試料Gの屈折率の異方性はどの点においてもほ
ほ同じで、分子配向状態が測定範囲内でほぼ一様である
ことがわかる。一方、膜厚は試料F、Gともに入射方向
の違いにより1nm程度の差があるが、これは膜厚に関
する測定精度がこの装置の場合1nm程度であることを
示す。この測定は、測定点が多く、実施の形態1で行っ
た詳細な解析は多くの時間がかかるために、簡略な解析
にとどめた。配向膜の配向状態の面内分布をみるには以
下の理由から、実施の形態3で行ったように、それぞれ
の入射方向において試料構造は屈折率が違う等方的な多
層膜であるとして扱う解析で十分と思われる。まず、分
子の傾斜角は実施の形態1の結果、および、同じポリイ
ミド(日産化学製SE7311(商品名))を測定した
赤外吸収の結果(沢他 ジャパニーズジャーナルオブア
プライドフィジクス Japanese Journa
l of Applied Physics 33巻6
273ページ1994年)から10°程度と小さいこと
が予想され、配向部分を等方的な物質と考えた場合のテ
ンソル成分との差は最大でも20%未満である。そこ
で、試料Fの試料構造のモデルとして基板の屈折率を
1.527とし、ポリイミドは等方的な膜として膜厚と
屈折率を求めた。[Table 10] As shown by the measurement results (Tables 7, 8, 9, and 10), the anisotropy of the refractive index of the sample G subjected to the rubbing treatment is almost the same at any point, and the molecular orientation state is almost uniform in the measurement range. I understand. On the other hand, there is a difference of about 1 nm in the film thickness between the samples F and G due to the difference in the incident direction, which means that the measurement accuracy regarding the film thickness is about 1 nm in this device. Since this measurement has many measurement points and the detailed analysis performed in the first embodiment takes a lot of time, it is limited to a simple analysis. For viewing the in-plane distribution of the alignment state of the alignment film, for the following reason, the sample structure is treated as an isotropic multilayer film having different refractive indices in each incident direction, as in Embodiment 3. Analysis seems to be sufficient. First, the tilt angle of the molecule is the result of the first embodiment and the result of infrared absorption of the same polyimide (SE7311 (trade name) manufactured by Nissan Kagaku) (Sawa et al. Japanese Journal of Applied Physics Japanese Journal).
l of Applied Physics Volume 33 6
It is expected to be as small as about 10 ° from page 273 (1994), and the difference with the tensor component when the oriented portion is considered to be an isotropic material is less than 20% at the maximum. Therefore, the refractive index of the substrate was set to 1.527 as a model of the sample structure of the sample F, and the film thickness and the refractive index of the polyimide were determined as an isotropic film.
【0084】テンソルMはガラス基板を表示した対角テ
ンソル(M11〜M33の値は全て2.332)、とポ
リイミドを示す対角テンソル(M11からM33の値は
全て等しい値ε)になり、ε=2.567〜2.588
を得た。表7に試料FのΔ、ψ膜厚、屈折率を示す。こ
の結果が示すように、ポリイミドSE7311の等方的
な状態の屈折率は1.604±0.03であり、この例
の条件で作製された際の膜厚は750Aと決まった。一
方、試料Gは赤外吸収や(沢他 ジャパニーズジャーナ
ルオブアプライドフィジクス Japanese Jo
urnal of Applied Physics
33巻6273ページ 1994年)実施の形態1か
ら、配向部分の厚さが150A程度と予想されるので、
構造モデルとして屈折率1.527のガラス基板、ポリ
イミドの等方的な部分を示す屈折率1.610、膜厚6
00Aの膜、そして屈折率と膜厚が不明な配向部分なる
3層構造を採用した。配向部分の扱いは、屈折率と膜厚
が不明の等方的な膜とした。その結果を表9、表10に
示す。表9、表10に示したように屈折率、膜厚に入射
方向により系統的な差が見られる。また、同一の入射方
向では屈折率、膜厚ともに各点の値がほぼ等しく均一な
膜が作製されていることを示している。なお、入射方向
によって屈折率ばかりでなく、配向部の膜厚にも系統的
な差が見られるが、これは解析に際して配向層の異方性
を考慮しなかったことが原因と考えられれる。The tensor M is a diagonal tensor showing a glass substrate (the values of M11 to M33 are all 2.332) and a diagonal tensor showing polyimide (the values of M11 to M33 are all the same value ε). = 2.567-2.588
I got Table 7 shows Δ, ψ film thickness, and refractive index of sample F. As the result shows, the refractive index of the polyimide SE7311 in the isotropic state was 1.604 ± 0.03, and the film thickness when manufactured under the conditions of this example was determined to be 750A. On the other hand, sample G is infrared absorption and (Sawa et al. Japanese Journal of Applied Physics Japan Jo
urnal of Applied Physics
Vol. 33, page 6273, 1994) Since the thickness of the oriented portion is expected to be about 150 A from the first embodiment,
As a structural model, a glass substrate having a refractive index of 1.527, a refractive index of 1.610 indicating an isotropic portion of polyimide, and a film thickness of 6
A film of 00A and a three-layer structure in which the refractive index and the film thickness are unknown are used. The orientation part was treated as an isotropic film with unknown refractive index and film thickness. The results are shown in Tables 9 and 10. As shown in Tables 9 and 10, there are systematic differences in refractive index and film thickness depending on the incident direction. Further, it is shown that in the same incident direction, a film having a uniform refractive index and film thickness at each point is produced. It should be noted that there is a systematic difference in not only the refractive index but also the film thickness of the alignment portion depending on the incident direction, which is considered to be due to the fact that the anisotropy of the alignment layer was not considered in the analysis.
【0085】実施の形態5 実際に製造されている液晶表示素子に近い構造をもつ試
料を作製し反射光の偏光状態の入射角度依存性を測定し
た。Embodiment 5 A sample having a structure similar to that of a liquid crystal display element actually manufactured was prepared, and the incident angle dependence of the polarization state of reflected light was measured.
【0086】(試料H)厚さ1.1mmのコーニング社
製7059ガラスの表面にスパッタリングによって厚さ
400nmのシリコン酸化膜を形成し、32nmのIT
O(酸化インジウム・酸化錫)膜を真空蒸着によって形
成した。この上にポリイミド原料の日産化学SE731
1をスピンコート装置を用いて塗布し、250℃で3時
間加熱による焼成を行い、半径40mmバフ布ローラ
で、布の押込み長さ0.4mm、回転数600rpm、
移動速度40mm/sでラビング処理をした。(Sample H) A silicon oxide film having a thickness of 400 nm was formed by sputtering on the surface of 7059 glass manufactured by Corning Co., Ltd. having a thickness of 1.1 mm, and IT having a thickness of 32 nm was formed.
An O (indium oxide / tin oxide) film was formed by vacuum vapor deposition. On top of this, the polyimide raw material Nissan Chemical SE731
1 was applied using a spin coater and baked by heating at 250 ° C. for 3 hours, and a buff cloth roller having a radius of 40 mm was used to press the cloth 0.4 mm in length, 600 rpm in rotation speed,
Rubbing treatment was performed at a moving speed of 40 mm / s.
【0087】(試料I)厚さ1.1mmのコーニング社
製7059ガラスの表面にスパッタリングによって厚さ
200nmのシリコン酸化膜を形成し、32nmのIT
O(酸化インジウム・酸化錫)膜を真空蒸着によって形
成した。この上にポリイミド原料の日産化学SE731
1をスピンコート装置を用いて塗布し、250℃で3時
間加熱による焼成を行い、半径40mmバフ布ローラ
で、布の押込み長さ0.4mm、回転数600rpm、
移動速度40mm/sでラビング処理をした。(Sample I) A silicon oxide film having a thickness of 200 nm was formed by sputtering on the surface of 7059 glass manufactured by Corning Co., Ltd. having a thickness of 1.1 mm, and IT having a thickness of 32 nm was formed.
An O (indium oxide / tin oxide) film was formed by vacuum vapor deposition. On top of this, the polyimide raw material Nissan Chemical SE731
1 was applied using a spin coater and baked by heating at 250 ° C. for 3 hours, and a buff cloth roller having a radius of 40 mm was used to press the cloth 0.4 mm in length, 600 rpm in rotation speed,
Rubbing treatment was performed at a moving speed of 40 mm / s.
【0088】測定は実施の形態3で用いた装置で行い、
波長633nmの光を用いた。試料Eは、入射角70
°、65°、60°、55°、50°で反射光の偏光状
態を測定し、試料Fは入射角70°、55°、40°で
測定した。どちらの試料もラビング方向がX軸と平行に
なるように配置した。下記の表11及び表12に測定結
果を示す。The measurement is performed by the device used in the third embodiment,
Light having a wavelength of 633 nm was used. Sample E has an incident angle of 70
The polarization state of the reflected light was measured at °, 65 °, 60 °, 55 °, and 50 °, and the sample F was measured at incident angles of 70 °, 55 °, and 40 °. Both samples were arranged so that the rubbing direction was parallel to the X axis. The measurement results are shown in Tables 11 and 12 below.
【0089】[0089]
【表11】 [Table 11]
【0090】[0090]
【表12】 この測定結果が示すように試料Hでは実施例3と同様に
反射光の偏光状態の異方性が入射角60°付近で最大に
なることが明らかになった。一方、試料Iにおいては配
向膜の下地の構造の違いを反映して入射角が40°付近
で偏光状態の異方性が最大になる。これらの測定結果を
ふまえて反射光の偏光状態を計算した結果、ガラス基
板、絶縁膜、透明電極膜、ポリイミド配向膜を構成要素
の一部とする液晶表示素子の場合、最も感度が高い入射
角は35°〜65°の間にあることがわかった。[Table 12] As shown by the measurement results, it was revealed that in Sample H, the anisotropy of the polarization state of the reflected light was maximum near the incident angle of 60 ° as in Example 3. On the other hand, in Sample I, the anisotropy of the polarization state is maximized when the incident angle is around 40 °, reflecting the difference in the structure of the base of the alignment film. As a result of calculating the polarization state of the reflected light based on these measurement results, in the case of a liquid crystal display device that has a glass substrate, an insulating film, a transparent electrode film, and a polyimide alignment film as a part of the components, the incident angle with the highest sensitivity Was found to be between 35 ° and 65 °.
【0091】実施の形態6 本発明の実施の形態6として入射光に単一波長の光線を
用いた装置について試料面法線方向から見た装置構成を
示した図9と、試料に入射する2本の光線のうちの一方
(X方向とする)についての装置構成を示した図10を
参照して説明する。X、Y方向の入射光光源1から出た
光はそれぞれレンズ群101によって広い径の平行光線
にされる。その後、偏光子2によってψ=π/4 Δ=
0の直線偏光にされる。試料より上流におかれた位相板
3はΔの象現決定を行うために出し入れする。本測定で
はHe−Neレーザーの633nmの光を光源に、位相
板として1/4波長板を用いた。2つの光線が試料表面
上の同じ範囲を測定するように、スリット4を用いて試
料に入射する光線形状の整形を行った。本測定では試料
6への光の入射角に55°を選び、2つの光線とも試料
面上で1×1mmの正方形になる様に縦0.6mm、横
1mmに整形した。試料6で反射した光はスリット4を
通過後に検光子7に入れ、そこを通過した光はレンズ群
102,103を用いて10倍に拡大され、3行3列計
9個の光ファイバーが長方形状にならんだ受光器面10
4で結像する。なお、検光子の角度はコンピュータで制
御される。Sixth Embodiment As a sixth embodiment of the present invention, FIG. 9 showing an apparatus configuration as seen from the direction normal to the sample surface of an apparatus using a light beam of a single wavelength as incident light, and FIG. This will be described with reference to FIG. 10 showing the device configuration for one of the light rays of the book (in the X direction). The light emitted from the incident light source 1 in the X and Y directions is made into parallel rays having a wide diameter by the lens group 101. After that, by the polarizer 2, ψ = π / 4 Δ =
It is changed to 0 linearly polarized light. The phase plate 3 placed upstream of the sample is taken in and out to determine the delta phenotype. In this measurement, 633 nm light from a He-Ne laser was used as a light source, and a quarter wavelength plate was used as a phase plate. The slit 4 was used to shape the light beam incident on the sample so that the two light beams measured the same area on the sample surface. In this measurement, the incident angle of light on the sample 6 was selected to be 55 °, and the two light rays were shaped to have a length of 0.6 mm and a width of 1 mm so that a square of 1 × 1 mm was formed on the sample surface. The light reflected by the sample 6 enters the analyzer 7 after passing through the slit 4, and the light passing therethrough is magnified 10 times using the lens groups 102 and 103, and a total of 9 optical fibers in 3 rows and 3 columns are rectangular. Light receiving surface 10
Image at 4. The angle of the analyzer is controlled by the computer.
【0092】図11にX、Yそれぞれの方向の反射光を
検出する光ファイバーの配置を示す。2つの反射光とも
横4.0mm、縦2.3mm間隔に光ファイバーの受光
部を配置した。つまりX方向の51と52、52と5
3、54と55、55と56、57と58、58と59
の間隔が4mmで51と54、54と57、52と5
5、55と58、53と56、56と59の間隔が2.
3mmである。もう一方の光ファイバー群61から69
も同様である。光ファイバーによって導かれた光の強度
はフォトダイオードで測定した。光ファイバーによって
測定された反射光強度の検光子角度依存は図9、図10
中のコンピュータ106に記録され、それぞれの位置で
の反射光の偏光状態ψ、Δは光の強度の検光子角につい
てのフーリェ和を計算して求める。なお、Δの象現決定
をする場合は、位相板を入れて入射光の偏光状態を変え
た測定の結果も用いて計算を行う。試料の光学的異方性
は入射方向が違う二つの光の反射光の偏光状態の差に反
映される。この測定の2方向の光ファイバーにおいて5
7と61、54と62、51と63、58と64、65
と55、52と66、59と67、56と68、53と
65を対応させることで、それぞれ試料面上の同じ位置
を測定することになる。以上の組合せそれぞれにおい
て、反射光の偏光状態を比較して各位置での試料の分子
配向状態を知ることができる。偏光状態の比較よりも、
文献(マークト アプライド オプティクス(U.Ma
rkt Applied Optics Vol.2
pp.307(1981))に示された方法を用いてそ
れぞれの方向に対する試料の屈折率を求めて、方向によ
る差を比較する方がより直接的に分子配向状態を示す量
になると考えられる。例えば、 |X方向の屈折率−Y方向の屈折率|/|X方向の屈折
率+Y方向の屈折率| で定義される量が分子配向の強さに対応する量であると
考えられる。FIG. 11 shows the arrangement of optical fibers for detecting the reflected light in the X and Y directions. The light receiving parts of the optical fibers were arranged at intervals of 4.0 mm in the horizontal direction and 2.3 mm in the vertical direction for both the two reflected lights. That is, 51 and 52, 52 and 5 in the X direction
3, 54 and 55, 55 and 56, 57 and 58, 58 and 59
With a 4 mm spacing of 51 and 54, 54 and 57, 52 and 5
The intervals of 5, 55 and 58, 53 and 56, 56 and 59 are 2.
3 mm. The other optical fiber group 61 to 69
The same is true for The intensity of the light guided by the optical fiber was measured with a photodiode. The dependence of the reflected light intensity measured by the optical fiber on the analyzer angle is shown in FIGS.
The polarization states ψ and Δ of the reflected light at each position recorded in the computer 106 are obtained by calculating the Fourier sum for the analyzer angle of the light intensity. In the case of determining the quadrangle of Δ, the calculation is performed by using the result of the measurement in which the polarization state of the incident light is changed by inserting the phase plate. The optical anisotropy of the sample is reflected in the difference in the polarization state of the reflected light of two lights having different incident directions. 5 in the bidirectional optical fiber for this measurement
7 and 61, 54 and 62, 51 and 63, 58 and 64, 65
And 55, 52 and 66, 59 and 67, 56 and 68, and 53 and 65 correspond to each other, so that the same position on the sample surface is measured. In each of the above combinations, it is possible to know the molecular orientation state of the sample at each position by comparing the polarization states of reflected light. Rather than comparing polarization states
References (Marked Applied Optics (U. Ma
rkt Applied Optics Vol. 2
pp. 307 (1981)), the refractive index of the sample in each direction is calculated and the difference between the directions is compared, and it is considered that the amount indicating the molecular orientation state is more direct. For example, it is considered that the amount defined by | refractive index in X direction−refractive index in Y direction | / | refractive index in X direction + refractive index in Y direction | is the amount corresponding to the strength of molecular orientation.
【0093】この装置を用いて以下の試料を測定した。
ポリイミド原料液の日産化学のSE7311(商品名)
をコーニング社製7059ガラスの表面にスピンコート
装置を用いて塗布した後、250℃で2時間加熱による
焼成を行った後、試料面の半分にレジストを印刷塗布し
た。この状態で半径40mmバフ布ローラで、布の押込
み長さ0.4mm、回転数200rpm、20mm/s
5回のラビングを行った後に、レジストを剥離した。
この試料において、レジスト塗布した部分と露出してい
た部分の境界付近を測定した結果を下記の表13に示
す。なお、以下のX方向位置、Y方向位置はX、Yそれ
ぞれの方向の反射光を捕えた光ファイバーの図11にお
ける番号である。なお、ラビング方向とY軸方向を一致
させた。The following samples were measured using this device.
Nissan Chemical's SE7311 (brand name) of polyimide raw material liquid
Was coated on the surface of 7059 glass manufactured by Corning Co., Ltd. using a spin coater and baked by heating at 250 ° C. for 2 hours, and then a resist was printed and coated on half of the sample surface. In this state, using a buff cloth roller with a radius of 40 mm, the pressing length of the cloth is 0.4 mm, the rotation speed is 200 rpm, and 20 mm / s.
After rubbing five times, the resist was peeled off.
In this sample, the result of measuring the vicinity of the boundary between the resist-coated portion and the exposed portion is shown in Table 13 below. The X-direction position and the Y-direction position below are the numbers in FIG. 11 of the optical fiber that captures the reflected light in each of the X and Y directions. In addition, the rubbing direction and the Y-axis direction were matched.
【0094】[0094]
【表13】 ガラス基板の屈折率を1.52としてポリイミド膜の屈
折率を求めると、下記の表14に示すように、[Table 13] When the refractive index of the polyimide film is calculated with the refractive index of the glass substrate being 1.52, as shown in Table 14 below,
【0095】[0095]
【表14】 となり、61から65までにラビングにより生じた分子
配向による屈折率の異方性が観測される。なお、この解
析ではポリイミド膜全体が一様に配向しているものとし
て扱ったが、赤外吸収の測定から(沢他 ジャパニーズ
ジャーナルオブアプライドフィジクス Japanes
e Journal of Applied Phys
ics 33巻6273ページ 1994年)表面のみ
が配向していることが明らかになっている。それを考慮
して膜の深い部分の屈折率は1.604で等方的である
と考えて改めて解析を行った結果を下記の表15に示
す。なお、配向度は先の式で定義した量である。[Table 14] Then, the anisotropy of refractive index due to the molecular orientation caused by rubbing from 61 to 65 is observed. In this analysis, the polyimide film was treated as if it was uniformly oriented, but from the infrared absorption measurement (Sawa et al., Japanese Journal of Applied Physics Japans).
e Journal of Applied Physs
ics 33: 6273 (1994)) It has been revealed that only the surface is oriented. In consideration of this, the refractive index of the deep portion of the film is 1.604, and the result of another analysis conducted assuming that it is isotropic is shown in Table 15 below. The degree of orientation is the amount defined by the above formula.
【0096】[0096]
【表15】 配向度を白黒の8段階のコントラストで表現し、Y方向
から見た場合の配向度の面内分布を画像出力装置107
で表したのが図12である。[Table 15] The image output device 107 expresses the in-plane distribution of the orientation degree when viewed from the Y direction by expressing the orientation degree with a black and white eight-step contrast.
It is shown in FIG.
【0097】以上の様に本実施の形態は、ラビングによ
って生じた分子配向の面内分布を同時に観測することが
できる。本実施の形態では反射光の検出に光ファイバー
をアレイ状に並べたものを用いたが、位置敏感2次元検
出器の例であるCCDイメージセンサや、高感度撮像管
SIT管(浜松フォトニクス製 ビジコンカメラC27
41)を用いることで更に高分解能の測定ができる。As described above, in this embodiment, the in-plane distribution of the molecular orientation generated by rubbing can be observed at the same time. In this embodiment, an array of optical fibers is used to detect the reflected light. However, a CCD image sensor which is an example of a position-sensitive two-dimensional detector, a high-sensitivity image pickup tube SIT tube (a vidicon camera manufactured by Hamamatsu Photonics) C27
By using 41), higher resolution measurement can be performed.
【0098】この実施の形態により微小部分の屈折率異
方性を測定することにより、液晶配向膜の微小領域にお
ける分子配向の面内分布の様子を観測することができ、
それを視覚化して観察することができる。By measuring the refractive index anisotropy of the minute portion according to this embodiment, the in-plane distribution of the molecular orientation in the minute region of the liquid crystal alignment film can be observed,
It can be visualized and observed.
【0099】実施の形態7 入射光に単一波長の光線を用いた図1の装置を再び参照
して、入射光光源1から出た光は偏光子2によってS偏
光成分とP偏光成分の振幅が等しく、それぞれの位相差
が0の直線偏光にされる。この入射光は試料表面の法線
から一定の入射角をもって試料6表面に入射する。試料
と光源の間に置かれた位相板3は反射光のΔの象現決定
を行なうために出し入れする。本測定ではHe−Neレ
ーザーの633nmの光を光源に、位相板として1/4
波長板を用いた。この位相板を通過することにより入射
光は直線偏光から円偏光になる。入射光は必要があれば
表面上の測定範囲をスリット4、レンズ5を用いて制限
することができる。但し、レンズを用いて集光を行なう
と試料に対する入射角のボケが大きくなって偏光状態の
測定精度が犠牲になる。試料6で反射した光は検光子7
に入り、そこを通過した光の強度は受光管8で測定され
る。本測定では光電子増倍管を用いた。Embodiment 7 Referring again to the apparatus of FIG. 1 which uses a light beam of a single wavelength as incident light, the light emitted from the incident light source 1 is caused by the polarizer 2 to have amplitudes of S-polarized component and P-polarized component. Are equal to each other and the phase difference between them is 0. This incident light is incident on the surface of the sample 6 at a constant incident angle from the normal to the surface of the sample. The phase plate 3 placed between the sample and the light source is moved in and out to determine the Δ of the reflected light. In this measurement, 633 nm light from a He-Ne laser was used as a light source, and a quarter was used as a phase plate.
A wave plate was used. By passing through this phase plate, the incident light changes from linearly polarized light to circularly polarized light. If necessary, the measurement range of incident light on the surface can be limited by using the slit 4 and the lens 5. However, when light is condensed using a lens, the blur of the incident angle with respect to the sample becomes large, and the measurement accuracy of the polarization state is sacrificed. The light reflected by the sample 6 is the analyzer 7
The intensity of the light entering and passing through it is measured by the light receiving tube 8. A photomultiplier tube was used in this measurement.
【0100】検光子を回転させて、検光子の角度ごとの
検光子を透過する光の強度を測定し、測定された強度の
検光子角についてのフーリエ和から(13´)式で定義
された反射光のψ、Δを求める。なお、Δの象現を決定
するために位相差板を操作して直線偏光を入射した場合
に測定されたΔと円偏光を入射したときにえられるΔの
値が等しいものを最終的なΔとする。The analyzer was rotated to measure the intensity of the light transmitted through the analyzer for each angle of the analyzer, and was defined by the equation (13 ') from the Fourier sum for the analyzer angle of the measured intensity. Obtain ψ and Δ of the reflected light. In order to determine the quadrature of Δ, the measured Δ when linearly polarized light is input by operating the retardation plate and the Δ obtained when circularly polarized light is incident are equal to the final Δ. And
【0101】試料6は回転ステージ9の上にあり、ステ
ージを回転させることで面内異方性の測定を行なう。The sample 6 is placed on the rotary stage 9, and the in-plane anisotropy is measured by rotating the stage.
【0102】なお、本測定例では反射光の偏光状態を決
定するために上記の回転検光子法で行なったが、検光子
を通過する光が0になるような偏光子、検光子の角度か
ら偏光状態を決める消光点法(大塚 日本金属学会会報
20巻7号614ページ1981年)でも測定可能であ
ると考えられる。In this measurement example, the rotation analyzer method was used to determine the polarization state of the reflected light. However, from the angles of the polarizer and the analyzer such that the light passing through the analyzer becomes zero. It is considered that the extinction point method for determining the polarization state (Otsuka The Japan Institute of Metals, Vol. 20, No. 7, pp. 614, 1981) can also be used for measurement.
【0103】この装置を用いて以下の試料を測定した。The following samples were measured using this apparatus.
【0104】(試料A)厚さ1.1mm のソーダライムガラ
スの表面にポリイミド原料液の日立化成LQ120(商
品名)をスピンコート装置を用いて塗布した後、250
℃で2時間加熱による焼成を行なった。その後、半径4
0mmのバフ布ローラーで、布の押込み長さ0.4mm 、ロー
ラー回転数300rpm、基板移動速度20mm/sで
ラビングを行なった。(Sample A) A polyimide raw material solution, Hitachi Chemical LQ120 (trade name), was applied to the surface of 1.1 mm thick soda lime glass using a spin coater, and then 250
Firing was performed by heating at 0 ° C. for 2 hours. Then radius 4
Rubbing was performed with a 0 mm buff cloth roller at a cloth pressing length of 0.4 mm, a roller rotation speed of 300 rpm, and a substrate moving speed of 20 mm / s.
【0105】図13は70°の入射角で試料ステージを
回転させながら15°間隔で試料Aを測定してえられた
Δの試料回転角に対する値である。光がラビング方向と
平行に試料に入射する状態を試料角0°としている。FIG. 13 shows the value of Δ with respect to the sample rotation angle obtained by measuring the sample A at 15 ° intervals while rotating the sample stage at the incident angle of 70 °. The state where the light is incident on the sample in parallel with the rubbing direction is defined as a sample angle of 0 °.
【0106】図14は70°の入射角で試料ステージを
回転させながら15°間隔で試料Aを測定してえられた
ψの試料回転角に対する値である。光がラビング方向と
平行に試料に入射する状態を試料角0°としている。FIG. 14 shows the value of ψ with respect to the sample rotation angle obtained by measuring the sample A at 15 ° intervals while rotating the sample stage at the incident angle of 70 °. The state where the light is incident on the sample in parallel with the rubbing direction is defined as a sample angle of 0 °.
【0107】この試料の配向膜の異方性層の主誘電率、
主座標系の膜表面に対する角度、厚さと、非配向部分の
屈折率と厚さは式(1)、式(2´)〜式(13´)の
手順に従ってもとめたが、以下に具体的な解析過程を示
す。 (第0近似)ガラス基板は成膜前の透過光の複屈折位相
差測定により、透過光に±1°程度の位相差が観測され
たが常光と異常光の屈折率差は平均で3×10-6と非常
に小さく、ガラスとポリイミド界面での反射率は、歪の
ないガラスとポリイミド界面の反射率と殆ど同じであ
る。つまり、ガラス基板の歪は無視できる。The principal dielectric constant of the anisotropic layer of the alignment film of this sample,
The angle of the main coordinate system with respect to the film surface, the thickness, and the refractive index and the thickness of the non-oriented portion were obtained according to the procedure of the formulas (1), (2 ′) to (13 ′). The analysis process is shown. (0th approximation) On the glass substrate, a phase difference of about ± 1 ° was observed in the transmitted light by measuring the birefringence of the transmitted light before film formation, but the difference in refractive index between ordinary light and extraordinary light was 3 × on average. The reflectance at the glass-polyimide interface is as small as 10 −6, and is almost the same as the reflectance at the glass-polyimide interface without distortion. That is, the distortion of the glass substrate can be ignored.
【0108】配向膜全体の厚さと平均的な誘電率を求め
るために、ガラス基板の上に均一な膜があると考える。
平均誘電率を< ε> とすると式(3´)のテンソルMの
成分は、 M11=0 M12=1−η2 /< ε> M13=0 M14=0 M21=< ε> M22=0 M23=0 M24=0 M31=0 M32=0 M33=0 M34=1 M41=0 M42=0 M43=< ε> −η2 M44=0 (17´) となる。なお、 η=sinφ0 (18´) である。In order to obtain the thickness of the entire alignment film and the average dielectric constant, it is considered that there is a uniform film on the glass substrate.
Assuming that the average dielectric constant is <ε>, the components of the tensor M in the formula (3 ′) are as follows: M11 = 0 M12 = 1−η2 / <ε> M13 = 0 M14 = 0 M21 = <ε> M22 = 0 M23 = 0 M24 = 0 M31 = 0 M32 = 0 M33 = 0 M34 = 1 M41 = 0 M42 = 0 M43 = <ε> −η2 M44 = 0 (17 ′). Note that η = sin φ0 (18 ′).
【0109】測定の結果、図13および図14に示す通
り、Δの最小値は 354.950 °、最大値は 356.494°、
ψの最小値は 16.278 °、最大値は 16.390 °である。
この値に近い膜厚を探す。 (第一近似)液晶配向膜は誘電率1.8〜3.4の範囲
に入るものが多いため、誘電率を2.6と仮定した。ま
たガラス基板の屈折率を1.525 とした。下記の表16に
この条件で計算した膜厚とΔ、ψを示す。膜厚は90〜10
0nm であることが予想されるので 95nm とする。As a result of the measurement, as shown in FIGS. 13 and 14, the minimum value of Δ is 354.950 °, the maximum value is 356.494 °,
The minimum value of ψ is 16.278 ° and the maximum value is 16.390 °.
Find a film thickness close to this value. (First approximation) Since many liquid crystal alignment films have a dielectric constant in the range of 1.8 to 3.4, the dielectric constant was assumed to be 2.6. The refractive index of the glass substrate was set to 1.525. Table 16 below shows the film thickness and Δ, ψ calculated under these conditions. Film thickness is 90-10
Since it is expected to be 0 nm, it is set to 95 nm.
【0110】[0110]
【表16】 (第二近似)全膜厚95nmのうち、表面附近の配向した部
分の厚さを赤外吸収測定の報告(沢他 ジャパニーズジ
ャーナルオブアプライドフィジクス Japanese
Journal of Applied Physi
cs 33巻6273ページ1994年)を参考に15nm
と仮定する。配向部分は光学的に単軸性と仮定し、誘電
率εp 、εn は、無配向部の誘電率< ε> と、 < ε> =εp /3 + 2εn /3 (19´) の関係があると仮定する。[Table 16] (Second approximation) Infrared absorption measurement of the thickness of the oriented portion near the surface of the total film thickness of 95 nm (Sawa et al. Japanese Journal of Applied Physics Japanese
Journal of Applied Physi
cs 33 vol. 6273 p. 1994) 15nm
Assume that Assuming that the oriented part is optically uniaxial, the dielectric constants εp and εn are related to the dielectric constant <ε> of the non-oriented part and <ε> = εp / 3 + 2εn / 3 (19 '). Suppose
【0111】この場合、光学的性質を反映した行列Mの
成分は、εp の試料面に対する傾き角をθ、光の入射方
向の面内成分とのなす角をφとして、 εp −εn =Δε (20´) εp ・cos2θ+εn ・sin2θ=ε3 (21´) M11=−(Δcos θsin θsin φ)η/ε3 M12=1−η2 /ε3 M13=(Δcos θsin θcos φ)η/ε3 M21=εn ・(εp −Δεsin2θcos2φ)/ε3 M22=−εn ・(Δεsin2θcos φ)/ε3 M23=−εn ・Δεsin2θsin φcos φ/ε3 M31=0 M32=0 M33=0 M34=1 M41=0 M42=0 M43=εn ・(εp −Δεsin2θsin2φ)/ε3 M44=0 (22´) とかける。In this case, the components of the matrix M reflecting the optical properties are εp −εn = Δε (where θ is the inclination angle of εp with respect to the sample surface and φ is the angle formed by the in-plane component of the incident direction of light. 20 ') εp ・ cos2θ + εn ・ sin2θ = ε3 (21') M11 =-(Δcos θsin θsin φ) η / ε3 M12 = 1-η2 / ε3 M13 = (Δcos θsin θcos φ) η / ε3 M21 = εn ・ (εp -Δεsin2θcos2φ) / ε3 M22 = −εn ・ (Δεsin2θcos φ) / ε3 M23 = −εn ・ Δεsin2θsin φcos φ / ε3 M31 = 0 M32 = 0 M33 = 0 M34 = 1 M41 = 0 M42 = 0 M43 = εn ・ (εp -Δεsin2θsin2φ) / ε3 M44 = 0 (22 ')
【0112】式(19´)の関係を満たすεp 、εn の
値から計算したΔの値の範囲(最小値、最大値)を下記
の表17に示す。なお、この際に配向部のεp は表面に
平行(傾斜角0°)と仮定した。そのうち測定結果にも
っとも近いのは εp =2.66、εn =2.57 である。Table 17 below shows the range (minimum value, maximum value) of the value of Δ calculated from the values of εp and εn that satisfy the relationship of the equation (19 '). At this time, ε p of the oriented portion was assumed to be parallel to the surface (tilt angle 0 °). The closest to the measured results are εp = 2.66 and εn = 2.57.
【0113】[0113]
【表17】 以上の計算は、分子の傾斜角を0°としたためにΔは光
の面内入射方向について2回対称になる。一方、実際の
測定では2回対称性がなく、εp の方向(主座標軸)が
面に対して傾いていることがわかる。図15はεp の傾
きを0°、20°、40°、60°として計算したΔの
入射方向依存性である。Δの値はεp の表面に対する傾
斜角に大きく依存するが、なかでも20°が測定結果に
一番近いのでこれを採用する。 (最適化)ガラスの屈折率 1.525、無配向部の誘電率<
ε> =2.6 、無配向部分の厚さ 80nm 、配向部分の厚さ
15nm 、配向部分の誘電率 εp =2.66、εn =2.57
、傾斜角20°を初期値として、測定でえられたΔ、
ψを再現するようにガラス基板の屈折率、無配向部の誘
電率< ε> 、無配向部分の厚さ、配向部分の厚さ、配向
部分の誘電率 εp 、εn 傾斜角を非線形最小二乗法で
最適化した。最小二乗法はマーカット法(中川、小柳
「最小二乗法による実験データ解析」 東大出版会 19
82年)を採用し、各測定データの重みは等しいと仮定し
た。[Table 17] In the above calculation, since the tilt angle of the molecule is 0 °, Δ has twofold symmetry with respect to the in-plane incident direction of light. On the other hand, in the actual measurement, there is no 2-fold symmetry, and it can be seen that the direction (principal coordinate axis) of εp is inclined with respect to the plane. FIG. 15 shows the incident direction dependence of Δ calculated with the inclination of εp set to 0 °, 20 °, 40 °, and 60 °. The value of Δ largely depends on the inclination angle of εp with respect to the surface, but 20 ° is the closest to the measurement result, and therefore this is adopted. (Optimized) Glass refractive index of 1.525, non-oriented dielectric constant <
ε> = 2.6, thickness of non-oriented part 80nm, thickness of oriented part
15nm, dielectric constant of oriented part εp = 2.66, εn = 2.57
, With an inclination angle of 20 ° as an initial value, Δ obtained by measurement,
The non-linear least squares method is used to reproduce the refractive index of the glass substrate, the dielectric constant of the non-oriented portion <ε>, the thickness of the non-oriented portion, the thickness of the oriented portion, the permittivity of the oriented portion εp, and the inclination angle of εn to reproduce Optimized with. The least squares method is the Marcat method (Nakagawa, Koyanagi
"Experimental data analysis by least-squares method" University of Tokyo Press 19
1982) was adopted and the weight of each measurement data was assumed to be equal.
【0114】最適化の結果、ガラスの屈折率 1.527無配
向部の誘電率< ε> =2.64 、無配向部分の厚さ 80nm
、配向部分の厚さ 13nm 、配向部分の誘電率 εp =
2.74、εn =2.59 、傾斜角38°なる結果をえた。図
16および図17に測定値と最適化によってえられたパ
ラメータによる計算値を示す。測定データのψはデータ
の揺らぎが大きくガラス基板歪の影響と考えられる。As a result of the optimization, the refractive index of glass was 1.527, the dielectric constant of the non-oriented portion <ε> = 2.64, and the thickness of the non-oriented portion was 80 nm.
, The thickness of the alignment portion is 13 nm, the dielectric constant of the alignment portion εp =
2.74, ε n = 2.59, and inclination angle 38 ° were obtained. 16 and 17 show measured values and calculated values by the parameters obtained by the optimization. The ψ of the measured data has a large fluctuation in the data and is considered to be due to the distortion of the glass substrate.
【0115】実施の形態8 無歪ガラスを用いてψの角度依存性から分子配向を議論
した。Embodiment 8 The molecular orientation was discussed from the angle dependence of ψ using unstrained glass.
【0116】(試料B)厚さ1.1mm のコーニング7059ガ
ラスの表面にポリイミド原料液の日立化成LQ120
(商品名)をスピンコート装置を用いて塗布した後、2
50℃で2時間加熱による焼成を行なった。その後、半
径40mmのバフ布ローラーで、布の押込み長さ0.4mm 、
ローラー回転数300rpm、基板移動速度20mm/
sでラビングを行なった。(Sample B) A 1.1 mm-thick Corning 7059 glass surface was coated with Hitachi Chemical LQ120, a polyimide raw material liquid.
After applying (trade name) using a spin coater, 2
Firing was performed by heating at 50 ° C. for 2 hours. Then, with a buff cloth roller with a radius of 40 mm, press the cloth in 0.4 mm,
Roller rotation speed 300 rpm, substrate moving speed 20 mm /
The rubbing was performed at s.
【0117】(試料C)ラビング処理をしない以外は試
料Bと同じ条件である。(Sample C) The conditions are the same as those of sample B except that the rubbing process is not performed.
【0118】試料B、Cを実施の形態1と同じ装置で測
定した。ただし面内入射角は10°ごとに変化させて測
定した。図18にψの測定結果を示す。試料Cは等方的
であるが試料Bには分子配向による異方性が観測され
た。試料Bについて実施の形態7と同じ解析を行なった
ところ無配向部分の膜厚は 82nm で、他のパラメータは
試料Aと同じであった。なお試料Cは全層無配向で膜厚
94nmとなった。これらの試料を以上のような条件で測定
した場合、Δの方がψよりも感度がよい。Samples B and C were measured by the same device as in the first embodiment. However, the in-plane incident angle was measured at every 10 °. FIG. 18 shows the measurement result of ψ. Sample C was isotropic, but sample B exhibited anisotropy due to molecular orientation. When the same analysis as in Embodiment 7 was performed on Sample B, the film thickness of the non-oriented portion was 82 nm, and the other parameters were the same as those of Sample A. In addition, sample C is a non-oriented layer
It became 94 nm. When these samples are measured under the above conditions, Δ is more sensitive than ψ.
【0119】実施の形態9 試料面上で交差する2本の光線を用いた図7の装置を再
び参照して、この実施の形態9を説明する。上述したよ
うに、図7は試料の法線方向から見た装置の配置を示
し、2つの光線の進行方向は互いに直交している。入射
光光源1から出た2本の光は偏光子2によってS成分と
P成分の振幅が等しい直線偏光にされる。試料より光源
に近い位置に置かれた位相板3はΔの象現決定のために
出し入れする。本測定では水銀ランプを光源に、位相板
として1/4波長板を用いた。光はモノクロメータ3
9、46により単色化される。実施の形態7と比較のた
め630nm の光を取り出した。光は表面上の測定範囲をス
リット4、レンズ5を用いて制限し、2つの光線が試料
にあたる部分を一致させる。但し、レンズを用いて集光
を行なうと試料に対する光の入射角のボケが大きくなっ
て測定精度が犠牲になる。試料6で反射した光は検光子
7に入り、そこを通過した光の強度は受光管8で測定さ
れる。本測定では受光管としてフォトダイオードを用い
た。この配置で反射光の偏光状態は回転検光子法、消光
点法のいずれでも測定できる。試料は平行移動できるX
Yステージ19の上に置かれる。この装置をもちいて実
施の形態8で述べた試料B、Cを20mm×20mmの正方形の
領域をX、Y方向共に5mm間隔で25点測定を行なっ
た。Ninth Embodiment The ninth embodiment will be described with reference to the apparatus of FIG. 7 which uses two light beams intersecting on the sample surface. As described above, FIG. 7 shows the arrangement of the device viewed from the normal direction of the sample, and the traveling directions of the two light beams are orthogonal to each other. The two lights emitted from the incident light source 1 are linearly polarized by the polarizer 2 so that the S and P components have the same amplitude. The phase plate 3 placed at a position closer to the light source than the sample is put in and out for determining the phenotype of Δ. In this measurement, a mercury lamp was used as a light source and a quarter wave plate was used as a phase plate. Light is monochromator 3
9 and 46 are used to obtain a single color. Light of 630 nm was extracted for comparison with the seventh embodiment. The light limits the measurement range on the surface by using the slit 4 and the lens 5, and the two light beams are made to coincide with each other at the portion where they hit the sample. However, when the light is condensed using the lens, the blurring of the incident angle of the light on the sample becomes large and the measurement accuracy is sacrificed. The light reflected by the sample 6 enters the analyzer 7, and the intensity of the light passing therethrough is measured by the light receiving tube 8. In this measurement, a photodiode was used as the light receiving tube. With this arrangement, the polarization state of the reflected light can be measured by either the rotation analyzer method or the extinction point method. Sample can be translated X
It is placed on the Y stage 19. Using this apparatus, the samples B and C described in the eighth embodiment were measured at 25 points in a square area of 20 mm × 20 mm at 5 mm intervals in both the X and Y directions.
【0120】試料Bは入射光をラビング方向に平行に入
射した場合と垂直に入射した場合で反射光の偏光状態の
差の面内分布を比較した。入射光をラビング方向に垂直
に入射した場合と平行に入射した場合の結果をそれぞれ
下記の表18および表19に示す。表18および表19
からわかるように分子配向による光学特定の異方性を反
映してラビング方向に対して光を垂直方向より入射した
場合の方がΔの値が系統的に大きいのが観測された。For the sample B, the in-plane distribution of the difference in the polarization state of the reflected light was compared between when the incident light was incident parallel to the rubbing direction and when it was incident perpendicularly. The results obtained when the incident light is incident perpendicularly to the rubbing direction and when the incident light is incident parallel to the rubbing direction are shown in Table 18 and Table 19 below. Table 18 and Table 19
As can be seen from the above, it was observed that the value of Δ was systematically larger when light was incident from the direction perpendicular to the rubbing direction, reflecting the optical specific anisotropy due to the molecular orientation.
【0121】[0121]
【表18】 [Table 18]
【0122】[0122]
【表19】 試料Cも同様な面内分布測定を行なった。入射光をラビ
ング方向に垂直に入射した場合と平行に入射した場合の
結果をそれぞれ下記の表20および表21に示す。表2
0および表21に示すようにΔ、ψとも有意の差が認め
られなかった。[Table 19] The same in-plane distribution measurement was also performed for sample C. The results obtained when the incident light is incident perpendicularly to the rubbing direction and when the incident light is incident parallel to the rubbing direction are shown in Table 20 and Table 21 below. Table 2
0 and as shown in Table 21, there was no significant difference between Δ and ψ.
【0123】[0123]
【表20】 [Table 20]
【0124】[0124]
【表21】 以上のように2方向からの同時測定によりえられたΔの
差から、ラビングによる分子配向の有無を観測できる。
試料の回転を行なわないので測定に要する時間が実施の
形態7の装置より短く、配向の試料面内分布測定が効率
よくできる。[Table 21] As described above, the presence or absence of molecular orientation due to rubbing can be observed from the difference in Δ obtained by simultaneous measurement from two directions.
Since the sample is not rotated, the time required for measurement is shorter than that of the device of the seventh embodiment, and the in-plane distribution measurement of the orientation of the sample can be efficiently performed.
【0125】なお、この装置は2方向のみの異方性を測
定しているため、分子配向が完全に未知な試料の配向膜
の状態(配向部分の主誘電率、主座標系の膜表面に対す
る角度、厚さと、非配向部分の屈折率と厚さ)を知るこ
とは困難である。膜の状態を詳細に求める場合は実施の
形態7と同様に試料を回転させることや、同時に入射す
る光の方向を更に増やすことが必要である。Since this apparatus measures anisotropy in only two directions, the state of the orientation film of the sample whose molecular orientation is completely unknown (main dielectric constant of the orientation part, relative to the film surface of the main coordinate system) It is difficult to know the angle, thickness, and the refractive index and thickness of the non-oriented portion. When the state of the film is to be obtained in detail, it is necessary to rotate the sample as in the case of the seventh embodiment and further increase the directions of the light that is simultaneously incident.
【0126】しかし、実施の形態7で一旦測定した試料
と同じ構造(同じ液晶配向膜材料と同じ基板)であれ
ば、2方向からの測定で膜厚や誘電率の異方性について
ある程度推測できる。However, if the structure is the same as that of the sample once measured in the seventh embodiment (the same liquid crystal alignment film material and the same substrate), the anisotropy of the film thickness and the dielectric constant can be estimated to some extent by the measurement from two directions. .
【0127】[0127]
【発明の効果】以上に説明したように、本発明によれ
ば、斜入射光の偏光状態の異方性の測定から、従来の方
法では測定できなかった分子の配向度と配向している部
分の厚さを定量的に測定することができる。さらに本発
明では、分子配向の膜表面に対する角度に関する情報を
得ることができる。また本発明では、入射光や波長に対
する依存性から分子配向の深さ方向の分布も測定するこ
とができる。As described above, according to the present invention, from the measurement of the anisotropy of the polarization state of obliquely incident light, it is possible to measure the degree of orientation of molecules and the portion that is oriented, which cannot be measured by the conventional method. Can be quantitatively measured. Further, according to the present invention, it is possible to obtain information on the angle of molecular orientation with respect to the film surface. Further, in the present invention, the distribution of molecular orientation in the depth direction can also be measured from the dependence on incident light and wavelength.
【0128】さらに、本発明によれば、斜入射光の偏光
状態の面内入射方向依存性の測定から、従来は測定でき
なかった、膜の分子配向を反映した配向部分の主誘電
率、主座標系の膜表面に対する角度、厚さと、ラビング
処理によっても分子配向を生じない非配向部分の屈折率
と厚さを定量的に測定することができる。また本発明に
よれば、従来方法では回避できなかったガラス基板の歪
の影響をうけずに配向膜の状態を測定できる。Further, according to the present invention, from the measurement of the in-plane incident direction dependence of the polarization state of obliquely incident light, the main dielectric constant of the oriented portion, which cannot be measured conventionally, which reflects the molecular orientation of the film, It is possible to quantitatively measure the angle of the coordinate system with respect to the film surface, the thickness, and the refractive index and the thickness of the non-oriented portion that does not cause molecular orientation even by the rubbing treatment. Further, according to the present invention, the state of the alignment film can be measured without being affected by the strain of the glass substrate, which cannot be avoided by the conventional method.
【図1】本発明の検査装置の模式的斜視図である。FIG. 1 is a schematic perspective view of an inspection device of the present invention.
【図2】入射角を70°として本発明の検査法を行なっ
た試料A、B、およびCのΔと試料回転角との関係を示
す図である。FIG. 2 is a diagram showing the relationship between Δ and the sample rotation angle of samples A, B, and C that were subjected to the inspection method of the present invention with an incident angle of 70 °.
【図3】試料BのΔの測定値と計算値を示す図である。FIG. 3 is a diagram showing measured values and calculated values of Δ of sample B.
【図4】試料A、B、およびCについて従来の検査法を
行ったΔと試料回転角との関係を示す図である。FIG. 4 is a diagram showing a relationship between Δ and a sample rotation angle, which are obtained by performing a conventional inspection method on samples A, B, and C.
【図5】試料DおよびEについて従来の検査法を行った
Δと試料回転角との関係を示す図である。FIG. 5 is a diagram showing the relationship between Δ and the sample rotation angle obtained by performing a conventional inspection method on samples D and E.
【図6】本発明の検査法を行った試料DおよびEのΔと
試料回転角との関係を示す図である。FIG. 6 is a diagram showing the relationship between Δ and the sample rotation angle for samples D and E that have been subjected to the inspection method of the present invention.
【図7】本発明の検査装置の模式的平面図である。FIG. 7 is a schematic plan view of the inspection device of the present invention.
【図8】本発明の検査装置の模式的平面図である。FIG. 8 is a schematic plan view of the inspection device of the present invention.
【図9】本発明の検査装置の模式的平面図である。FIG. 9 is a schematic plan view of the inspection device of the present invention.
【図10】本発明の検査装置の模式的斜視図である。FIG. 10 is a schematic perspective view of the inspection device of the present invention.
【図11】本発明の光ファイバーの配置図である。FIG. 11 is a layout view of an optical fiber of the present invention.
【図12】本発明の検査法で得られた配向度の面内分布
を示す図である。FIG. 12 is a diagram showing an in-plane distribution of the orientation degree obtained by the inspection method of the present invention.
【図13】入射角を70°として本発明の検査法を行な
った試料AのΔと試料回転角との関係を示す図である。FIG. 13 is a diagram showing the relationship between Δ and the sample rotation angle of the sample A subjected to the inspection method of the present invention with the incident angle of 70 °.
【図14】入射角を70°として本発明の検査法を行な
った試料Aのψと試料回転角との関係を示す図である。FIG. 14 is a diagram showing the relationship between ψ and the sample rotation angle of the sample A subjected to the inspection method of the present invention with an incident angle of 70 °.
【図15】無配向部膜厚80nm、誘電率2.6 、配向部膜厚
15nm、誘電率2.66,2.57 、ガラス基板の屈折率1.525 と
して主座標系の膜表面に対する傾き角を0°、20°、
40°、60°として計算したΔの試料回転角依存性を
示す図である。[Fig. 15] Non-oriented portion film thickness 80 nm, dielectric constant 2.6, oriented portion film thickness
15nm, dielectric constant 2.66, 2.57, refractive index of glass substrate 1.525, tilt angle with respect to the film surface of the main coordinate system is 0 °, 20 °,
It is a figure which shows the sample rotation angle dependence of (DELTA) calculated as 40 degrees and 60 degrees.
【図16】試料Aの測定値と最適化されたパラメータか
ら計算されたΔの試料角度依存性を示す図である。16 is a diagram showing the sample angle dependence of Δ calculated from the measured values of Sample A and the optimized parameters. FIG.
【図17】試料Aの測定値と最適化されたパラメータか
ら計算されたψの試料角度依存性を示す図である。17 is a diagram showing the sample angle dependence of ψ calculated from the measured value of sample A and the optimized parameters. FIG.
【図18】試料BおよびCの反射光のψの試料角度依存
性を示す図である。FIG. 18 is a diagram showing sample angle dependence of ψ of reflected light of samples B and C.
【符号の説明】 1 光源 2 偏光子 3 位相板 4 スリット 5 レンズ 6 試料 7 検光子 8 受光管 9 回転ステージ 19、39 XYステージ 36、46 モノクロメータ 101 レンズ群 104 光ファイバーアレイ 105 光検出器 106 コンピュータ 107 画像出力装置[Explanation of reference numerals] 1 light source 2 polarizer 3 phase plate 4 slit 5 lens 6 sample 7 analyzer 8 light receiving tube 9 rotating stage 19, 39 XY stage 36, 46 monochromator 101 lens group 104 optical fiber array 105 photodetector 106 computer 107 image output device
Claims (14)
単色光線を所定の角度で入射したときに生じる反射光の
偏光状態を試料面内の複数の方向について測定し、反射
光の偏光状態の異方性から試料の分子配向を決定するこ
とを特徴とする異方性薄膜検査法。1. The polarization state of the reflected light is obtained by measuring the polarization state of the reflected light generated when a monochromatic light beam having a predetermined polarization state is incident on the surface of the thin film sample at a predetermined angle, in a plurality of directions within the sample plane. Anisotropic thin film inspection method characterized by determining the molecular orientation of a sample from the anisotropy of the sample.
単色光線を所定の角度で入射したときに生じる反射光の
偏光状態を試料面内の複数の方向について測定する方法
であって、入射光の波長および試料面内への入射方向依
存性から試料の分子配向および試料内の分子配向分布を
決定することを特徴とする異方性薄膜検査法。2. A method for measuring the polarization state of reflected light generated when a monochromatic light beam having a predetermined polarization state is incident on a surface of a thin film sample at a predetermined angle in a plurality of directions within a sample plane. An anisotropic thin film inspection method characterized in that the molecular orientation of a sample and the molecular orientation distribution in the sample are determined from the dependence of the wavelength of light and the direction of incidence on the surface of the sample.
面積部分に入射し、前記試料面内の複数の方向について
測定した反射光を拡大し、その反射光の偏光状態の差か
ら試料の分子配向の前記所定の面積部分の面内分布を測
定することを特徴とする請求項1または2記載の異方性
薄膜検査法。3. A monochromatic light beam having a predetermined polarization state is incident on a predetermined area portion, reflected light measured in a plurality of directions within the sample plane is enlarged, and the difference in polarization state of the reflected light causes The anisotropic thin film inspection method according to claim 1, wherein the in-plane distribution of the molecular orientation in the predetermined area portion is measured.
あることを特徴とする請求項1または2または3記載の
異方性薄膜検査法。4. The anisotropic thin film inspection method according to claim 1, wherein the incident angle is 35 ° or more and 65 ° or less.
せることができる試料台と、該試料台上の試料表面に所
定の偏光状態の単色光線を所定の角度で入射する手段
と、前記試料からの反射光の偏光状態を測定する手段と
からなり、反射光の偏光状態の異方性から試料の分子配
向を決定することを特徴とする異方性薄膜検査装置。5. A sample stage on which a membrane sample is placed and which can be rotated in-plane, and means for injecting a monochromatic light beam of a predetermined polarization state at a predetermined angle on the sample surface on the sample stage. And a means for measuring the polarization state of the reflected light from the sample, and determining the molecular orientation of the sample from the anisotropy of the polarization state of the reflected light.
上の試料表面の一点に所定の偏光状態の単色光線を所定
の角度で入射する手段を複数設け、前記試料からの複数
の反射光の偏光状態のそれぞれを測定する手段とからな
り、前記複数の反射光の偏光状態の差から試料の分子配
向を決定することを特徴とする異方性薄膜検査装置。6. A sample stage on which a membrane film sample is placed, and a plurality of means for injecting a monochromatic light beam of a predetermined polarization state at a predetermined angle to one point of the sample surface on the sample stage are provided. Means for measuring the respective polarization states of the reflected light, and determining the molecular orientation of the sample from the difference in the polarization states of the plurality of reflected lights.
角度で入射する手段は入射光の波長および入射角度を変
えることができ、反射光の偏光状態の入射角依存性から
試料の屈折率分布を試料面内の入射方向ごとに求めて、
試料の分子配向および試料内の分子配向分布を決定する
ことを特徴とする請求項5または6記載の異方性薄膜検
査装置。7. The means for injecting the monochromatic light beam having a predetermined polarization state at a predetermined angle can change the wavelength and the incident angle of the incident light, and the refractive index of the sample can be determined from the incident angle dependence of the polarization state of the reflected light. Obtain the distribution for each incident direction in the sample plane,
The anisotropic thin film inspection apparatus according to claim 5 or 6, wherein the molecular orientation of the sample and the molecular orientation distribution in the sample are determined.
上の試料表面の同一個所に所定の偏光状態の単色光線を
所定の角度で互に交差するように入射する複数の手段
と、前記試料からの複数の反射光を拡大する手段と、そ
の反射光の偏光状態の面内分布を測定する手段と、複数
の反射光のそれぞれについて対応する面会い成分の差か
ら試料の分子配向の面内分布を決定することを特徴とす
る異方性薄膜検査装置。8. A sample stage on which a membrane film sample is placed, and a plurality of means for injecting monochromatic light beams having a predetermined polarization state at the same position on the sample surface on the sample stage so as to intersect each other at a predetermined angle. A means for enlarging a plurality of reflected light from the sample, a means for measuring the in-plane distribution of the polarization state of the reflected light, and a molecule of the sample from the difference of the corresponding encounter components for each of the plurality of reflected light An anisotropic thin film inspection apparatus characterized by determining an in-plane distribution of orientation.
る手段が位置敏感二次元検出器であることを特徴とする
請求項8記載の異方性薄膜検査装置。9. The anisotropic thin film inspection apparatus according to claim 8, wherein the means for obtaining the in-plane distribution of the polarization state of the reflected light is a position-sensitive two-dimensional detector.
状態の単色光線を所定の角度で入射したときに生じる反
射光の偏光状態を試料面内の同一の領域について複数の
方向から測定し、反射光のS偏光成分(試料表面に平行
な偏光成分)とそれに垂直なP偏光成分の位相差の異方
性を測定することを特徴とする液晶配向膜検査方法。10. The polarization state of reflected light generated when a monochromatic light beam having a predetermined polarization state is incident on the surface of the liquid crystal alignment film at a predetermined angle is measured from a plurality of directions in the same region on the sample surface. A method for inspecting a liquid crystal alignment film, which comprises measuring the anisotropy of the phase difference between the S-polarized component of the reflected light (polarized component parallel to the sample surface) and the P-polarized component perpendicular thereto.
状態の単色光線を所定の角度で入射したときに生じる反
射光の偏光状態を試料面内の同一の領域について複数の
方向から測定し、反射光のS偏光成分(試料表面に平行
な偏光成分)とそれに垂直なP偏光成分の強度比の異方
性を測定することを特徴とする液晶配向膜検査方法。11. The polarization state of reflected light generated when a monochromatic light beam having a predetermined polarization state is incident on the surface of the liquid crystal alignment film at a predetermined angle is measured from a plurality of directions in the same region on the sample surface. A method for inspecting a liquid crystal alignment film, which comprises measuring the anisotropy of the intensity ratio of the S-polarized component of the reflected light (polarized component parallel to the sample surface) and the P-polarized component perpendicular to it.
状態の単色光線を所定の角度で入射したときに生じる反
射光の偏光状態を試料面内の同一の領域について複数の
方向から測定し、反射光のS偏光成分(試料表面に平行
な偏光成分)とそれに垂直なP偏光成分の位相差と強度
比の異方性から、液晶配向膜中の分子配向層の厚さ、異
方的な主誘電率と液晶配向膜中の無配向部の厚さと誘電
率を求めることを特徴とする解析方法。12. The polarization state of reflected light produced when a monochromatic light beam having a predetermined polarization state is incident on the surface of a liquid crystal alignment film at a predetermined angle is measured from a plurality of directions in the same region on the sample surface. , Anisotropy of the thickness of the molecular alignment layer in the liquid crystal alignment film due to the anisotropy of the phase difference and the intensity ratio of the S-polarized component of the reflected light (polarized component parallel to the sample surface) and the P-polarized component perpendicular to it. Analytical method characterized by obtaining the main dielectric constant, the thickness of the non-aligned portion in the liquid crystal alignment film, and the dielectric constant.
内回転させることができる試料台と、該試料台上の試料
表面に所定の偏光状態の単色光線を所定の角度で入射す
る手段と、前記試料からの反射光のS偏光成分とP偏光
成分の位相差および強度比を測定する手段とからなり、
反射光のS偏光成分とP偏光成分の位相差および強度比
の異方性から試料の液晶配向膜中の分子配向層の厚さ、
異方的な主誘電率と液晶配向膜中の無配向部の厚さと誘
電率を決定することを特徴とする液晶配向膜検査装置。13. A sample stage on which a liquid crystal alignment film sample is placed and which can be rotated in-plane, and a monochromatic light beam having a predetermined polarization state is incident on the sample surface on the sample stage at a predetermined angle. And means for measuring the phase difference and the intensity ratio of the S-polarized component and the P-polarized component of the reflected light from the sample,
From the anisotropy of the phase difference and the intensity ratio of the S-polarized component and the P-polarized component of the reflected light, the thickness of the molecular alignment layer in the liquid crystal alignment film of the sample,
An apparatus for inspecting a liquid crystal alignment film, which determines an anisotropic main dielectric constant and a thickness and a dielectric constant of a non-aligned portion in the liquid crystal alignment film.
該試料台上の試料表面の一点に所定の偏光状態の単色光
線を所定の角度で入射する手段を複数設け、前記試料か
らの反射光のS偏光成分とP偏光成分の位相差および強
度比を測定する手段とからなり、反射光のS偏光成分と
P偏光成分の位相差および強度比の異方性から試料の液
晶配向膜中の分子配向層の厚さ、異方的な主誘電率と液
晶配向膜中の無配向部の厚さと誘電率を決定することを
特徴とする液晶配向膜検査装置。14. A sample table on which a liquid crystal alignment film sample is placed,
A plurality of means for injecting a monochromatic light beam having a predetermined polarization state at a predetermined angle is provided at one point on the surface of the sample on the sample table, and the phase difference and the intensity ratio of the S-polarized component and the P-polarized component of the reflected light from the sample are determined. The thickness of the molecular alignment layer in the liquid crystal alignment film of the sample and the anisotropic main dielectric constant are determined from the anisotropy of the phase difference and the intensity ratio of the S-polarized component and the P-polarized component of the reflected light. An apparatus for inspecting a liquid crystal alignment film, characterized by determining the thickness and the dielectric constant of a non-aligned portion in the liquid crystal alignment film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4932096A JP3275944B2 (en) | 1995-12-05 | 1996-03-06 | Anisotropic thin film inspection method, anisotropic thin film inspection device, liquid crystal alignment film inspection method, liquid crystal alignment film inspection device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31619095 | 1995-12-05 | ||
JP7-316190 | 1995-12-05 | ||
JP4932096A JP3275944B2 (en) | 1995-12-05 | 1996-03-06 | Anisotropic thin film inspection method, anisotropic thin film inspection device, liquid crystal alignment film inspection method, liquid crystal alignment film inspection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09218133A true JPH09218133A (en) | 1997-08-19 |
JP3275944B2 JP3275944B2 (en) | 2002-04-22 |
Family
ID=26389703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4932096A Expired - Lifetime JP3275944B2 (en) | 1995-12-05 | 1996-03-06 | Anisotropic thin film inspection method, anisotropic thin film inspection device, liquid crystal alignment film inspection method, liquid crystal alignment film inspection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3275944B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6151116A (en) * | 1998-09-07 | 2000-11-21 | Nec Corporation | Evaluation method for thin film molecular orientation, evaluation apparatus for the orientation and recording medium |
US6414739B2 (en) | 1997-11-13 | 2002-07-02 | Nec Corporation | Method of manufacturing a liquid crystal display device |
US6486951B2 (en) | 2000-03-24 | 2002-11-26 | Nec Corporation | Method of evaluating an anisotropic thin film and an evaluating apparatus |
WO2002095372A1 (en) * | 2001-05-22 | 2002-11-28 | Horiba, Ltd. | Thin-film characteristic measuring method using spectroellipsometer |
US7034940B1 (en) | 1999-12-03 | 2006-04-25 | Nec Electronics Corporation | Method for evaluating displaying element of liquid crystal, information storage medium for storing computer program representative of the method and evaluating system using the same |
JP2007513342A (en) * | 2003-12-03 | 2007-05-24 | パルプ アンド ペーパー リサーチ インスチチュート オブ カナダ | Equipment for circular polarization and cell wall thickness and orientation of small fibers |
JP2007225426A (en) * | 2006-02-23 | 2007-09-06 | Nippon Zeon Co Ltd | Test method for optically anisotropic film |
CN100582884C (en) | 2006-10-13 | 2010-01-20 | 群康科技(深圳)有限公司 | LCD panel group |
US8094308B2 (en) | 2007-02-16 | 2012-01-10 | Tokyo Institute Of Technology | Spectrometric analyzing device and spectrometric analyzing method |
JP2013527424A (en) * | 2009-07-31 | 2013-06-27 | シュルンベルジェ ホールディングス リミテッド | Phase behavior analysis using a microfluidic platform |
JP2016080473A (en) * | 2014-10-15 | 2016-05-16 | 日本ゼオン株式会社 | Phase difference measuring method for optical films, optical film manufacturing method, phase difference measuring device for optical films, and optical film manufacturing device |
-
1996
- 1996-03-06 JP JP4932096A patent/JP3275944B2/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6414739B2 (en) | 1997-11-13 | 2002-07-02 | Nec Corporation | Method of manufacturing a liquid crystal display device |
US6509948B2 (en) | 1997-11-13 | 2003-01-21 | Nec Corporation | Liquid crystal display device and method of manufacturing the same |
US6151116A (en) * | 1998-09-07 | 2000-11-21 | Nec Corporation | Evaluation method for thin film molecular orientation, evaluation apparatus for the orientation and recording medium |
US7034940B1 (en) | 1999-12-03 | 2006-04-25 | Nec Electronics Corporation | Method for evaluating displaying element of liquid crystal, information storage medium for storing computer program representative of the method and evaluating system using the same |
US6486951B2 (en) | 2000-03-24 | 2002-11-26 | Nec Corporation | Method of evaluating an anisotropic thin film and an evaluating apparatus |
US7271901B2 (en) | 2001-05-22 | 2007-09-18 | Horiba, Ltd. | Thin-film characteristic measuring method using spectroellipsometer |
WO2002095372A1 (en) * | 2001-05-22 | 2002-11-28 | Horiba, Ltd. | Thin-film characteristic measuring method using spectroellipsometer |
JP2007513342A (en) * | 2003-12-03 | 2007-05-24 | パルプ アンド ペーパー リサーチ インスチチュート オブ カナダ | Equipment for circular polarization and cell wall thickness and orientation of small fibers |
JP2007225426A (en) * | 2006-02-23 | 2007-09-06 | Nippon Zeon Co Ltd | Test method for optically anisotropic film |
CN100582884C (en) | 2006-10-13 | 2010-01-20 | 群康科技(深圳)有限公司 | LCD panel group |
US8094308B2 (en) | 2007-02-16 | 2012-01-10 | Tokyo Institute Of Technology | Spectrometric analyzing device and spectrometric analyzing method |
JP2013527424A (en) * | 2009-07-31 | 2013-06-27 | シュルンベルジェ ホールディングス リミテッド | Phase behavior analysis using a microfluidic platform |
JP2016080473A (en) * | 2014-10-15 | 2016-05-16 | 日本ゼオン株式会社 | Phase difference measuring method for optical films, optical film manufacturing method, phase difference measuring device for optical films, and optical film manufacturing device |
Also Published As
Publication number | Publication date |
---|---|
JP3275944B2 (en) | 2002-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor | |
US7889339B1 (en) | Complementary waveplate rotating compensator ellipsometer | |
Jan et al. | Integrating fault tolerance algorithm and circularly polarized ellipsometer for point-of-care applications | |
Hong et al. | Mueller matrix characterization of flexible plastic substrates | |
JP3275944B2 (en) | Anisotropic thin film inspection method, anisotropic thin film inspection device, liquid crystal alignment film inspection method, liquid crystal alignment film inspection device | |
JP2001356072A (en) | Pretilt angle detection method and apparatus | |
Benecke et al. | Determination of director distributions in liquid crystal polymer-films by means of generalized anisotropic ellipsometry | |
Deutsch et al. | Optical Larmor clock: measurement of the photonic tunneling time | |
KR19990077575A (en) | Method and apparatus for evaluating internal film stress at high lateral resolution | |
CN1155652A (en) | Method and apparatus for measuring thickness of birefringence layer | |
US5903352A (en) | Apparatus and method for measuring optical anisotropy | |
JP3063843B2 (en) | Liquid crystal initial alignment angle measuring method and liquid crystal initial alignment angle measuring device | |
EP0603863B1 (en) | Birefringent member cell gap measurement method and instrument | |
Yang et al. | Optical, mechanical, and photoelastic anisotropy of biaxially stretched polyethylene terephthalate films studied using transmission ellipsometer equipped with strain camera and stress gauge | |
Alonso et al. | Optical properties of anisotropic materials: an experimental approach | |
US6300954B1 (en) | Methods and apparatus for detecting liquid crystal display parameters using stokes parameters | |
Belyaev et al. | Physical properties of stretched polymeric substrates with periodic microrelief for optical diffraction elements and liquid‐crystal alignment | |
JP3813800B2 (en) | Liquid crystal cell parameter detector | |
Wu et al. | Flexible high-resolution thin micropolarizers for imaging polarimetry | |
TWI482958B (en) | Detecting apparatus and detecting method | |
JP2776333B2 (en) | Liquid crystal alignment film inspection method and inspection apparatus | |
Shopa et al. | Application of two-dimensional intensity maps in high-accuracy polarimetry | |
Arteaga et al. | Beyond polarization microscopy: Mueller matrix microscopy with frequency demodulation | |
JP2735053B2 (en) | Organic thin film orientation inspection method and inspection device | |
Gassner et al. | Effects of Polarizer–Analyzer Configurations for FTIR Spectroscopy: Implications for Multiple Polarization Algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020109 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080208 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090208 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100208 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100208 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130208 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130208 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140208 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |