[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09208251A - Ultraviolet rays and infrared rays absorbing green glass - Google Patents

Ultraviolet rays and infrared rays absorbing green glass

Info

Publication number
JPH09208251A
JPH09208251A JP1371696A JP1371696A JPH09208251A JP H09208251 A JPH09208251 A JP H09208251A JP 1371696 A JP1371696 A JP 1371696A JP 1371696 A JP1371696 A JP 1371696A JP H09208251 A JPH09208251 A JP H09208251A
Authority
JP
Japan
Prior art keywords
glass
transmittance
wavelength
ultraviolet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1371696A
Other languages
Japanese (ja)
Inventor
Shigeki Morimoto
繁樹 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP1371696A priority Critical patent/JPH09208251A/en
Publication of JPH09208251A publication Critical patent/JPH09208251A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/082Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain green glass suppressing the occurrence of defects such as irregularity in color, ream and distortion, having high quality, high performance and more favorable human, physical and environmental effects by the conventional float process with high productivity. SOLUTION: This green glass is soda lime-silica glass contg. at least 0.5-0.72wt.% Fe2 O3 , 2.2-2.6wt.% CeO2 and 0.4-0.9wt.% TiO2 as coloring components and having 3.5mm thickness, <=6% UV transmissivity (TUV), 0% transmissivity (T350 ) at 350nm wavelength, <=15% transmissivity (T370 ) at 370nm wavelength and <=15% transmissivity (T1 ,100 ) at 1,100nm wavelength with an A light source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は比較的高い透視性を
もちかつ赤外線紫外線を高吸収して優れた遮蔽性を有
し、高居住性、高安全性となって軽量化ができ得る紫外
線赤外線吸収緑色系ガラスに関し、建築用窓ガラスや各
種ガラス物品はもちろん、特に自動車用等車両用窓ガラ
スに有用な紫外線赤外線吸収緑色系ガラスを提供するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet and infrared ray which has a relatively high transparency and a high degree of absorption of infrared rays and ultraviolet rays and has an excellent shielding property, and which is highly comfortable and highly safe and can be reduced in weight. Regarding the absorption green glass, the present invention provides an ultraviolet and infrared absorption green glass which is useful not only for building window glass and various glass articles but also for vehicle window glass such as automobiles.

【0002】[0002]

【従来の技術】近年富みに、冷房負荷の低減等省エネル
ギー化あるいは有機物における劣化ならびに退色等か
ら、赤外線や紫外線の反射吸収等多機能化をガラス自体
またはガラス表面に付加することにより、人的にも物的
にもより高居住性に繋がる板ガラス物品のニーズが急激
に高まってきている。
2. Description of the Related Art In recent years, since energy saving such as reduction of cooling load, deterioration of organic substances and fading, etc. have been abundant in recent years, by adding multifunctional functions such as reflection and absorption of infrared rays and ultraviolet rays to the glass itself or the glass surface, The demand for flat glass products, which leads to higher habitability both in terms of physical properties, is rapidly increasing.

【0003】そこで、従来の赤外線吸収ガラスに加えて
紫外線吸収を意識したガラスが提案されつつあるなか
で、さらに高い性能を期待した提案がなされてきてい
る。例えば特公平5-27578 号公報には、原料を溶融操作
へ供給し、この溶融操作が別々の液化段階と清澄化段階
とを含み、溶融操作から平板ガラス成形操作へ、全操作
においてあてはまる成分量であるFe2O3 として表して少
なくとも0.45重量%の鉄を有する溶融ガラスの連続流を
送り、溶融操作中の酸化還元条件を最終製品においてFe
O として表される第一鉄状態の鉄を少なくとも35%与え
るように制御し、そしてガラスを成形操作で平板ガラス
製品へ成形することを含み、しかも平板ガラスが少なく
とも65%の光透過率及び15%以下の赤外線透過率を有す
る、連続的方法でもって、ソーダ・石灰・シリカ平板ガ
ラスを製造する方法が開示されている。
Therefore, in addition to the conventional infrared absorbing glass, glass considering the absorption of ultraviolet rays is being proposed, and proposals have been made with the expectation of higher performance. For example, in Japanese Examined Patent Publication No. 5-27578, the raw material is supplied to a melting operation, and this melting operation includes separate liquefaction step and clarification step, and the amount of components applicable to all operations from the melting operation to the flat glass molding operation. Is fed with a continuous stream of molten glass having at least 0.45% by weight of iron, expressed as Fe 2 O 3 , and the redox conditions during the melting operation are
Controlling to provide at least 35% ferrous iron, expressed as O, and shaping the glass into a flat glass product in a forming operation, wherein the flat glass has a light transmission of at least 65% and a Disclosed is a method for producing soda-lime-silica flat glass by a continuous method having an infrared transmittance of not more than%.

【0004】該公報には、重量に基づいて、66〜75%の
SiO2、12〜20%のNa2O、7 〜12%のCaO 、0 〜5 %のMg
O 、0 〜4 %のAl2O3 、0 〜3 %のK2O 、0 〜1 %のFe
2O3、及びCeO2、TiO2、V2O5又はMoO3の合計0 〜1.5 %
から本質的になる組成を有するガラス物品であって、0.
45重量%の全鉄で、そのうち少なくとも50%がFeO とし
て表した第一鉄状態にある鉄、及びSO3 として表して0.
02重量%より少ない硫黄を有し、少なくとも65%の光
(400 〜770nm )透過率及び15%以下の全太陽赤外線
(800 〜2100nm)透過率を示すソーダ・石灰・シリカガ
ラス物品が記載されている。
The publication discloses that, based on the weight, 66-75%
SiO 2 , 12-20% Na 2 O, 7-12% CaO, 0-5% Mg
O, 0-4% Al 2 O 3 , 0-3% K 2 O, 0-1% Fe
2 O 3 , and CeO 2 , TiO 2 , V 2 O 5 or MoO 3 total 0 to 1.5%
A glass article having a composition consisting essentially of 0.
45% by weight of total iron, of which at least 50% is in the ferrous state, expressed as FeO, and 0, expressed as SO 3 .
Described is a soda-lime-silica glass article having less than 02% by weight of sulfur and exhibiting at least 65% light (400-770 nm) transmittance and less than 15% total solar infrared (800-2100 nm) transmittance. There is.

【0005】また例えば、特公平6-88812 号公報には、
Fe2O3 に換算して0.65〜1.25重量%のFeと、0.2 〜1.4
重量%のCeO2、または0.1 〜1.36重量%のCeO2及び0.02
〜0.85重量%のTiO2とを主要な成分として含み、3〜5
mmの厚さを有するときに、測色光A可視光(波長400 〜
770nm )透過率が70%以上であって、全太陽エネルギ−
(波長300 〜2130nm)透過率が46%以下であって、紫外
線(波長300 〜400nm)透過率が38%以下となるよう
に、Fe2O3 に対するFeO の重量比を定めた赤外線及び紫
外線吸収ソーダ石灰シリカ緑色ガラスが開示されてい
る。
For example, Japanese Patent Publication No. 6-88812 discloses that
Converted to Fe 2 O 3 , 0.65 to 1.25 wt% Fe and 0.2 to 1.4
Wt% CeO 2 , or 0.1-1.36 wt% CeO 2 and 0.02
〜 0.85wt% TiO 2 as a main component 3 ~ 5
mm thickness, colorimetric light A visible light (wavelength 400 ~
770nm) The total solar energy is 70% or more,
Infrared and ultraviolet absorption that determines the weight ratio of FeO to Fe 2 O 3 so that the transmittance (wavelength 300 to 2130 nm) is 46% or less and the ultraviolet (wavelength 300 to 400 nm) transmittance is 38% or less. Soda lime silica green glass is disclosed.

【0006】該公報には、前記Feが0.48〜0.92重量%の
Fe2O3 と0.15〜0.33重量%のFeO であること、FeO の重
量%がFe2O3 として表された鉄分総量の23〜29%の還元
パ−セントをなすこと、測色光C主波長が498 〜525nm
であって、色純度が2〜4%であること、さらにA)65〜
75重量%のSiO2、B)10〜15重量%のNa2O、C)0 〜4 重量
%のK2O 、D)1 〜5 重量%のMgO 、E)5 〜15重量%のCa
O 、F)0 〜3 重量%のAl2O3 、を含むこと等が記載され
ている。
In the publication, the Fe content is 0.48 to 0.92% by weight.
Fe 2 O 3 and 0.15 to 0.33% by weight of FeO, and the weight% of FeO forms a reduction percentage of 23 to 29% of the total iron content expressed as Fe 2 O 3 ; Is 498 to 525 nm
And the color purity is 2-4%, and A) 65-
75 wt% SiO 2 , B) 10-15 wt% Na 2 O, C) 0-4 wt% K 2 O, D) 1-5 wt% MgO, E) 5-15 wt% Ca
O, F) 0 to 3% by weight of Al 2 O 3 , etc. are described.

【0007】また例えば、特開平4-310539号公報には、
下記酸化物換算で、SiO265〜75重量%、Al2O30.1〜5 重
量%、Na2O10〜18重量%、K2O 0 〜5 重量%、CaO5〜15
重量%、MgO1〜6 重量%、CeO20.1 〜3 重量%、Fe2O
30.5〜1.2 重量%、SO30.05 〜1.0 重量%、TiO20 〜1.
0 から本質的になり、かつ、Fe2O3 として表わされた全
鉄分含有量のうち、重量で20〜40%が酸化第一鉄(FeO
)である赤外線・紫外線吸収ガラスが開示されてい
る。
Further, for example, in Japanese Patent Laid-Open No. 310539/1992,
The following terms of oxide, SiO 2 65 to 75 wt%, Al 2 O 3 0.1~5 wt%, Na 2 O10~18 wt%, K 2 O 0 ~5 wt%, CaO5~15
% By weight, MgO 1-6% by weight, CeO 2 0.1-3% by weight, Fe 2 O
3 0.5 to 1.2 wt%, SO 3 0.05 to 1.0 wt%, TiO 2 0 ~1.
Of the total iron content, which consists essentially of 0 and is expressed as Fe 2 O 3 , 20-40% by weight of ferrous oxide (FeO
Infrared / ultraviolet absorbing glass is disclosed.

【0008】該公報には、上述の組成範囲のガラスに着
色剤として、NiO 、CoO 、MnO 、V2O5、MoO3等を1種類
または2種類以上の合計量が0〜1.5 重量%の範囲で添
加しても良いこと、更に紫外線による色調の変化(sola
rization)やアンバ−の発色を防止するため、必要に応
じてZnO を0 〜3 重量%添加しても良いこと、また実施
例では5mm 厚みにおいて可視透過率(380 〜780nm)が6
6.1〜66.8%、太陽熱透過率(340 〜1800nm) が37.7〜3
8.4%、主波長が501 〜503nm (緑色)であることが記
載されている。
[0008] publication, as a colorant in glass composition range mentioned above, NiO, CoO, MnO, V 2 O 5, 1 or more kinds of the total amount and the like MoO 3 is 0 to 1.5 wt% It may be added within the range, and changes in color tone due to ultraviolet rays (sola
ZnO may be added in an amount of 0 to 3% by weight, if necessary, in order to prevent the formation of a visible light transmittance (380 to 780 nm) at a thickness of 5 mm.
6.1-66.8%, solar heat transmission (340-1800nm) 37.7-3
It is described that the dominant wavelength is 501 to 503 nm (green) at 8.4%.

【0009】さらに例えば、特開平6-321577号公報に
は、重量%で、SiO265〜75%、Al2O30.1〜5 、Na2O10〜
18%、K2O 0 〜5 %、CaO5〜15%、MgO1〜6 %、SO30.0
5 〜1.0 %、CeO2換算したCe分0.2 〜1.5 %、TiO2換算
したTi分0 〜1.0 %、CoO 0.001 〜0.006 %、Fe2O3
算したFe分0.3 〜1.6 %から本質的になる組成を有し、
かつ、Fe2O3 換算したFe分のうち5 〜18重量%がFe2+
ある紫外線吸収着色ガラスが開示されている。
Further, for example, in JP-A-6-321577, SiO 2 65-75%, Al 2 O 3 0.1-5, Na 2 O 10-
18%, K 2 O 0-5%, CaO 5-15%, MgO 1-6%, SO 3 0.0
5 to 1.0%, CeO 2 converted Ce content 0.2 to 1.5%, TiO 2 converted Ti content 0 to 1.0%, CoO 0.001 to 0.006%, Fe 2 O 3 converted Fe content 0.3 to 1.6% Have a composition,
Further, disclosed is an ultraviolet absorbing colored glass in which 5 to 18% by weight of Fe content converted into Fe 2 O 3 is Fe 2+ .

【0010】該公報には、標準光源Cにより測定した主
波長が488 〜492nm で色純度が3〜4%であること、厚
さが3〜5mmで標準光源Aにより測定した可視光透過率
が70%以上、ISO に規定した紫外線透過率が15%以下で
あること、CoO の含有量が0.001 %より少ないと主波長
が長くなり過ぎ黄色の色調となり、0.006 %より多いと
主波長が短くなり過ぎ、いずれも青色を呈するガラスが
得られないこと等が記載されている。
In this publication, the dominant wavelength measured by the standard light source C is 488 to 492 nm, the color purity is 3 to 4%, and the visible light transmittance measured by the standard light source A is 3 to 5 mm. If the UV transmittance specified by ISO is not less than 70% and not more than 15%, and if the content of CoO is less than 0.001%, the dominant wavelength becomes too long, resulting in a yellow color tone, and if it is more than 0.006%, the dominant wavelength becomes shorter. It is described that the glass which exhibits a blue color is not obtained.

【0011】また例えば、特開平4-46031 号公報には、
重量%で、SiO265〜75%、Al2O30〜5 %、Na2O10〜18
%、K2O0〜5 %、CaO5〜15%、MgO0〜5 %、酸化セリウ
ム 0.1〜3 %、FeO 0.2 〜1 %、Sn02 0.1〜3 %、から
本質的になる組成の紫外・赤外線吸収ガラスが開示され
ている。
Further, for example, in Japanese Patent Laid-Open No. 4-46031,
% By weight, SiO 2 65-75%, Al 2 O 3 0-5%, Na 2 O 10-18
%, K 2 O 0-5%, CaO 5-15%, MgO 0-5%, cerium oxide 0.1-3%, FeO 0.2-1%, Sn0 2 0.1-3%, UV / infrared absorption Glass is disclosed.

【0012】該公報には、上述の組成範囲のガラスに着
色剤として、NiO 、CoO 、MnO 、V2O5、MoO3等を1種類
または2種類以上の合計量が0〜1.5 重量%の範囲で添
加しても良いこと、更に紫外線による色調の変化(sola
rization)やアンバ−の発色を防止するため、必要に応
じてZnO を0 〜3 重量%添加してもよいこと、またSn02
は還元剤であり、0.1 より少ないとその効果が小さく、
3 %より多いとガラスの色がアンバ─となること、実施
例における主波長は488 〜497nm であることが記載され
ている。
According to this publication, one or more of NiO, CoO, MnO, V 2 O 5 , MoO 3 and the like as a colorant is added to glass having the above composition range in a total amount of 0 to 1.5% by weight. It may be added within the range, and changes in color tone due to ultraviolet rays (sola
Rization) and Amba - for preventing color development, that the ZnO may be added 0-3% by weight if necessary, also Sn0 2
Is a reducing agent, and if it is less than 0.1, its effect is small,
It is described that when the content is more than 3%, the color of the glass becomes amber, and the dominant wavelength in the examples is 488 to 497 nm.

【0013】[0013]

【発明が解決しようとする課題】前述したような例えば
特公平5-27578 号公報に記載のものは、SO3 成分を0.02
重量%より少なくし、通常のフロート法による板ガラス
製造での溶融操作手段では到底所期の赤外線紫外線吸収
ガラスを得ることが困難であって、種々の複雑な手段工
程、例えば液化段階、溶解段階、清澄段階、攪拌室なら
びに攪拌器等が必要となるようなものであり、また0 〜
1 %のFe2O3 及びCeO2、TiO2、V2O5又はMoO3の合計が0
〜1.5 %であることが記載されているものの、CeO2のみ
の添加の際には1.0 重量%、CeO2とTiO2を添加する際に
はそれぞれCeO2が0.25重量%とTiO2が1.0 重量%または
0.5 重量%であることが記載されているだけであって、
例えばCeO2のみを1.0 重量%添加した際には過剰のCeO2
により希望される程還元されていなく、その全太陽紫外
線透過率が29.2%に留まる等、必ずしも充分高性能の所
期の赤外線紫外線吸収ガラスとは到底言えないものであ
る。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention As described above, for example, in Japanese Patent Publication No. 5-27578, the SO 3 component is 0.02%.
It is difficult to obtain a desired infrared-ultraviolet-absorbing glass by a melting operation means in plate glass production by an ordinary float method, and various complicated means steps such as liquefaction step, melting step, A clarification stage, a stirring chamber, a stirrer, etc. are required.
1% Fe 2 O 3 and CeO 2 , TiO 2 , V 2 O 5 or MoO 3 total 0
Although it is 1.5% is described, 1.0% by weight upon addition of only CeO 2, respectively CeO 2 is 0.25 wt% and TiO 2 is in the addition of CeO 2 and TiO 2 is 1.0 wt % Or
Only stated to be 0.5% by weight,
For example when the only CeO 2 was added 1.0 wt% excess of CeO 2
It has not been reduced as much as desired, and its total solar UV transmittance is only 29.2%, so it cannot be said that it is an expected infrared and UV absorbing glass with sufficiently high performance.

【0014】また特公平6-88812 号公報に記載のもの
は、例えばCeO2が0.915 重量%でTiO2が0.021 重量%で
あるものは紫外線透過率が33.4%と高く充分高性能のも
のとは言えず、また赤外線の吸収においても必ずしも充
分優れるものとは言い難いものである。
Further, in Japanese Patent Publication No. 6-88812, for example, a CeO 2 content of 0.915% by weight and a TiO 2 content of 0.021% by weight means that the ultraviolet transmittance is as high as 33.4% and the performance is sufficiently high. It cannot be said that it is difficult to say that it is not necessarily sufficiently excellent in absorbing infrared rays.

【0015】また特開平4-310539号公報に記載のもの
は、例えば着色剤として、NiO 、CoO、MnO 、V2O5、MoO
3等を1種類または2種類以上の合計量が0〜1.5 重量
%の範囲で添加しても良いことが記載され、実施例でも
着色剤として、Ni、Co、Mn、V、Moの酸化物粉を用いた
ことが記載されているものの、どのように用いるかの具
体的な記載は実施例を含めてなく、その用い方及びその
寄与の程度も不明である。また例えば実施例ではCeO2
0.77〜0.96重量%でTiO2が0.01〜0.04重量%であるもの
が記載されているものの、紫外線透過率の程度は不明で
明らかでないものである。
The one disclosed in Japanese Patent Laid-Open No. 4-310539 discloses, for example, as colorants NiO, CoO, MnO, V 2 O 5 , MoO.
It is described that one kind or two or more kinds of 3 etc. may be added in a total amount of 0 to 1.5% by weight. In Examples, oxides of Ni, Co, Mn, V and Mo are also used as colorants. Although it is described that powder is used, no specific description of how to use it is included in Examples, and the usage and the degree of contribution thereof are unknown. Also, for example, in the example, CeO 2
Although 0.77 to 0.96% by weight and 0.01 to 0.04% by weight of TiO 2 are described, the degree of ultraviolet transmittance is unclear and unclear.

【0016】また特開平6-321577号公報に記載のもの
は、例えば実施例においてCeO2が1.10重量%、TiO2が0.
1 重量%でCoO が0.002 重量%であると紫外線透過率が
11.2%となるもののまだ充分高性能の紫外線吸収ガラス
とは言い難いものであり、しかも主波長が491.2nm で青
色であり、さらに太陽熱透過率が62.7%と大きいもので
ある。
Further, in the example disclosed in JP-A-6-321577, for example, in the Examples, CeO 2 is 1.10 wt% and TiO 2 is 0.
At 1% by weight and 0.002% by weight CoO, the UV transmittance is
Although it is 11.2%, it is hard to say that it is a sufficiently high-performance UV-absorbing glass, and it has a dominant wavelength of 491.2 nm and is blue, and has a large solar heat transmittance of 62.7%.

【0017】また特開平4-46031 号公報に記載のもの
は、酸化セリウム 0.1〜3 %、FeO 0.2 〜1 %、Sn02
0.1〜3 %であって、主波長は488 〜497nm で青色系で
あり、紫外線透過率の程度は不明で明らかでない紫外・
赤外線吸収ガラスである。
The one disclosed in Japanese Patent Laid-Open No. 4-46031 has cerium oxide 0.1 to 3%, FeO 0.2 to 1%, SnO 2
0.1 to 3%, the main wavelength is 488 to 497 nm and it is blue, and the degree of ultraviolet transmittance is unknown and is not clear.
Infrared absorbing glass.

【0018】[0018]

【課題を解決するための手段】本発明は、従来のかかる
課題に鑑みてなしたものであって、通常のフロート法に
よる板ガラスの製造ができ、しかもCeO2成分をできるだ
け多くし、しかも全鉄を極端に多くすることなくTiO2
分と組合わせてCeO2成分を適度の増量とする程度に止め
るように特定の成分組成範囲とするとともに、さらに軽
量化として使用される主流的なガラス板厚である3.5mm
において、A 光源による紫外線透過率(T UV) および350n
m 波長透過率(T350)、370nm 波長透過率(T370)、1100nm
波長透過率(T1100) を特定な値となるものとしたことに
より. 変色や不均質による生産性の低下ならびに操業条
件の悪化を生じることもなく、生産性向上と品質の安定
維持を高めるなかで、格段な紫外線カットで人的物的お
よび環境に優しく、赤外線と紫外線を充分優れた所期の
吸収を有する高性能のものであり、比較的透視性がある
緑色系の色調を発現し、使用頻度の高いガラス板厚で光
学特性値を確実に保証しうるものとなり、高居住性、高
安全性となって軽量化ができ得、しかも易強化性で耐候
性、成形性も充分に有する紫外線赤外線吸収緑色系ガラ
スを提供するものである。
SUMMARY OF THE INVENTION The present invention is a conventional
It was made in view of the problems, and
Plate glass can be manufactured by CeOTwoCan make ingredients
TiO without increasing the total amount of ironTwoSuccess
CeO in combination with minutesTwoStop to the extent that the amount of ingredients is increased moderately
Specific composition range to make it even lighter
3.5mm, which is the mainstream glass thickness used for quantification
, The ultraviolet transmittance (T UV) And 350n
m wavelength transmittance (T350), 370 nm wavelength transmittance (T370), 1100 nm
Wavelength transmittance (T1100) Has a specific value
From lowering productivity and operating conditions due to discoloration and inhomogeneity
Productivity improvement and stable quality without deteriorating conditions
While increasing the maintenance, the human body and physical properties are significantly reduced by the UV protection.
It is also environmentally friendly, and is expected to have sufficient infrared and ultraviolet rays.
High performance with absorption, relatively transparent
It produces a greenish color tone, and it is lighted by the glass plate thickness that is frequently used
The characteristic values can be guaranteed without fail, and high habitability and high
It is safe and can be lightened, yet it is easy to strengthen and weatherproof.
UV-infrared absorbing green-colored glass that has sufficient moldability and moldability
It is the one that provides the service.

【0019】すなわち、本発明は、ソ─ダ石灰シリカ系
ガラスにおいて、着色成分として重量%表示で、Fe2O3
0.5 〜0.75%、CeO2 2.2〜2.6 %、TiO2 0.4〜0.9 %を
少なくとも含み、該ガラスが3.5mm 厚みで、A 光源によ
る紫外線透過率(TUV) が6%以下ならびに350nm 波長透
過率(T350)が0%、370nm 波長透過率(T370)が15%以
下、1100nm波長透過率(T1100) が15%以下であることを
特徴とする紫外線赤外線吸収緑色系ガラス。
That is, according to the present invention, in soda-lime-silica type glass, Fe 2 O 3 is represented by weight% as a coloring component.
0.5-0.75%, CeO 2 2.2-2.6%, TiO 2 0.4-0.9% at least, the glass has a thickness of 3.5 mm, the UV transmittance (T UV ) by A light source is 6% or less, and the 350 nm wavelength transmittance ( A UV-infrared-absorbing green glass characterized in that T 350 ) is 0%, 370 nm wavelength transmittance (T 370 ) is 15% or less, and 1100 nm wavelength transmittance (T 1100 ) is 15% or less.

【0020】ならびに、前記ガラスにおいて、重量%表
示で、FeO が0.23〜0.35%であって、かつFeO /全鉄
(Fe2O3 )が0.4 〜0.6 であることを特徴とする上述し
た紫外線赤外線吸収緑色系ガラス。
In the above glass, FeO is 0.23 to 0.35% by weight and FeO / total iron (Fe 2 O 3 ) is 0.4 to 0.6, and the above-mentioned ultraviolet rays and infrared rays are contained. Absorption green glass.

【0021】また、前記ガラスにおいて、3.5mm 厚み
で、A 光源による可視光線透過率(Tv) が68%以上、日
射透過率(TS ) が45%以下、D65 光源による主波長(D)
が510〜560 nm、刺激純度(Pe)が10%以下であることを
特徴とする上述した紫外線赤外線吸収緑色系ガラス。
In the glass, the visible light transmittance (T v ) by the A light source is 68% or more, the solar radiation transmittance (T S ) is 45% or less, and the dominant wavelength (D 65 ) by the D 65 light source is 3.5 mm. )
Is 510 to 560 nm, and the excitation purity (Pe) is 10% or less.

【0022】さらに、前記ガラスが、重量%表示で前記
着色成分以外に実質的に、SiO267〜75%、Al2O3 0.05〜
3.0 %、CaO 7.0 〜11.0%、MgO 2.0 〜4.2 %、Na2O1
2.0〜16.0%、K2O 0.5 〜3.0 %、SO3 0.05〜0.30%で
成り、これら成分と前記着色成分の総和が98%以上であ
って、かつSiO2+Al2O3 +TiO270〜76%、CaO +Mg0 10
〜15%、Na2O+K2O 13〜17%であることを特徴とする上
述した紫外線赤外線吸収緑色系ガラスを提供するもので
ある。
Further, the glass is substantially composed of SiO 2 67-75%, Al 2 O 3 0.05-
3.0%, CaO 7.0 ~11.0%, MgO 2.0 ~4.2%, Na 2 O1
2.0 to 16.0%, K 2 O 0.5 to 3.0%, SO 3 0.05 to 0.30%, the sum of these components and the coloring component is 98% or more, and SiO 2 + Al 2 O 3 + TiO 2 70 to 76 %, CaO + Mg0 10
15%, is to provide a ultraviolet and infrared radiation absorbing green glass as described above, characterized in that the Na 2 O + K 2 O 13~17 %.

【0023】[0023]

【発明の実施の形態】ここで、Fe2O3 0.5 〜0.75%、Ce
O2 2.2〜2.6 %、TiO2 0.4〜0.9 %を少なくとも含み、
該ガラスが3.5mm 厚みで、A 光源による紫外線透過率(T
UV) が6%以下ならびに350nm 波長透過率(T350)が0
%、370nm 波長透過率(T370)が15%以下、1100nm波長透
過率(T1100) が15%以下であることとしたのは、先ずFe
2O3 成分を重量%で0.5 〜0.75%としたのは、赤外線を
吸収するFeO 成分量と紫外線を吸収し所期の色調を確保
するFe2O3 成分量との総量として、前述した各種光学特
性を安定して得るために、他のCeO2、TiO2等の各成分量
とともに必要であり、0.50%未満では上述に対する作用
が劣り、0.75%を超えると特に可視光線透過率が低下す
るとともに、所期の色調を制御することができずらくな
って不安定化することとなるからであり、より確実な所
期の色調を得るためには好ましくはFe2O3 成分が重量%
で約0.55〜0.70%程度である。
DETAILED DESCRIPTION OF THE INVENTION Here, Fe 2 O 3 0.5 to 0.75%, Ce
O 2 2.2 to 2.6%, TiO 2 0.4 to 0.9% at least,
The glass has a thickness of 3.5 mm and the UV transmittance (T
UV ) 6% or less and 350 nm wavelength transmittance (T 350 ) is 0
%, The 370 nm wavelength transmittance (T 370 ) is 15% or less, and the 1100 nm wavelength transmittance (T 1100 ) is 15% or less.
The amount of 2 O 3 component in 0.5% to 0.75% by weight means that the total amount of the FeO component amount that absorbs infrared rays and the Fe 2 O 3 component amount that absorbs ultraviolet rays and secures the desired color tone, In order to obtain stable optical properties, it is necessary together with other CeO 2 , TiO 2 and other components, if less than 0.50% the action against the above is inferior, and if it exceeds 0.75% the visible light transmittance decreases in particular. At the same time, it is difficult to control the desired color tone, resulting in instability, and in order to obtain a more reliable desired color tone, the Fe 2 O 3 component is preferably wt%.
It is about 0.55 to 0.70%.

【0024】次に、CeO2とTiO2成分は紫外線の吸収作用
を有し、CeO2成分を2.2 〜2.6 %とし、TiO2成分を0.4
〜0.9 %としたのは、ガラスにおける還元率をほとんど
変化させないしかも紫外線吸収能がCeO2成分より小さい
TiO2成分と、ガラスにおける還元率を比較的大きく変化
させしかも紫外線吸収能を充分与えるCeO2成分とを上述
の特定範囲内に限定して組み合わすことで、僅かの含有
量で所期の特性を効率的に得ることでき、従来の還元率
をほとんど変化させないようにしつつ、前述した全鉄に
おけるFe2O3 とFeO との割合を制御して、可視光領域の
透過率を全体的に低下させないようにしかつ高性能の紫
外線吸収や赤外線吸収等をうるとともに、緑色系色調等
所期の光学特性を達成し得るようにするためであり、好
ましくはCeO2成分が重量%で約2.3 〜2.55%程度であ
る。
Next, the CeO 2 and TiO 2 components have an ultraviolet absorbing effect, the CeO 2 component is made 2.2 to 2.6%, and the TiO 2 component is made 0.4%.
〜0.9% makes the reduction rate in glass almost unchanged, and its UV absorption capacity is smaller than that of CeO 2 component.
By combining the TiO 2 component and the CeO 2 component, which changes the reduction rate in the glass relatively greatly and yet gives sufficient ultraviolet absorption capacity, within the above-mentioned specific range, the desired properties can be obtained with a small content. Can be efficiently obtained and the conventional reduction rate is hardly changed, while controlling the ratio of Fe 2 O 3 and FeO in the total iron described above to reduce the transmittance in the visible light region as a whole. This is because it is possible to achieve high-performance ultraviolet absorption and infrared absorption as well as to achieve desired optical characteristics such as greenish color tone, preferably about 2.3 to 2.55% by weight of CeO 2 component. %.

【0025】さらに、該ガラスが3.5mm 厚みで、A 光源
による紫外線透過率(TUV) が6%以下ならびに350nm 波
長透過率(T350)が0%、370nm 波長透過率(T370)が15%
以下、1100nm波長透過率(T1100) が15%以下であるとし
たのは、紫外線透過率が6%を超えると、車内・室内で
の物品の脱色・劣化あるいは肌焼け等人的影響により居
住性の悪化に結び付き易く、また350nm 波長透過率(T
350)が0%および370nm波長透過率(T370)が15%を超え
て大きな値にしないようにすることで、紫外線のうち、
波長約290 〜320nm のB紫外線(中波長紫外線、UVB )
をもちろんゼロとして例えば人の肌を赤く熱を持たせた
りあるいは腫れて水泡化しその後黒化する所謂日焼けを
防止し、波長約320 〜400nm のB紫外線(長波長紫外
線、UVA )を15%以下と従来より格段に小さい値とする
ことで、例えば人の肌への浸透力が強くてかなりの紫外
線が皮膚の真皮内の膠原繊維や弾力繊維などの繊維質に
ダメ─ジを与えシワやタルミの原因となり、肌中に存在
するメラニンに作用してシミやソバカスを悪化させるよ
うなことを防ぐためであり、好ましくは紫外線透過率(T
UV) が約5.5 %程度以下、350nm 波長透過率(T350)が0
%、370nm 波長透過率(T 370)が約14%程度以下、1100nm
波長透過率(T1100) が14%程度以下である。
Further, the glass has a thickness of 3.5 mm,
UV transmittance (TUV) Is less than 6% and 350 nm wave
Long transmittance (T350) Is 0%, and 370 nm wavelength transmittance (T370) Is 15%
Below, 1100 nm wavelength transmittance (T1100) Is less than 15%
If the UV transmittance exceeds 6%, it will be
Due to human influence such as discoloration / deterioration or skin burn of
It is easy to lead to deterioration of living ability, and the transmittance (T
350) Is 0% and 370 nm wavelength transmittance (T370) Exceeds 15%
By not making it a large value,
B ultraviolet light with a wavelength of approximately 290 to 320 nm (medium wavelength ultraviolet light, UVB)
Of course, it is set to zero, for example, to make people's skin red and hot
A so-called sunburn that swells and blisters, then blackens
To prevent B-ultraviolet rays with wavelengths of 320 to 400 nm (long-wavelength ultraviolet rays).
Line, UVA) is 15% or less, which is much smaller than the conventional value.
Therefore, for example, it has a strong penetrating power to human skin,
Lines become fibers such as collagen fibers and elastic fibers in the dermis of the skin
Causes wrinkles and tarmi by giving damage and is present in the skin
Acts on melanin to exacerbate spots and freckles
This is to prevent nagging, and it is preferable that the UV transmittance (T
UV) Is about 5.5% or less, and the transmittance (T350) Is 0
%, 370 nm wavelength transmittance (T 370) Is about 14% or less, 1100 nm
Wavelength transmittance (T1100) Is about 14% or less.

【0026】なお、前記紫外線透過率(TUV) が例えば1
%以下の値では、前記可視光線透過率(Tv ) が得られな
くなる等の弊害が発生し易くなり、好ましくは紫外線透
過率(TUV) が約5.5 〜2%程度である。
The ultraviolet transmittance (T UV ) is, for example, 1
When the value is less than or equal to%, the visible light transmittance (T v ) cannot be obtained easily, and the harmful effects easily occur, and the ultraviolet transmittance (T UV ) is preferably about 5.5 to 2%.

【0027】また、前記ガラスにおいて重量%表示で、
FeO が0.23〜0.35%であって、かつFeO /全鉄(Fe
2O3 )が0.4 〜0.6 であることとたのは、酸化性が強い
CeO2成分を極力低減するようにしたことで、全鉄の還元
率を高める必要もなく、むしろ該全鉄の還元率のアップ
は紫外線の吸収率を低下させ好ましくないものであり、
紫外線の遮蔽率と日射の透過率を考慮すると前記FeO が
約0.23〜0.35%程度の範囲となる。いずれにしても本発
明は着色成分とその濃度さらにバッチの酸化還元条件を
調整することで、色調や光学特性共所期のめざす紫外線
赤外線吸収緑色系ガラスを得ることができるものである
FeO /全鉄(Fe2O3)が約0.4 〜0.6 %程度であり、好ま
しくはFeO が約0.235 〜0.345 %程度、FeO /全鉄(Fe
2O3)が約0.35〜0.55%程度である。
Further, in the above glass, in% by weight,
FeO is 0.23 to 0.35%, and FeO / total iron (Fe
2 O 3 ) is 0.4-0.6 because it has a strong oxidizing property.
By reducing the CeO 2 component as much as possible, it is not necessary to increase the reduction rate of total iron, and rather an increase in the reduction rate of total iron is not preferable because it reduces the absorption rate of ultraviolet rays.
Considering the ultraviolet ray shielding rate and the solar radiation transmittance, the FeO content is in the range of about 0.23 to 0.35%. In any case, the present invention makes it possible to obtain an ultraviolet-infrared-absorbing green glass aiming at the intended color tone and optical properties by adjusting the coloring component and its concentration and the redox conditions of the batch.
FeO / total iron (Fe 2 O 3 ) is approximately 0.4 to 0.6%, preferably FeO is approximately 0.235 to 0.345%, and FeO / total iron (Fe 2
2 O 3 ) is about 0.35 to 0.55%.

【0028】さらにまた、前記ガラスにおいて、3.5mm
厚みで、A 光源による可視光線透過率(Tv ) が68%以
上、日射透過率(TS ) が45%以下、D65 光源による主波
長(D)が510 〜560 nm、刺激純度(Pe)が10%以下である
こととしたのは、前記可視光線透過率(Tv ) が68%未満
では特に自動車のフロント窓ガラスにおいてガラスの透
視性、ことに日暮れ、夜間あるいは雨降りなどに際し、
物体の識別性の低下が発現しやすく好ましくなく、好ま
しくは前記可視光線透過率(Tv ) が約70%程度以上であ
る。
Furthermore, in the above glass, 3.5 mm
In terms of thickness, visible light transmittance (T v ) by A light source is 68% or more, solar radiation transmittance (T S ) is 45% or less, dominant wavelength (D) by D 65 light source is 510 to 560 nm, stimulation purity (Pe ) Is 10% or less, the visible light transmittance (T v ) is less than 68%, especially in the windshield of an automobile, the transparency of the glass, especially at nightfall, at night or in the rain,
It is not preferable because the discrimination property of the object is likely to be deteriorated, and the visible light transmittance (T v ) is preferably about 70% or more.

【0029】また、日射透過率(TS ) が45%を超えると
冷房負荷の増大あるいは車内・室内での居住性を向上す
る効果の実感が少なく充分満足することができなく、特
に真夏等不快感を解消することあるいは省エネに繋がる
ことへの卓効が充分発揮できないこととなる。また、極
端に低減、例えば25%未満程度とすると透視性ことに前
述した識別性の低下あるいは色調にも影響を与え兼ねな
いこととなり、好ましくは日射透過率(TS ) が約43%〜
25%程度である。
Further, when the solar radiation transmittance (T S ) exceeds 45%, the effect of increasing the cooling load or improving the habitability in the vehicle or the room is not sufficiently felt, and it cannot be fully satisfied, especially in the midsummer. It will not be possible to exert the full effect of eliminating pleasant sensations or leading to energy saving. Further, if it is extremely reduced, for example, less than about 25%, it may not affect the deterioration of the above-mentioned distinctiveness or the color tone in the transparency, and the solar radiation transmittance (T S ) is preferably about 43% to
It is about 25%.

【0030】さらに、D65光源による主波長(D) が560n
m を超えると黄色あるいはアンバー色が影響して所期の
緑色調系に成らず、510nm 未満ではブルー色が勝ち過ぎ
て所期の緑色調系と成らないためであり、好ましくは主
波長(D) が約513 〜550nm 程度である。さらにまた、刺
激純度(Pe)が10%を超えると物体の識別性が低下するよ
うになって例えば日暮れやどんよりした雨降り等で乗員
の透視性に支障を来し、安全性の確保等が困難となるた
めであり、好ましくは刺激純度(Pe)が約8%程度以下、
より好ましくは約6%程度以下である。
Further, the dominant wavelength (D) from the D 65 light source is 560n.
This is because if it exceeds m, yellow or amber will not affect the desired green tone system, and if it is less than 510 nm, the blue color will be too predominant and the desired green tone system will not be obtained. ) Is about 513 to 550 nm. Furthermore, if the stimulus purity (Pe) exceeds 10%, the identification of the object will be deteriorated and the visibility of the occupant will be hindered due to, for example, nightfall or heavy rain, making it difficult to ensure safety. The stimulation purity (Pe) is preferably about 8% or less,
More preferably, it is about 6% or less.

【0031】さらに、前記ガラスが、重量%表示で前記
着色成分以外に実質的に、SiO267〜75%、Al2O3 0.05〜
3.0 %、CaO 7.0 〜11.0%、MgO 2.0 〜4.2 %、Na2O1
2.0〜16.0%、K2O 0.5 〜3.0 %、SO3 0.05〜0.30%で
成り、これら成分と前記着色成分の総和が98%以上であ
って、かつSiO2+Al2O3 +TiO270〜76%、CaO +Mg0 10
〜15%、Na2O+K2O 13〜17%であることとしたのは、先
ずSiO2成分を重量%で67〜75%としたのは、67%未満で
は表面にヤケ等が発生しやすく耐候性が下がり実用上の
問題が生じてくるものであり、75%を超えると、溶融も
難しくなるものであり、Al2O3 成分を重量%で0.05〜3.
0 %としたのは、0.05%未満では耐候性が下がり表面に
やけ等が発生しやすく実用上の問題が生じてくるもので
あり、3%を超えると失透が生じやすくなり成形温度範
囲が狭くなり製造が難しくなるものである。
Further, the glass is substantially composed of SiO 2 67-75%, Al 2 O 3 0.05-
3.0%, CaO 7.0 ~11.0%, MgO 2.0 ~4.2%, Na 2 O1
2.0 to 16.0%, K 2 O 0.5 to 3.0%, SO 3 0.05 to 0.30%, the sum of these components and the coloring component is 98% or more, and SiO 2 + Al 2 O 3 + TiO 2 70 to 76 %, CaO + Mg0 10
〜15%, Na 2 O + K 2 O 13 to 17% means that the SiO 2 component is 67 to 75% by weight. If it is less than 67%, the surface is easily burned. The weather resistance is lowered and a practical problem occurs, and when it exceeds 75%, melting becomes difficult, and the Al 2 O 3 component is contained in an amount of 0.05 to 3.
The content of 0% is that when it is less than 0.05%, the weather resistance is lowered and the surface is liable to cause burns and other practical problems, and when it exceeds 3%, devitrification is likely to occur and the molding temperature range is It becomes narrower and difficult to manufacture.

【0032】また、CaO 成分を重量%で7.0 〜11.0%と
したのは、7.0 %未満では融剤として不足気味となり溶
融温度も高くなりまた流動温度を低くしないので製造し
にくくなり、11%を超えると失透し易くなり、成形作業
範囲が狭くなり製造が難しくなるものであり、MgO 成分
を重量%で2.0 〜4.2 %としたのは、2.0 %未満では溶
融温度が上がり操作範囲を狭めるので製造がしにくくな
り、4.2 %を超えると易強化性が下がるものであり、Na
2O成分を重量%で12.0〜16.0%としたのは、12.0未満で
は溶融性が悪化しかつ易強化性が下がり、成形性が難し
くなり、失透も生じ易くなるので操作範囲が狭まり製造
しにくくなり、16%を超えると耐候性が下がり、表面に
やけ等が発生しやすくなり実用上の問題が生じてくるも
のであり、K2O 成分を重量%で0.5 〜3.0 %としたの
は、0.5 %未満では易強化性が下がり、3.0 %を超える
と耐候性が下がりかつコストも高くなるものである。
The CaO component is set to 7.0 to 11.0% by weight. When the content of CaO is less than 7.0%, the flux tends to be inadequate, the melting temperature becomes high, and the flow temperature is not lowered. When it exceeds the above range, devitrification is likely to occur, and the molding work range is narrowed, making it difficult to manufacture.The reason why the MgO content is 2.0 to 4.2% is that the melting temperature rises and the operating range narrows if the MgO content is less than 2.0%. It becomes difficult to manufacture, and if it exceeds 4.2%, the easy strengthening property will decrease.
The content of 2 O component in the range of 12.0 to 16.0% by weight means that if it is less than 12.0, the meltability deteriorates and the easy strengthening property deteriorates, moldability becomes difficult, and devitrification easily occurs, so the operating range is narrowed and manufactured. If it exceeds 16%, the weather resistance will be reduced, and the surface will be easily burnt, causing practical problems. The K 2 O content of 0.5 to 3.0% by weight is If it is less than 0.5%, the easiness of strengthening is lowered, and if it exceeds 3.0%, the weather resistance is lowered and the cost is increased.

【0033】さらに、SO3 成分を重量%で0.05〜0.30%
としたのは、0.05%未満では例えば通常の溶融において
脱泡あるいは均質性上不充分となり易い程度にしかでき
なくなり、0.30%を超えると特にガラスの着色状態に影
響を与え、例えば黄色やアンバー色がかった色調に移行
し易くなる等が発現し所期の緑系色調が得られなくなる
ためであり、好ましくは0.15%前後とどちらかと言えば
範囲内でも低いところがよいものである。
Further, the SO 3 component is 0.05 to 0.30% by weight.
The reason is that if it is less than 0.05%, it can only be made to the extent that defoaming or homogeneity tends to be insufficient in ordinary melting, and if it exceeds 0.30%, it particularly affects the coloring state of glass, such as yellow or amber color. The reason is that the desired green color tone cannot be obtained due to the occurrence of such a tendency that the color tone easily shifts to a sharp color tone, and it is preferably around 0.15%, which is rather low even within the range.

【0034】また、SiO2、Al2O3 、CaO 、MgO 、Na2O、
K2O 、SO3 、Fe2O3 、CeO2、TiO2の成分の総和を重量百
分率で98%以上としたのは、場合によっては添加するこ
ともある例えばMnO 、CoO 、Cr2O3 、ZnO 、SnO2等微量
成分を、各微量成分の合計でも2%を超えない量に制御
するためである。
Further, SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 O,
The total of the components of K 2 O, SO 3 , Fe 2 O 3 , CeO 2 , and TiO 2 is set to 98% by weight or more because it may be added in some cases, for example, MnO, CoO, Cr 2 O 3 This is because the trace components such as ZnO, ZnO, and SnO 2 are controlled so that the total of the trace components does not exceed 2%.

【0035】さらに具体的には例えば、紫外線の吸収に
効果はあって酸化性が強力なCeO2成分が比較的多くガラ
ス素地中に存在するようにし、Fe2O3 とFeO を含む全鉄
を酸化させFe+3に変えるように働きすぎ、例えば黄色調
のガラス素地を発現し易くなり、該素地が所謂リームや
ディストーション等の不均質な欠陥の要因となって、生
産性の低下や作業性の悪化を招くこととなる。該現象を
阻止するために、TiO2成分やMnO 成分、CoO 成分、Cr2O
3 成分、SnO2成分、ZnO 成分等と組み合わせることで、
より安定して確実に所期の緑色系色調と前記欠陥の発現
を抑制できるとともに前記光学特性を維持できる効用を
もたらこともある。
More specifically, for example, a relatively large amount of CeO 2 component, which has an effect of absorbing ultraviolet rays and has a strong oxidizing property, is present in the glass base material, and total iron containing Fe 2 O 3 and FeO is added. It works too much to oxidize and change it to Fe +3 , for example, it becomes easy to develop a yellowish glass base material, and the base material becomes a factor of heterogeneous defects such as so-called ream and distortion, which lowers productivity and workability. Will be aggravated. In order to prevent this phenomenon, TiO 2 component, MnO component, CoO component, Cr 2 O
By combining with 3 components, SnO 2 component, ZnO component, etc.,
In some cases, the desired greenish color tone and the development of the defects can be suppressed more stably and reliably, and the optical properties can be maintained.

【0036】また、紫外線の吸収に効果があるものの可
視域についても吸収するTiO2成分はガラス素地中のFe2O
3 としての全鉄濃度を低下しなければならなくなり、総
合的にマイナスとなることとなるので、TiO2成分として
は前記範囲とし、しかも全鉄濃度とTiO2成分およびCeO2
成分範囲とのバランスを調整せしめ、その補足としてCo
O 成分を例えば重量%で約0.0001〜0.0009%程度の範囲
で可視光透過率にはほとんど影響を与えず、還元率によ
って変化する色調を補整する程度の微量添加とし、色調
調整を比較的容易にできるようにする。好ましくは0.00
01〜0.0007%程度であってよりバランスよく調整し易い
こととなる。MnO 成分としては約0.0010〜0.0500%程度
であることが緑色系色調を制御するためにも微妙な影響
を付与し得ることから好ましいものである。さらにCr2O
3 成分としては約0.0001〜0.0010%程度であることがCo
O 成分と同様に好ましいものである。
Further, the TiO 2 component which is effective in absorbing ultraviolet rays but also in the visible range is Fe 2 O in the glass substrate.
Since the total iron concentration as 3 has to be reduced and it becomes a negative overall, the TiO 2 component is in the above range, and the total iron concentration and the TiO 2 component and CeO 2
Adjust the balance with the component range, and as a supplement, Co
For example, in the range of about 0.0001 to 0.0009% by weight, the O component has little effect on the visible light transmittance and is added in a small amount to compensate for the color tone that changes depending on the reduction rate, making the color tone adjustment relatively easy. It can be so. Preferably 0.00
It is about 01 to 0.0007%, which makes it easier to adjust in a well-balanced manner. It is preferable that the MnO component is about 0.0010 to 0.0500% because it can give a delicate influence for controlling the green color tone. Further Cr 2 O
The three components are about 0.0001 to 0.0010% Co.
It is as preferable as the O 2 component.

【0037】ことに、MnO 成分はFeとMnとの関係ではFe
が酸化される方向でかつ微量ながら還元率が低い方向に
なる傾向があり、CeとMnとの関係ではMnが酸化される方
向であって還元率には影響が少ないものであるものの、
MnがFeとCeらとあいまって中性的に相互作用させなが
ら、約500nm 付近にあるMnO の吸収波長でもって前記色
調調整に大きな影響を与えないで微力ながら調整できる
ようにしたものであり、またMnO 成分を多量に用いれば
例えばソラリゼ−ション等の現象を発現するように成り
易くなるなどからCeO2成分の量等から勘案して約500ppm
程度を超えないようにしたものであり、重要な役目をも
つものである。
In particular, the MnO component is Fe in the relation between Fe and Mn.
Tends to be oxidized in a small amount and the reduction rate tends to be low, and the relationship between Ce and Mn is such that Mn is oxidized and the reduction rate is little affected.
While Mn interacts with Fe and Ce in a neutral manner, the absorption wavelength of MnO around 500 nm makes it possible to adjust the color tone with a small force without significantly affecting the color tone adjustment. the Sorarize example by using the MnO components in a large amount - about 500ppm by considering phenomena such as easily come to express the amount or the like of the CeO 2 component such Deployment
It does not exceed the degree, and has an important role.

【0038】また、ZnO 成分としてはガラスの物理的特
性と色調の安定性等から例えば約1%以下程度、SnO2
分としては還元剤的作用による還元率の調整で黄色変質
素地の発生の抑制、ならびにSn2+は約250nm と約400nm
付近に吸収をもち、紫外線吸収能的作用による紫外線吸
収補整等から例えば約1%以下程度の添加が場合によっ
ては好ましいものであり、より好ましくはZnO 成分が約
0.5 %程度以下、SnO2成分が約0.6 %程度以下、コスト
と安定剤上からはSnO2成分が約0.1 %程度以下である。
The ZnO component is, for example, about 1% or less from the viewpoint of the physical properties and color stability of the glass, and the SnO 2 component is a reducing agent that acts as a reducing agent to control the reduction rate to suppress the occurrence of yellow alteration matrix. , And Sn 2+ is about 250 nm and about 400 nm
It is preferable in some cases to add about 1% or less from the viewpoint of ultraviolet absorption compensation due to its ability to absorb ultraviolet rays, and it is more preferable that the ZnO component is
About 0.5% or less, SnO 2 component is about 0.6% or less, and from the viewpoint of cost and stabilizer, the SnO 2 component is about 0.1% or less.

【0039】さらに、SiO2+Al2O3 +TiO2を重量百分率
で70〜76%としたのは、70%未満では耐候性が下がり、
76%を超えると易強化性が下がる問題が生じるものであ
り、好ましくは70〜74%程度である。CaO +MgO を重量
百分率で10〜15%としたのは、CaO およびMgO 成分は溶
融温度を下げるために用いられるとともに、10%未満で
は易強化性が下がり、15%を超えると失透しやすくなり
製造上難しくなるものであり、好ましくは11.5〜15%程
度である。Na2O+K2O を百分率で13〜17%としたのは、
13%未満では易強化性が下がり、失透も生じやすくなっ
て成形において作業温度範囲が狭くなり、製造が難しく
なり、17%を超えると耐候性が下がり実用上の問題を生
じるものであるとともにコスト的にも高くなるものであ
る。
Furthermore, the reason that the weight percentage of SiO 2 + Al 2 O 3 + TiO 2 is 70 to 76% is that if it is less than 70%, the weather resistance decreases.
If it exceeds 76%, there arises a problem that the easy strengthening property is lowered, and it is preferably about 70 to 74%. The weight percentage of CaO + MgO is set to 10 to 15% because the CaO and MgO components are used to lower the melting temperature, and if it is less than 10%, the easy strengthening property decreases, and if it exceeds 15%, devitrification tends to occur. It is difficult to manufacture, and it is preferably about 11.5 to 15%. The percentage of Na 2 O + K 2 O is 13 to 17%,
If it is less than 13%, the easy strengthening property is deteriorated, devitrification is likely to occur, the working temperature range is narrow in molding, and the manufacturing becomes difficult. If it exceeds 17%, the weather resistance is deteriorated and practical problems occur. The cost is also high.

【0040】また、易強化性については、粘度温度が10
9 ポイズで約650 〜695 ℃程度、10 12ポイズで約555 〜
590 ℃程度、かつ両者の温度差が約95〜105 ℃程度にな
るようになるガラス成分組成であり、あるいは該粘度温
度が該所期の特定範囲をクリヤ−していることならびに
軟化点と歪点との温度差が大体200 〜240 ℃程度の範囲
にあるようになるガラス成分組成である。
Regarding the easy strengthening property, the viscosity temperature is 10
9Poise about 650-695 ℃, 10 12Poise about 555 ~
590 ℃, and the temperature difference between the two is about 95 to 105 ℃.
The composition of the glass component becomes
Degree clears the specified range of
The temperature difference between the softening point and the strain point is in the range of approximately 200 to 240 ° C.
The composition of the glass component is as shown in FIG.

【0041】なお、粘度温度(℃)についてはベンディ
ングア−ム法により粘度曲線を測定して109 および1012
ポイズの温度を求めるとともに、リリ−法によって歪
点、リトルトン法によって軟化点を測定した。
Regarding the viscosity temperature (° C), the viscosity curve was measured by the bending arm method to obtain 10 9 and 10 12
The poise temperature was determined, and the strain point was measured by the Lily method and the softening point was measured by the Lyttelton method.

【0042】さらにまた例えば、前記紫外線赤外線吸収
緑色系ガラスを製造するに当たり、原料として本発明の
マザーガラス組成に例えばFe2O3 、SO3 、CeO2、TiO2
るいはさらにMnO 、S2- 等をも含むフリットガラスまた
はカレットまたはこれらに属するもの、さらにFe2O3
CoO を含むフリットガラスまたはカレット、さらにCoO
あるいはCr2O3 を含むフリットガラスあるいはカレット
等を用いる方が好ましいものであり、これらの量的調整
が確実で安定して確保でき易く、FeO のガラス中への取
り込みが少しでも容易となり、しかも実窯の操業条件等
を大きく変えることもなく比較的還元率が高い際も、ガ
ラスの酸化還元状態を安定して操業することができるこ
ととなる。実窯で還元率(FeO /Fe2O3 )が約0.25〜0.
30程度であるのに対し本発明の赤外線紫外線吸収緑色系
ガラスの製造に当たってはCeO2等種々の作用を加味し0.
4 〜0.6 %程度とするのに少しでも役立つためであり、
微量原料として炭素あるいは、Zn、Sn等の金属粉または
酸化物のうち少なくともその一つを用いることもでき、
例えば時として芒硝(Na2SO4)等清澄剤の作用効果を助
ける必要があり、一方では前記所期の色調の確保に悪い
影響を与えることともなり易く、ZnあるいはSn等還元剤
もFe2O3 とFeO とのバランスを調整するために必要な場
合もあるためである。さらに場合によってはガラス窯の
調整域の雰囲気において、窒素ガスあるいはその混合ガ
スまたは燃焼排ガスを導入すると上記の安定化によりよ
いものである。
Furthermore, for example, in producing the above-mentioned UV-infrared absorbing green glass, the mother glass composition of the present invention is used as a raw material, for example, Fe 2 O 3 , SO 3 , CeO 2 , TiO 2 or further MnO, S 2-, etc. Including frit glass or cullet or those belonging thereto, and further Fe 2 O 3 and
Frit glass or cullet containing CoO, plus CoO
Alternatively, it is preferable to use frit glass or cullet containing Cr 2 O 3 , and quantitative adjustment of these is easy and stable, and FeO 2 can be easily incorporated into the glass. Even if the reduction rate is relatively high without changing operating conditions of the actual kiln significantly, the redox state of the glass can be stably operated. Reduction rate in the real kiln (FeO / Fe 2 O 3) of about 0.25 to 0.
Whereas it is about 30, in the production of the infrared-ultraviolet-absorbing green glass of the present invention, various effects such as CeO 2 are taken into consideration.
This is because it helps a little to make it about 4 to 0.6%,
It is also possible to use at least one of carbon or metal powder or oxide such as Zn or Sn as a trace amount raw material,
For example, it is sometimes necessary to help the effect of a clarifying agent such as Glauber's salt (Na 2 SO 4 ), but on the other hand, it tends to have a bad influence on ensuring the desired color tone, and a reducing agent such as Zn or Sn also has Fe 2 This is because it may be necessary to adjust the balance between O 3 and FeO. Further, depending on the case, introduction of nitrogen gas, a mixed gas thereof, or combustion exhaust gas in the atmosphere of the adjustment area of the glass kiln is preferable for the above stabilization.

【0043】なお、本発明の紫外線赤外線吸収緑色系ガ
ラスは易強化ガラス組成物をも含むものであって、板厚
が1mm 前後の薄板ガラスから15mm前後の厚板ガラスで、
特に板厚が約1.5 〜3.5mm 前後程度の薄板ガラスで、平
板または曲げ板として生板から強度アップしたもの、半
強化したもの、強化したもの等で、単板ガラス、合せガ
ラス、積層ガラスあるいは複層ガラス等として、建築用
窓材、ことに自動車用等車両用窓ガラスで用いることが
できる。
The ultraviolet-infrared-absorbing green glass of the present invention also contains an easily tempered glass composition, and has a thickness of about 1 mm from a thin glass to a thickness of about 15 mm.
In particular, it is a thin glass plate with a thickness of about 1.5 to 3.5 mm, which is a flat plate or a bent plate that is stronger than a green plate, semi-reinforced, reinforced, etc., such as a single plate glass, a laminated glass, a laminated glass or a laminated glass. As the laminated glass or the like, it can be used in architectural window materials, especially vehicle window glasses such as automobiles.

【0044】前述したとおり、本発明の紫外線赤外線吸
収緑色系ガラスは、特定酸化物成分を特定組成範囲で組
み合わせ、特にCeO2成分を増量して Fe2O3成分、TiO2
分と少なくとも特定組成範囲で組み合わせ、その濃度を
制御したガラスとし、またガラス組成内に易強化性をも
含み持たせしかも還元率を制御するよう組み合わせて特
異な原料をも用い、上述した板厚3.5mm でA 光源による
紫外線透過率(TUV) が6%以下ならびに350nm 波長透過
率(T350)が0%、370nm 波長透過率(T370)が15%以下、
1100nm波長透過率(T1100) が15%以下であるガラスを通
常のフロート法でガラス自体またはガラス自体と窯の雰
囲気の還元率を調整して製造することによって、例えば
黄色調のガラス素地の発生を抑制し解消でき、所謂リー
ムやディストーションの発現を抑制し、さらには場合に
よっては微細泡の発生等による歩留りの低下を激減する
ことができ、操業ならびに品質の安定向上ができ、効率
よく生産性することができた。
As described above, the ultraviolet-infrared-absorbing green glass of the present invention is a combination of specific oxide components within a specific composition range, in particular CeO 2 component is increased to obtain Fe 2 O 3 component, TiO 2 component and at least specific composition. Combined within the range to make the glass whose concentration is controlled, and to combine the glass composition with easy-to-strengthen property and to control the reduction rate, also using unique raw materials, the A light source with the plate thickness of 3.5 mm described above. UV transmittance (T UV ) of 6% or less, 350 nm wavelength transmittance (T 350 ) of 0%, 370 nm wavelength transmittance (T 370 ) of 15% or less,
By producing glass with a 1100 nm wavelength transmittance (T 1100 ) of 15% or less by adjusting the reduction rate of the glass itself or the glass itself and the atmosphere of the kiln by the ordinary float method, for example, the generation of a yellowish glass base material Can be suppressed and eliminated, the occurrence of so-called reams and distortions can be suppressed, and in some cases the decrease in yield due to the generation of fine bubbles can be drastically reduced, and stable operation and quality can be improved, and efficient productivity can be achieved. We were able to.

【0045】さらに例えば溶融性、清澄性、耐候性、成
形性、失透性、コスト等を考慮し、充分に前記還元率を
確保する以外従来のフロートガラスの製造条件ならびに
そのガラスの性質等をほとんど変化させず、加えて易強
化性を持ち合わせるようなガラス組成も含めかつ高性能
の赤外線ならびに紫外線の吸収、特に最も使用頻度の高
い板厚3.5mm のガラスにおいて格段の紫外線の吸収を得
て、人的物的に高居住性であって、物体の識別も優れた
透視性を充分持つものとなって高安全性を確保でき、グ
リーン色調系で例えば車・室内外と充分調和のあるもの
となって環境的にも優れたものとなり、さらに、従来の
熱強化方法では得られなかった薄板ガラス等でも、充分
な強化度あるいは充分強度アップが得られるようになる
ものとすることができ、建築用窓ガラスはもちろん家具
用ガラス、調理用ガラス、ことに自動車用等車両用窓ガ
ラス等に有用な紫外線赤外線吸収緑色系ガラスを提供で
きるものである。
Further, considering, for example, meltability, clarification property, weather resistance, moldability, devitrification property, cost, etc., the manufacturing conditions of the conventional float glass and the properties of the glass etc. other than the above-mentioned reduction ratio are sufficiently secured. It absorbs high-performance infrared rays and ultraviolet rays, including a glass composition that hardly changes and has easy strengthening properties, and in particular the glass with a thickness of 3.5 mm, which is most frequently used, has a marked absorption of ultraviolet rays. It has a high habitability in terms of human and physical properties, and it has sufficient transparency to distinguish objects, ensuring a high degree of safety. It becomes environmentally superior, and it is possible to obtain a sufficient degree of strengthening or a sufficient increase in strength even with thin glass sheets, which could not be obtained by the conventional heat strengthening method. , Architectural window glass is of course it can provide furniture glass, cooking glass, especially useful ultraviolet and infrared radiation absorbing green glass or the like vehicle window glass for automobiles.

【0046】[0046]

【実施例】以下本発明の実施例について説明する。ただ
し本発明は係る実施例に限定されるものではない。
Embodiments of the present invention will be described below. However, the present invention is not limited to such an embodiment.

【0047】実施例1 ガラス原料として例えば珪砂、長石、ソーダ灰、ドロマ
イト、石灰石、芒硝、ベンガラ、酸化チタン、炭酸セリ
ウムあるいはイルメナイト、カーボン、スラグ、フリッ
トガラスやカレット、例えば重量%でFe2O3 約 0.09 %
とTiO2約0.04%を含むクリアカレット(Cカレット)、
Fe2O3 約 0.675%とTiO2約0.20%とCeO2約0.60%等を主
に含むフリットガラス(NMフリット)またはカレット
(NMカレット)、あるいは例えばAl2O3,Fe2O3,CaCO3,Mg
CO3,Na2SO3,Na2CO3,CeO2,TiO2 の化学試薬等を適宜用
い、所期のガラス組成を目標組成として秤量調合し、こ
とに通常の実窯と多少高い程度の還元率約0.40程度を得
るようにしたものである。
Example 1 As a glass raw material, for example, silica sand, feldspar, soda ash, dolomite, limestone, mirabilite, red iron oxide, titanium oxide, cerium carbonate or ilmenite, carbon, slag, frit glass or cullet, for example, Fe 2 O 3 in % by weight. About 0.09%
And clear cullet (C cullet) containing about 0.04% of TiO 2 ,
Fe 2 O 3 about 0.675%, TiO 2 about 0.20% and CeO 2 about 0.60% are mainly contained in frit glass (NM frit) or cullet (NM cullet), or for example Al 2 O 3 , Fe 2 O 3 , CaCO 3 , Mg
Chemical reagents such as CO 3 , Na 2 SO 3 , Na 2 CO 3 , CeO 2 and TiO 2 are appropriately used, and the desired glass composition is weighed and blended as a target composition. The reduction rate is about 0.40.

【0048】なお、原料バッチとして、例えば芒硝/
(珪砂+長石)を約1%前後程度(0.5 〜2%程度)、
カレット約50%程度、(カ−ボン/硝子化量)×100=約
0.245程度等とした。
As a raw material batch, for example, Glauber's salt /
About 1% (silica sand + feldspar) (about 0.5-2%),
About 50% of cullet, (carbon / glass amount) x 100 = approx.
It was set to about 0.245.

【0049】該調合原料をルツボに入れ、約1450℃前後
に保持した実窯(例えば投入口横側壁部、コンディショ
ン部側壁部)または窒素ガスあるいは該ガスを含む混合
ガス等を用いながら実窯と同様にした電気炉中で約3〜
4時間程度溶融しガラス化して、さらに均質化および清
澄のため、1420〜1430℃で約1.5 〜2時間程度保持した
後、型に流し出しガラスブロックとして大きさ100mm ×
100mm で厚み約 3.5mm程度のガラス板に切り出し、また
はガラスを板状に流し出し大きさ100mm ×100mm で厚み
約 3.5mm程度にし、その後研削研磨して各試料とした。
The prepared raw material was put in a crucible and kept at about 1450 ° C. in a real kiln (for example, side wall of inlet, side wall of condition part) or nitrogen gas or a mixed gas containing the gas. Approximately 3 ~ in the same electric furnace
Melt and vitrify for about 4 hours, hold at 1420 to 1430 ° C for about 1.5 to 2 hours for homogenization and clarification, then cast into a mold and measure 100 mm in size as a glass block ×
Each sample was cut into a glass plate having a thickness of 100 mm and a thickness of about 3.5 mm, or the glass was cast into a plate shape to have a size of 100 mm × 100 mm and a thickness of about 3.5 mm, and then ground and polished to obtain each sample.

【0050】この試料について、ガラス成分組成(重量
%)としてはJIS R-3101に基づく湿式分析法等で行い、
光学特性(3.5 mm厚みにおける)としての可視光線(波
長380 〜780nm )透過率(A光源にて、 TV 、%)、紫
外線(波長297.5 〜377.5nm)透過率(A光源にて、 T
UV、%)、および日射(波長340 〜1800nm)透過率(A
光源にて、 TS 、%)、主波長(D65光源にて、D 、n
m)、刺激純度(D65光源にて、 Pe 、%)としては340
型自記分光光度計(日立製作所製)とJIS Z-8722、JIS
R-3106、ISO/DIS-9050にて測定計算して求める等を行
った。
The glass component composition (% by weight) of this sample was determined by a wet analysis method based on JIS R-3101,
Visible light (wavelength 380 ~780Nm) transmission as the optical properties (in 3.5 mm thickness) (at A light source, T V,%), at ultraviolet (wavelength 297.5 ~377.5Nm) transmittance (illuminant A, T
UV ,%), and solar radiation (wavelength 340 to 1800 nm) transmittance (A
At light source, T S ,%, dominant wavelength (at D 65 light source, D, n
m) and stimulation purity (D 65 light source, Pe,%) is 340
Type self-recording spectrophotometer (Hitachi) and JIS Z-8722, JIS
R-3106, ISO / DIS-9050, etc. were measured and calculated.

【0051】その結果、ガラス成分組成は重量表示で、
SiO2 69.43%、Al2O3 1.80%、CaO7.93%、MgO 3.41
%、Na2O 12.75%、K2O 0.95%、SO3 0.11%、他は表1
に示すように、Fe2O30.584%、TiO20.63%、CeO22.40%
と成り(ppm オ─ダ−の微量成分は分析せず)、またこ
れらの成分の総和が約99.994%であってかつSiO2+Al2O
3+TiO271.86 %、CaO +MgO11.34%、Na2O+K2O13.70%
であり、還元率(FeO /全Fe2O3 )は約0.401 程度とな
った。
As a result, the glass component composition is represented by weight,
SiOTwo 69.43%, AlTwoOThree 1.80%, CaO 7.93%, MgO 3.41
%, NaTwoO 12.75%, KTwoO 0.95%, SOThree 0.11%, others are Table 1
As shown in FeTwoOThree0.584%, TiOTwo0.63%, CeOTwo2.40%
(Minor components in ppm order are not analyzed)
The sum of these components is about 99.994% and SiOTwo+ AlTwoO
Three+ TiOTwo71.86%, CaO + MgO 11.34%, NaTwoO + KTwoO13.70%
And the reduction rate (FeO / total FeTwoOThree ) Is about 0.401
Was.

【0052】また光学特性は、表1および2に示すよう
に、可視光線透過率(TV ) が約73.0%、日射透過率
(TS ) が約42.3%、主波長(D) が約541.9nm 、紫外線透
過率(TUV) が約4.6 %、350nm 波長透過率(T350)が0
%、370nm 波長透過率(T370)が約13.3%、1100nm波長透
過率(T1100) が約14.9%、刺激純度(Pe)が約4.7 %であ
ってグリーン系色調であり、本発明がめざす所期の高性
能の紫外線赤外線吸収緑色系ガラスであった。なお表2
は波長 330〜 400nmにおける透過率(%)を示す。
As shown in Tables 1 and 2, the optical characteristics are that the visible light transmittance (T V ) is about 73.0% and the solar radiation transmittance is
(T S ) is about 42.3%, dominant wavelength (D) is about 541.9 nm, ultraviolet transmittance (T UV ) is about 4.6%, and 350 nm wavelength transmittance (T 350 ) is 0.
%, The 370 nm wavelength transmittance (T 370 ) is about 13.3%, the 1100 nm wavelength transmittance (T 1100 ) is about 14.9%, and the stimulus purity (Pe) is about 4.7%, which is a green color tone. It was the expected high performance UV-infrared absorbing green glass. Table 2
Indicates the transmittance (%) at a wavelength of 330 to 400 nm.

【0053】なお、本発明の約2.5mm 板厚の曲げ紫外線
赤外線吸収緑色系ガラスを外側に用い、内側に約2mm板
厚の熱線反射膜被覆曲げガラス板を配し、該膜側を内側
にしてPVB 中間膜を介して積層した合せガラスを試作
し、自動車の窓ガラスに用いたところ、規格をクリヤー
することができ、本発明による高性能化と多機能化が計
られ、車内外の居住性なよびに安全性がより優れたもの
となるものであった。
In addition, the bent UV-infrared-absorbing green glass having a plate thickness of about 2.5 mm of the present invention is used on the outside, and the heat-reflecting film-covered bent glass plate having a plate thickness of about 2 mm is arranged on the inside, and the film side is placed inside. Laminated glass laminated with PVB interlayer film as a prototype was used as a window glass for automobiles, and it was possible to clear the standard. The sex and safety were improved.

【0054】実施例2 前記実施例1と同様なガラス原料、前記Cカレット、NM
カレット、Hカレットを用い、秤量調合し、溶融操作を
し、得たガラスを同様に試料化した。
Example 2 The same glass material as in Example 1 above, the C cullet, NM
The cullet and H cullet were weighed and blended, melted, and the obtained glass was similarly sampled.

【0055】なお、原料バッチとして、例えば芒硝/
(珪砂+長石)を約0.8 %程度、(カ−ボン/硝子化
量)×100=約0.250 程度、Cカレット約35%程度、NMカ
レット約13%程度、Hカレット約12%程度等とした。
As a raw material batch, for example, Glauber's salt /
(Quartz sand + feldspar) approx. 0.8%, (carbon / vitrification amount) x 100 = approx. 0.250, C cullet approx. 35%, NM cullet approx. 13%, H cullet approx. 12%, etc. .

【0056】得られた試料について前記実施例1と同様
に分析、測定、評価した結果、ガラス成分組成は重量表
示で、SiO2 69.46%、Al2O3 1.75%、CaO 7.97%、MgO
3.4%、Na2O 12.58%、K2O 0.91%、SO30.10 %、他は
表1に示すように、Fe2O30.630%、TiO20.69%、CeO22.
50%と成り(ppm オ─ダ−の微量成分は分析せず)、ま
たこれらの成分の総和が約99.990%であってかつSiO2
Al2O3+TiO2 71.9 %、CaO +MgO 11.37 %、Na2O+K2O1
3.49%であり、還元率(FeO /Fe2O3 )は約0.392 程度
となった。
The obtained sample was analyzed, measured and evaluated in the same manner as in Example 1 above. As a result, the glass component composition was represented by weight: SiO 2 69.46%, Al 2 O 3 1.75%, CaO 7.97%, MgO.
3.4%, Na 2 O 12.58%, K 2 O 0.91%, SO 3 0.10%, others are as shown in Table 1, Fe 2 O 3 0.630%, TiO 2 0.69%, CeO 2 2.
50% (minus components in ppm order were not analyzed), and the sum of these components was about 99.990% and SiO 2 +
Al 2 O 3 + TiO 2 71.9%, CaO + MgO 11.37%, Na 2 O + K 2 O1
And 3.49% reduction rate (FeO / Fe 2 O 3) was approximately about 0.392.

【0057】また光学特性は、表1および2に示すよう
に、可視光線透過率(TV ) が約71.6%、日射透過率
(TS ) が約40.8%、主波長(D) が約546.3nm 、紫外線透
過率(TUV) が約 3.9%、350nm 波長透過率(T350)が0
%、370nm 波長透過率(T370)が約11.1%、1100nm波長透
過率(T1100) が約13.8%、刺激純度(Pe)が約5.7 %であ
り、所期のグリーン系色調であり、本発明がめざす所期
の高性能の紫外線赤外線吸収緑色系ガラスであった。
As shown in Tables 1 and 2, the optical characteristics are that the visible light transmittance (T V ) is about 71.6% and the solar radiation transmittance is
(T S ) is about 40.8%, dominant wavelength (D) is about 546.3 nm, UV transmittance (T UV ) is about 3.9%, and 350 nm wavelength transmittance (T 350 ) is 0.
%, 370nm wavelength transmittance (T 370 ) is about 11.1%, 1100nm wavelength transmittance (T 1100 ) is about 13.8%, stimulation purity (Pe) is about 5.7%. It was the desired high-performance ultraviolet-infrared-absorbing green glass aimed at by the invention.

【0058】さらに2〜3mm程度の薄いガラス板でも高
効率、高歩留りで前記規格に合格するものが得れるよう
になるものであった。実施例3 前記実施例2と同様なガラス原料を用い、秤量調合し、
溶融操作をし、得たガラスを同様に試料化した。〔(カ
−ボン/硝子化量)×100=約0.254 程度〕 得られた試料について前記実施例1と同様に分析、測
定、評価した結果、ガラス成分組成は重量表示でSiO26
9.5%、Al2O31.6%、CaO8.51 %、MgO 3.04%、Na 2O12.
66 %、K2O0.9%、SO30.10 %、他は表1に示すよう
に、Fe2O30.605%、TiO20.67%、CeO22.40%(ppm オ─
ダ−の微量成分は分析せず)、またこれらの成分の総和
が約99.985%であって、SiO2+Al2O3 +TiO2 71.77%、
CaO +MgO 11.55 %、Na2O+K2O 13.56 %であり、前記
還元率は約0.494 程度となった。
Further, even a thin glass plate of about 2 to 3 mm is high.
To obtain products that pass the above standards with high efficiency and high yield
It was supposed to be.Example 3 Using the same glass raw material as in Example 2, weighed and blended,
A melting operation was performed, and the obtained glass was similarly sampled. [(
-Bon / Vitrification amount) x 100 = about 0.254] The obtained sample was analyzed and measured in the same manner as in Example 1 above.
As a result of the determination and evaluation, the composition of the glass component is represented by weight in SiOTwo6
9.5%, AlTwoOThree1.6%, CaO8.51%, MgO 3.04%, Na TwoO12.
66%, KTwoO0.9%, SOThree0.10%, others as shown in Table 1
On, FeTwoOThree0.605%, TiOTwo0.67%, CeOTwo2.40% (ppm
(Do not analyze the minor components of the dare) and the sum of these components
Is about 99.985%, and SiOTwo+ AlTwoOThree+ TiOTwo 71.77%,
CaO + MgO 11.55%, NaTwoO + KTwoO 13.56%, said
The return rate was about 0.494.

【0059】光学特性は、表1および2に示すように、
可視光線透過率(TV ) が約69.7%、日射透過率(TS ) が
約36.6%、主波長(D) が約529.7nm 、紫外線透過率
(TUV) が約 4.3%、350nm 波長透過率(T350)が0%、37
0nm 波長透過率(T370)が約12.5%、1100nm波長透過率(T
1100) が約 8.8%、刺激純度(Pe)が約4.3 %であり、所
期のグリーン系色調であり、本発明がめざす所期の高性
能の紫外線赤外線吸収緑色系ガラスであった。
The optical characteristics are as shown in Tables 1 and 2,
Visible light transmittance (T V ) is about 69.7%, solar transmittance (T S ) is about 36.6%, dominant wavelength (D) is about 529.7 nm, UV transmittance
(T UV ) is about 4.3%, 350nm wavelength transmittance (T 350 ) is 0%, 37
0nm wavelength transmittance ( T370 ) is about 12.5%, 1100nm wavelength transmittance (T
1100 ) was about 8.8%, and the excitation purity (Pe) was about 4.3%, and it was the desired green color tone, and it was the desired high-performance UV-infrared absorbing green glass aimed by the present invention.

【0060】易強化性についても、JIS 、例えばR 3211
あるいはR 3212で決められた規格を充分満足するもので
あり、また実施例1と同様、薄いガラス板でも高効率、
高歩留りで前記規格に合格するものが得れるようになる
ものであった。
Regarding the easy strengthening property, JIS, for example, R 3211
Or, it satisfies the standard determined by R 3212 sufficiently, and like the first embodiment, high efficiency even with a thin glass plate,
It was possible to obtain a product which passed the above standard at a high yield.

【0061】実施例4 前記実施例1と同様なガラス原料を用い、さらにCoO 約
0.0960%程度を含むフリットガラス(Hフリット)また
は重量%でFe2O3 約0.36%とCoO 約0.0017%程度を含む
カレット(Hカレット)、秤量調合し、溶融操作をし、
得たガラスを同様に試料化した。〔(カ−ボン/硝子化
量)×100=約0.245 程度〕 得られた試料について前記実施例1と同様に分析、測
定、評価した結果、基礎ガラス成分組成は重量表示でSi
O269.5%、Al2O31.6%、CaO8.62 %、MgO 3.04%、Na2O
12.66 %、K2O0.9%、SO30.11 %、他は表1に示すよう
に、Fe2O30.667%、TiO20.47%、CeO22.39%と成り、他
に微量成分としてはMnO 285ppm、CoO 4.0ppm、Cr2O3 1p
pm等があり、またこれらの成分の総和が約99.985%であ
って、SiO2+Al2O3 +TiO2 71.57%、CaO +MgO 11.66
%、Na2O+K2O 13.56 %であり、前記還元率は約0.454
程度となった。
Example 4 The same glass raw material as in Example 1 was used, and further CoO was added.
Frit glass containing about 0.0960% (H frit) or cullet containing about 0.36% of Fe 2 O 3 and about 0.0017% of CoO (H cullet) by weight, weighed, blended, melted,
The obtained glass was similarly sampled. [(Carbon / amount of vitrification) × 100 = about 0.245] The obtained sample was analyzed, measured, and evaluated in the same manner as in Example 1 above. As a result, the basic glass component composition was expressed by Si.
O 2 69.5%, Al 2 O 3 1.6%, CaO 8.62%, MgO 3.04%, Na 2 O
12.66%, K 2 O 0.9%, SO 3 0.11%, others are Fe 2 O 3 0.667%, TiO 2 0.47%, CeO 2 2.39% as shown in Table 1, and other minor components include MnO. 285ppm, CoO 4.0ppm, Cr 2 O 3 1p
pm etc., and the sum of these components is about 99.985%, SiO 2 + Al 2 O 3 + TiO 2 71.57%, CaO + MgO 11.66
%, Na 2 O + K 2 O 13.56%, and the reduction rate is about 0.454.
It became a degree.

【0062】光学特性は、表1および2に示すように、
可視光線透過率(TV ) が約69.6%、日射透過率(TS ) が
約36.9%、主波長(D) が約513.2nm 、紫外線透過率
(TUV) が約 5.2%、350nm 波長透過率(T350)が0%、37
0nm 波長透過率(T370)が約15.0%、1100nm波長透過率(T
1100) が約 8.8%、刺激純度(Pe)が約3.5 %であり、所
期のグリーン系色調であり、本発明がめざす所期の高性
能の紫外線赤外線吸収緑色系ガラスであった。
The optical characteristics are, as shown in Tables 1 and 2,
Visible light transmittance (T V ) is about 69.6%, solar radiation transmittance (T S ) is about 36.9%, dominant wavelength (D) is about 513.2 nm, UV transmittance
(T UV ) is about 5.2%, 350nm wavelength transmittance (T 350 ) is 0%, 37
0nm wavelength transmittance (T 370 ) is about 15.0%, 1100nm wavelength transmittance (T
1100 ) was about 8.8%, and the stimulating purity (Pe) was about 3.5%, and it was a desired green color tone, and it was a desired high-performance ultraviolet / infrared absorbing green glass aimed by the present invention.

【0063】実施例5 前記実施例2と同様なガラス原料を用い、秤量調合し、
溶融操作をし、得たガラスを同様に試料化した。〔(カ
−ボン/硝子化量)×100=約0.235 程度〕 得られた試料について前記実施例1と同様に分析、測
定、評価した結果、基礎ガラス成分組成は前記実施例2
と同様であって、着色成分のみ、他は表1に示すよう
に、Fe2O30.663%、TiO20.65%、CeO22.42%、MnO 280p
pm、CoO 4.0ppm、Cr 2O3 5ppmと成り、また成分の総和が
約99.932%であって、SiO2+Al2O3 +TiO2 71.86%、Ca
O +MgO 11.37 %、Na2O+K2O 13.49 %であり、前記還
元率は約0.516 程度となった。
[0063]Example 5 Using the same glass raw material as in Example 2, weighed and blended,
A melting operation was performed, and the obtained glass was similarly sampled. [(
-Bon / Vitrification amount) x 100 = about 0.235] The obtained sample was analyzed and measured in the same manner as in Example 1 above.
As a result of the determination and evaluation, the basic glass component composition was the same as in Example 2 above.
As in Table 1, except for the color components only
On, FeTwoOThree0.663%, TiOTwo0.65%, CeOTwo2.42%, MnO 280p
pm, CoO 4.0ppm, Cr TwoOThree5ppm, and the sum of the components
About 99.932%, SiOTwo+ AlTwoOThree+ TiOTwo 71.86%, Ca
O + MgO 11.37%, NaTwoO + KTwoO 13.49% and said return
The original rate was about 0.516.

【0064】光学特性は、表1および2に示すように、
可視光線透過率(TV ) が約68.5%、日射透過率(TS ) が
約35.4%、主波長(D) が約535.6nm 、紫外線透過率
(TUV) が約 4.0%、350nm 波長透過率(T350)が0%、37
0nm 波長透過率(T370)が約11.8%、1100nm波長透過率(T
1100) が約 7.8%、刺激純度(Pe)が約 5.0%であり、所
期のグリーン系色調であり、本発明がめざす所期の高性
能の紫外線赤外線吸収緑色系ガラスであった。
The optical characteristics are, as shown in Tables 1 and 2,
Visible light transmittance (T V ) is about 68.5%, solar radiation transmittance (T S ) is about 35.4%, dominant wavelength (D) is about 535.6 nm, UV transmittance
(T UV ) is about 4.0%, 350nm wavelength transmittance (T 350 ) is 0%, 37
0nm wavelength transmittance (T 370 ) is about 11.8%, 1100nm wavelength transmittance (T
1100 ) was about 7.8%, and the stimulus purity (Pe) was about 5.0%, and it had the desired green color tone, and it was the desired high-performance UV-infrared absorbing green glass aimed at by the present invention.

【0065】実施例6 前記実施例3と同様なガラス原料を用い、秤量調合し、
溶融操作をし、得たガラスを同様に試料化した。〔(カ
−ボン/硝子化量)×100=約0.255 程度〕 得られた試料について前記実施例1と同様に分析、測
定、評価した結果、基礎ガラス成分組成はSiO269.2%、
Al2O31.6%、CaO8.34 %、MgO 3.21%、Na2O12.65 %、
K2O0.9%、SO30.10 %であって、着色成分組成は表1に
示すように、Fe2O 30.580%、TiO20.90%、CeO22.49%、
MnO 280ppm、CoO 5.0ppm、Cr2O3 3ppmと成り、また成分
の総和が約99.999%であって、SiO2+Al2O3 +TiO2 71.
70%、CaO+MgO 11.55 %、Na2O+K2O 13.55 %であ
り、前記還元率は約0.519 程度となった。
[0065]Example 6 Using the same glass raw material as in Example 3, weighed and blended,
A melting operation was performed, and the obtained glass was similarly sampled. [(
-Bon / Vitrification amount) x 100 = about 0.255] The obtained sample was analyzed and measured in the same manner as in Example 1 above.
As a result of evaluation and evaluation, the basic glass component composition is SiOTwo69.2%,
AlTwoOThree1.6%, CaO 8.34%, MgO 3.21%, NaTwoO12.65%,
KTwoO0.9%, SOThree0.10%, and the coloring composition is shown in Table 1.
As shown, FeTwoO Three0.580%, TiOTwo0.90%, CeOTwo2.49%,
MnO 280ppm, CoO 5.0ppm, CrTwoOThreeIt becomes 3ppm, and it is also a component
Is about 99.999%, and SiOTwo+ AlTwoOThree+ TiOTwo 71.
70%, CaO + MgO 11.55%, NaTwoO + KTwoO 13.55% at
The reduction rate was about 0.519.

【0066】光学特性は、表1および2に示すように、
可視光線透過率(TV ) が約68.7%、日射透過率(TS ) が
約35.6%、主波長(D) が約548.1nm 、紫外線透過率
(TUV) が約3.0 %、350nm 波長透過率(T350)が0%、37
0nm 波長透過率(T370)が約 8.3%、1100nm波長透過率(T
1100) が約 8.6%、刺激純度(Pe)が約 7.5%であり、所
期のグリーン系色調であり、本発明がめざす所期の高性
能の紫外線赤外線吸収緑色系ガラスであった。
The optical characteristics are, as shown in Tables 1 and 2,
Visible light transmittance (T V ) is about 68.7%, solar radiation transmittance (T S ) is about 35.6%, dominant wavelength (D) is about 548.1 nm, UV transmittance
(T UV ) is about 3.0%, 350nm wavelength transmittance (T 350 ) is 0%, 37
0 nm wavelength transmittance (T 370 ) is about 8.3%, 1100 nm wavelength transmittance (T
1100 ) was about 8.6%, and the stimulating purity (Pe) was about 7.5%, and it was a desired green color tone, and it was a desired high-performance ultraviolet / infrared absorbing green glass aimed at by the present invention.

【0067】実施例7 前記実施例3と同様なガラス原料を用い、秤量調合し、
溶融操作をし、得たガラスを同様に試料化した。
Example 7 The same glass raw material as in Example 3 was used, weighed and blended,
A melting operation was performed, and the obtained glass was similarly sampled.

【0068】得られた試料について前記実施例1と同様
に分析、測定、評価した結果、基礎ガラス成分組成なら
びに着色成分組成は実施例1と同様であり、微量成分の
みがMnO 280ppm、CoO 5.0ppm、Cr2O3 3ppmと成った。
The obtained sample was analyzed, measured, and evaluated in the same manner as in Example 1 above. As a result, the basic glass component composition and the coloring component composition were the same as in Example 1, and only trace components were MnO 280 ppm and CoO 5.0 ppm. , Cr 2 O 3 3 ppm.

【0069】光学特性は、可視光線透過率(TV ) 、日射
透過率(TS ) 、主波長(D) 、紫外線透過率(TUV) 、350n
m 波長透過率(T350)、370nm 波長透過率(T370)、1100nm
波長透過率(T1100) ならびに刺激純度(Pe)とも実施例1
と同様な値となりほとんど変化はなく、所期のグリーン
系色調であり、本発明がめざす所期の高性能の紫外線赤
外線吸収緑色系ガラスであった。
The optical characteristics are visible light transmittance (T V ), solar radiation transmittance (T S ), dominant wavelength (D), ultraviolet ray transmittance (T UV ), 350 n.
m wavelength transmittance (T 350), 370nm wavelength transmittance (T 370), 1100nm
The wavelength transmittance (T 1100 ) and the stimulus purity (Pe) were measured in Example 1
The value was similar to the above, there was almost no change, it was the desired green color tone, and it was the desired high performance UV-infrared absorbing green glass aimed at by the present invention.

【0070】実施例8 前記実施例3と同様なガラス原料を用い、秤量調合し、
溶融操作をし、得たガラスを同様に試料化した。
Example 8 The same glass raw material as in Example 3 was used, weighed and blended,
A melting operation was performed, and the obtained glass was similarly sampled.

【0071】得られた試料について前記実施例1と同様
に分析、測定、評価した結果、基礎ガラス成分組成なら
びに着色成分組成は実施例1と同様であり、微量成分の
みがMnO 280ppm、CoO 5.0ppm、Cr2O3 3ppmと成り、さら
にSnO20.05%であった。
The obtained sample was analyzed, measured, and evaluated in the same manner as in Example 1 above. As a result, the basic glass component composition and the coloring component composition were the same as in Example 1, and only trace components were MnO 280 ppm and CoO 5.0 ppm. , Cr 2 O 3 3 ppm, and SnO 2 0.05%.

【0072】光学特性は、可視光線透過率(TV ) 、日射
透過率(TS ) 、主波長(D) 、紫外線透過率(TUV) 、350n
m 波長透過率(T350)、370nm 波長透過率(T370)、1100nm
波長透過率(T1100) ならびに刺激純度(Pe)とも実施例1
と同様な値となりほとんど変化はなく、特に色調が安定
し所期のグリーン系色調であり、本発明がめざす所期の
高性能の紫外線赤外線吸収緑色系ガラスであった。
The optical characteristics are visible light transmittance (T V ), solar radiation transmittance (T S ), dominant wavelength (D), ultraviolet ray transmittance (T UV ), 350 n.
m wavelength transmittance (T 350), 370nm wavelength transmittance (T 370), 1100nm
The wavelength transmittance (T 1100 ) and the stimulus purity (Pe) were measured in Example 1
The value was almost the same, and the color tone was stable and the desired green color tone was obtained, and the desired high-performance ultraviolet-infrared-absorbing green glass was aimed at by the present invention.

【0073】比較例1 前記したと同様にして得られたガラスを同様に試料化し
た。得られた試料について前記実施例1と同様に分析、
測定、評価した結果、ガラス成分組成は重量表示でSiO2
72.1%、Al2O31.5%、CaO6.45 %、MgO 3.0 %、Na 2O1
3.1%、K2O1.0%、SO30.22 %、他は表1に示すよう
に、Fe2O30.628%、TiO20.36%、CeO21.62%と成り、ま
た成分の総和が約99.978%であって、SiO2+Al2O 3 +Ti
O273.96 %、CaO +MgO 9.45%、Na2O+K2O 14.1%であ
り、前記還元率は約0.369 度であり、光学特性は表1お
よび2に示すように、板厚3.5mm で、可視光線透過率(T
V ) が約74.6%、日射透過率(TS ) が約46.3%、主波長
(D) が約521.7nm 、紫外線透過率(TUV) が約9.3 %、35
0nm 波長透過率(T350)が0.3 %、370nm 波長透過率(T
370)が約17.1%、1100nm波長透過率(T1100) が約17.7
%、刺激純度(Pe)が約 2.4%であり、特に紫外線のカッ
トが充分とは必ずしも言えないものであって、断熱性能
も悪く、本発明がめざす人的物的ならびに環境的に充分
優しいものではなく、所期の紫外線赤外線吸収緑色系ガ
ラスではなかった。
[0073]Comparative Example 1 The glass obtained in the same manner as above was sampled in the same manner.
Was. The obtained sample is analyzed in the same manner as in Example 1,
As a result of measurement and evaluation, the composition of the glass component is represented by weight in SiOTwo
72.1%, AlTwoOThree1.5%, CaO6.45%, MgO 3.0%, Na TwoO1
3.1%, KTwoO1.0%, SOThree0.22%, others as shown in Table 1
On, FeTwoOThree0.628%, TiOTwo0.36%, CeOTwo1.62%,
The total of the above components is about 99.978%,Two+ AlTwoO Three+ Ti
OTwo73.96%, CaO + MgO 9.45%, NaTwoO + KTwoO 14.1%
The reduction rate is about 0.369 degrees, and the optical characteristics are shown in Table 1.
As shown in 2 and 2, the visible light transmittance (T
V) Is about 74.6%, and solar radiation transmittance (TS) Is about 46.3%, dominant wavelength
(D) is about 521.7 nm, UV transmittance (TUV) Is about 9.3%, 35
0nm wavelength transmittance (T350) Is 0.3%, and the transmittance (T
370) Is about 17.1%, and the 1100 nm wavelength transmittance (T1100) Is about 17.7
%, And the stimulation purity (Pe) is about 2.4%.
Is not always sufficient and the heat insulation performance
It is also bad, and it is sufficient in terms of human and physical properties as well as environmentally
It is not kind, but the desired UV / IR absorption green type gas
It wasn't Russ.

【0074】また黄色状素地の発現が少々見られ、所謂
リームあるいはデストーション等がたまたま発生するこ
とがあり、必ずしも極めて充分とは言い難く、さらに品
質および生産性を高める必要を多少感じるようなもので
あった。
Also, the appearance of a yellowish material is slightly observed, and so-called ream or distortion may occur by chance, which is not necessarily extremely sufficient, and it is necessary to further improve the quality and productivity. Met.

【0075】さらに易強化性についても、前記実施例3
と同様に実施したところ、特に前記実施例3乃至4とは
差異があるものであってJIS 例えばR3211 で決められた
規格を必ずしも満足するものではなかった。また強化処
理等で必ずしも効率や歩留りを向上させるものではなか
った。
Further, as to the easy strengthening property, the above-mentioned Example 3 was used.
When carried out in the same manner as in Example 3, there was a difference from Examples 3 to 4 in particular, and it did not always satisfy the standard determined by JIS, for example, R3211. Moreover, the efficiency and the yield have not necessarily been improved by the strengthening treatment and the like.

【0076】[0076]

【表1】 [Table 1]

【0077】[0077]

【表2】 [Table 2]

【0078】[0078]

【発明の効果】本発明によれば、特定酸化物成分を特定
組成範囲で組み合わせた紫外線赤外線吸収緑色系ガラス
とし、しかもCeO2の濃度を増加し Fe2O3と TiO2 と組み
合わせてその組成割合を特定し、かつ紫外線透過率
(TUV) 、350nm 波長透過率(T350)、370nm 波長透過率(T
370)ならびに1100nm波長透過率を特定したものとし、特
異な原料を組み合わせて用いることもでき、還元率を制
御し、格段に優れた紫外線カットをうることができ、高
性能の赤外線の吸収と紫外線の吸収とを緑色系色調とと
もにバランス良く実現し、充分透視性を持ち、所期のグ
リーン系色調を呈するガラスを、フロート法における実
窯の操業条件ならびに製板条件を大幅に変更することな
く、品質や歩留りを高めて生産性を向上し、安定操業で
製造することができ、人的物的両面で高居住性、高安全
性、高環境性を有し軽量化も可能であるものと成り、建
築用窓ガラス等はもちろん、ことに自動車用窓ガラスに
適用して有用なものと成る紫外線赤外線吸収緑色系ガラ
スを提供するものである。
EFFECTS OF THE INVENTION According to the present invention, a UV-infrared absorbing green glass in which a specific oxide component is combined in a specific composition range is used, and the composition of Fe 2 O 3 and TiO 2 is increased by increasing the concentration of CeO 2. Specify the ratio and UV transmittance
(T UV ), 350 nm wavelength transmittance (T 350 ), 370 nm wavelength transmittance (T
370 ) and 1100 nm wavelength transmittance, it is also possible to use a combination of unique raw materials, control the reduction rate, and obtain a significantly superior ultraviolet cut, high-performance infrared absorption and ultraviolet Absorption of the glass with a greenish color tone in a well-balanced manner, with sufficient transparency, and exhibiting the desired greenish color tone, without substantially changing the operating conditions and plate making conditions of the actual kiln in the float method, It improves quality and yield, improves productivity, can be manufactured in stable operation, has high habitability, high safety, high environmental friendliness in terms of both human and physical properties, and can be lightened. The present invention provides an ultraviolet-infrared-absorbing green glass which is useful not only for building window glass but also for automobile window glass.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ソ─ダ石灰シリカ系ガラスにおいて、着
色成分として重量%表示で、Fe2O3 0.5 〜0.75%、CeO2
2.2〜2.6 %、TiO2 0.4〜0.9 %を少なくとも含み、該
ガラスが3.5mm 厚みで、A 光源による紫外線透過率
(TUV) が6%以下ならびに350nm 波長透過率(T350)が0
%、370nm 波長透過率(T370)が15%以下、1100nm波長透
過率(T1100) が15%以下であることを特徴とする紫外線
赤外線吸収緑色系ガラス。
1. In soda lime silica glass, Fe 2 O 3 0.5 to 0.75%, CeO 2 in weight% as a coloring component.
2.2-2.6%, TiO 2 0.4-0.9% at least, the glass is 3.5mm thick, and the UV transmittance by A light source is
(T UV ) is 6% or less, and 350 nm wavelength transmittance (T 350 ) is 0.
%, 370 nm wavelength transmittance (T 370 ) is 15% or less, 1100 nm wavelength transmittance (T 1100 ) is 15% or less, ultraviolet and infrared absorption green glass.
【請求項2】 前記ガラスにおいて、重量%表示で、Fe
O が0.23〜0.35%であって、かつFeO /全鉄(Fe2O3
が0.4 〜0.6 であることを特徴とする請求項1記載の紫
外線赤外線吸収緑色系ガラス。
2. In the glass, Fe is expressed in% by weight.
O is 0.23 to 0.35%, and FeO / total iron (Fe 2 O 3 )
Is 0.4 to 0.6, and the ultraviolet / infrared absorbing green glass according to claim 1.
【請求項3】 前記ガラスにおいて、3.5mm 厚みで、A
光源による可視光線透過率(Tv ) が68%以上、日射透過
率(TS ) が45%以下、D65 光源による主波長(D) が510
〜560 nm、刺激純度(Pe)が10%以下であることを特徴と
する請求項1乃至2記載の紫外線赤外線吸収緑色系ガラ
ス。
3. The glass having a thickness of 3.5 mm, A
Visible light transmittance (T v ) by the light source is 68% or more, solar radiation transmittance (T S ) is 45% or less, D 65 Light source dominant wavelength (D) is 510
3. The ultraviolet / infrared absorbing green glass according to claim 1, which has a stimulus purity (Pe) of 10% or less at .about.560 nm.
【請求項4】 前記ガラスが、重量%表示で前記着色成
分以外に実質的に、SiO267〜75%、Al2O3 0.05〜3.0
%、CaO 7.0 〜11.0%、MgO 2.0 〜4.2 %、Na 2O12.0〜
16.0%、K2O 0.5 〜3.0 %、SO3 0.05〜0.30%で成り、
これら成分と前記着色成分の総和が98%以上であって、
かつSiO2+Al2O3 +TiO270〜76%、CaO+Mg0 10〜15
%、Na2O+K2O 13〜17%であることを特徴とする請求項
1乃至3記載の紫外線赤外線吸収緑色系ガラス。
4. The coloring composition in terms of weight% is used for the glass.
Substantially other than SiOTwo67-75%, AlTwoOThree 0.05-3.0
%, CaO 7.0 to 11.0%, MgO 2.0 to 4.2%, Na TwoO12.0 ~
16.0%, KTwoO 0.5-3.0%, SOThreeIt consists of 0.05 to 0.30%,
The sum of these components and the coloring component is 98% or more,
And SiOTwo+ AlTwoOThree + TiOTwo70 ~ 76%, CaO + Mg0 10 ~ 15
%, NaTwoO + KTwoO 13 to 17%, Claims characterized by the above-mentioned.
The ultraviolet-infrared-absorbing greenish glass according to any one of 1 to 3.
JP1371696A 1996-01-30 1996-01-30 Ultraviolet rays and infrared rays absorbing green glass Pending JPH09208251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1371696A JPH09208251A (en) 1996-01-30 1996-01-30 Ultraviolet rays and infrared rays absorbing green glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1371696A JPH09208251A (en) 1996-01-30 1996-01-30 Ultraviolet rays and infrared rays absorbing green glass

Publications (1)

Publication Number Publication Date
JPH09208251A true JPH09208251A (en) 1997-08-12

Family

ID=11840978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1371696A Pending JPH09208251A (en) 1996-01-30 1996-01-30 Ultraviolet rays and infrared rays absorbing green glass

Country Status (1)

Country Link
JP (1) JPH09208251A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508296A (en) * 1996-07-18 2002-03-19 ジー・アール・テクノロジー・インコーポレーテツド How to recycle mixed colored cullet into amber, green or flint glass
WO2005042425A1 (en) * 2003-10-31 2005-05-12 Central Glass Company, Limited Ultraviolet and infrared absorptive greenish glass
US7598190B2 (en) 2004-10-29 2009-10-06 Central Glass Company, Limited Ultraviolet and infrared absorptive greenish glass
US7611773B2 (en) 2002-09-25 2009-11-03 Nippon Sheet Glass Co., Ltd. Glass composition and laminated glass
WO2011021541A1 (en) * 2009-08-17 2011-02-24 セントラル硝子株式会社 Heat reflecting glass
CN102491638A (en) * 2011-12-01 2012-06-13 孙云毅 Method for producing chicken-oil-yellow glass, glass and embossment processing technology based on glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508296A (en) * 1996-07-18 2002-03-19 ジー・アール・テクノロジー・インコーポレーテツド How to recycle mixed colored cullet into amber, green or flint glass
US7611773B2 (en) 2002-09-25 2009-11-03 Nippon Sheet Glass Co., Ltd. Glass composition and laminated glass
WO2005042425A1 (en) * 2003-10-31 2005-05-12 Central Glass Company, Limited Ultraviolet and infrared absorptive greenish glass
US7598190B2 (en) 2004-10-29 2009-10-06 Central Glass Company, Limited Ultraviolet and infrared absorptive greenish glass
WO2011021541A1 (en) * 2009-08-17 2011-02-24 セントラル硝子株式会社 Heat reflecting glass
CN102491638A (en) * 2011-12-01 2012-06-13 孙云毅 Method for producing chicken-oil-yellow glass, glass and embossment processing technology based on glass

Similar Documents

Publication Publication Date Title
JP2544035B2 (en) High iron content / high reduction rate frit glass and blue heat ray absorbing glass using the same
US6413893B1 (en) Green privacy glass
EP1132350B1 (en) Infrared and ultraviolet radiation absorbing blue glass composition
US5830812A (en) Infrared and ultraviolet radiation absorbing green glass composition
EP1023245B1 (en) Infrared and ultraviolet radiation absorbing blue glass composition
EP0816296B1 (en) Green privacy glass
JP2528579B2 (en) Frit glass with high iron content and high reduction rate, and ultraviolet / infrared absorbing green glass using it
JP3086165B2 (en) UV-infrared absorbing green glass
EP1034144B1 (en) Privacy glass
JPH10139475A (en) Ultraviolet and infrared rays absorbing and low transmittance glass
AU748821B2 (en) Blue privacy glass
US6455452B1 (en) Bronze privacy glass
JPH09208251A (en) Ultraviolet rays and infrared rays absorbing green glass
JPH05270855A (en) Heat ray absorbing glass having neutral gray tone
JP2001019471A (en) Dark-green glass
JP3606607B2 (en) UV-infrared absorbing green glass
JPH061633A (en) Blue colored infrared and ultraviolet absorbing glass
JP4736465B2 (en) UV-infrared absorbing green glass
JPH0578147A (en) Infrared light and ultraviolet light absorbing glass
JP2001019470A (en) Glass with dark gray color
JP3431395B2 (en) UV absorbing gray color glass
JPH1045424A (en) Ultraviolet-ray absorbing colored glass
JPH1095632A (en) Dense green-type colored glass
JP2513945B2 (en) Infrared and UV absorbing glass