JPH09190621A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JPH09190621A JPH09190621A JP1803696A JP1803696A JPH09190621A JP H09190621 A JPH09190621 A JP H09190621A JP 1803696 A JP1803696 A JP 1803696A JP 1803696 A JP1803696 A JP 1803696A JP H09190621 A JPH09190621 A JP H09190621A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- film
- alloy
- recording medium
- coercive force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁気ドラム、磁気
テープ、磁気ディスク等の磁気記録媒体に関し、特に記
録再生時の媒体ノイズを低減させた磁気記録媒体に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium such as a magnetic drum, a magnetic tape and a magnetic disk, and more particularly to a magnetic recording medium in which medium noise during recording / reproduction is reduced.
【0002】[0002]
【従来の技術】近年、磁気ディスク装置等の高記録密度
化に伴い、再生感度の高い磁気抵抗効果を用いた磁気ヘ
ッド(以下、MRヘッドという)に適合した磁気記録媒
体が必要とされている。MRヘッドは、従来の電磁誘導
型ヘッドに比べてヘッドノイズが低いため、磁性媒体に
おいても磁気ディスク装置全体の信号対ノイズ比(S/
N)を改善するには、媒体ノイズの低下が極めて重要な
課題となっている。2. Description of the Related Art In recent years, as the recording density of a magnetic disk device and the like has increased, a magnetic recording medium suitable for a magnetic head (hereinafter, referred to as an MR head) using a magnetoresistive effect having high reproduction sensitivity has been required. . Since the MR head has lower head noise than the conventional electromagnetic induction type head, the signal to noise ratio (S / S / S
To improve N), the reduction of medium noise has become a very important issue.
【0003】現在、一般に用いられているAl合金を基
板とした磁気ディスク用記録媒体としては、前記非磁性
基板上に、非磁性下地膜としてCr又はCr合金を成膜
した上に、磁性膜としてCoを主成分とするCoCrT
a合金などを成膜したものが各種提案、実用化されてい
る。例えば、特開平1−232522号公報には、非磁
性下地膜としてCr、又はCrにCu、Nb、Ti、
V、Zr、Mo、Zn、W、Taのうち1種以上の金属
を添加した合金を成膜することにより磁気特性、特に保
磁力を向上させることが提案されている。また、特開平
59−142738号公報には、下地層にCrAg合金
を用いることが提案されている。At present, as a recording medium for a magnetic disk using an Al alloy as a substrate which is generally used, Cr or Cr alloy is formed as a non-magnetic underlayer on the non-magnetic substrate, and then as a magnetic film. CoCrT containing Co as a main component
Various proposals and commercializations of a-alloy film and the like have been made. For example, in Japanese Patent Application Laid-Open No. 1-223222, Cr is used as a non-magnetic underlayer, or Cu, Nb, Ti is added to Cr.
It has been proposed to improve magnetic properties, especially coercive force, by forming an alloy containing one or more metals selected from V, Zr, Mo, Zn, W, and Ta. Further, JP-A-59-142738 proposes to use a CrAg alloy for the underlayer.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、前記特
開平1−232522号公報では非磁性下地膜としてC
r又はCr合金を用いているが、その膜厚は500〜3
000Åであるため、膜中のCr又はCr合金粒子が成
長してしまう。その結果、Cr又はCr合金膜上にエピ
タキシャル成長するCo磁性膜内部の結晶粒子も成長す
るために媒体ノイズを低減させることが困難となる。ま
た、前記特開平59−142738号公報では、下地層
にCrAg合金を用いているが、膜厚は500〜300
0Åもあるために、合金粒子が成長してしまう。粒子成
長を抑える目的で成膜した300Å以下の膜厚ではCr
Ag合金膜はCr膜よりも保磁力が低下してしまいMR
用メディアには適さない。こうした問題点を踏まえ、本
発明の目的は、記録再生時のノイズが十分に低く、MR
ヘッドと好適に組み合わされる磁気記録媒体を提供する
ことにある。However, in the above-mentioned JP-A-1-232522, C is used as the non-magnetic underlayer film.
Although r or Cr alloy is used, the film thickness is 500 to 3
Since it is 000Å, Cr or Cr alloy particles in the film grow. As a result, crystal grains inside the Co magnetic film epitaxially grown on the Cr or Cr alloy film also grow, so that it is difficult to reduce the medium noise. Further, in JP-A-59-142738, the CrAg alloy is used for the underlayer, but the film thickness is 500 to 300.
Since there is 0Å, alloy particles grow. If the film thickness is less than 300Å, which is formed to suppress grain growth, Cr
The coercive force of the Ag alloy film is lower than that of the Cr film, and the MR
Not suitable for media. In view of these problems, the object of the present invention is to reduce the noise during recording and reproduction,
It is to provide a magnetic recording medium that is preferably combined with a head.
【0005】[0005]
【課題を解決するための手段】媒体ノイズを低減させる
方法として、磁性媒体中の磁性粒子が磁性を消失する臨
界サイズ以上で且つできるだけ小さいことが望ましい。
即ち、前記課題を解決する手段として、非磁性基板上
に、非磁性下地膜としてTi,Ta,Ag,Mo,Si
から選ばれる2種の元素とCrとからなる3元系Cr合
金膜を成膜し、その上に、磁性膜としてCo合金膜を、
さらに保護膜として例えばカーボン膜を順次成膜して得
られる磁気記録媒体を見出し、本発明に至った。尚、成
膜の方法として一般にはスパッタ法が用いられる。ま
た、非磁性下地膜はCr以外の2種の元素の合計割合が
10〜40at%である。As a method for reducing medium noise, it is desirable that magnetic particles in a magnetic medium have a size equal to or larger than a critical size at which magnetism is lost and as small as possible.
That is, as a means for solving the above-mentioned problems, Ti, Ta, Ag, Mo, Si as a non-magnetic base film is formed on a non-magnetic substrate.
A ternary Cr alloy film composed of two kinds of elements selected from Cr and Cr is formed, and a Co alloy film as a magnetic film is formed thereon.
Further, as a protective film, a magnetic recording medium obtained by sequentially forming, for example, a carbon film was found, and the present invention was completed. A sputtering method is generally used as a film forming method. In the non-magnetic underlayer film, the total proportion of two elements other than Cr is 10 to 40 at%.
【0006】[0006]
【発明の実施の形態】前記本発明に用いられる非磁性基
板としては、磁気記録媒体用基板として一般に用いられ
るNiPメッキ膜が形成されたAl合金(以下、NiP
メッキAl基板という)に加え、表面平滑性に優れるガ
ラス基板、単結晶シリコン基板等を用いることができ
る。MRヘッド用の磁気記録媒体では記録密度の向上に
伴い、ヘッドの低フライングハイト化が要求されるた
め、従来に比べ、基板表面の平滑性が要求される。本発
明に用いられる非磁性基板にあっては表面平均粗さRa
が20Å以下であることが好適である。BEST MODE FOR CARRYING OUT THE INVENTION The non-magnetic substrate used in the present invention is an Al alloy (hereinafter, referred to as NiP) having a NiP plating film generally used as a substrate for a magnetic recording medium.
In addition to the plated Al substrate), a glass substrate, a single crystal silicon substrate or the like having excellent surface smoothness can be used. In the magnetic recording medium for the MR head, the head is required to have a lower flying height as the recording density is improved, and therefore the smoothness of the substrate surface is required as compared with the conventional case. In the non-magnetic substrate used in the present invention, the surface average roughness Ra
Is preferably 20 Å or less.
【0007】前記本発明における非磁性下地膜として
は、Ti,Ta,Ag,Mo,Siから選ばれる2種の
元素とCrとからなる3元系Cr合金膜を25〜350
Åの極めて薄い膜厚で成膜することができる。このCr
合金非磁性下地膜の膜厚を設定することは、その上に成
膜するCo合金磁性膜の結晶配向性、及び結晶粒径を制
御する上で重要である。即ち、磁気記録媒体の媒体ノイ
ズを低減するためには、Co合金磁性膜の結晶粒径を細
粒化する、或いは結晶粒間の交換結合を弱めることが必
要である。従来用いられてきたCr非磁性下地膜上のC
o合金結晶粒はCr非磁性下地膜の膜厚を薄くすること
で細粒化されるが、Cr非磁性下地膜の膜厚減少に伴
い、保磁力Hcが低下してしまうという問題を有してい
る。しかし、非磁性下地膜としてTi,Ta,Ag,M
o,Siから選ばれる2種の元素とCrとからなる3元
系Cr合金膜を用いた場合において、Cr合金非磁性下
地膜を25〜350Åの極めて薄い膜厚で成膜しても保
磁力Hcの低下が抑えられることが見出された。As the non-magnetic undercoat film in the present invention, a ternary Cr alloy film composed of two elements selected from Ti, Ta, Ag, Mo and Si and Cr is 25 to 350.
It can be formed with an extremely thin film thickness of Å. This Cr
Setting the film thickness of the alloy non-magnetic underlayer film is important for controlling the crystal orientation and the crystal grain size of the Co alloy magnetic film formed thereon. That is, in order to reduce the medium noise of the magnetic recording medium, it is necessary to reduce the crystal grain size of the Co alloy magnetic film or weaken the exchange coupling between the crystal grains. Conventionally used C on Cr non-magnetic underlayer
The o alloy crystal grains are made finer by thinning the film thickness of the Cr non-magnetic underlayer film, but there is a problem that the coercive force Hc decreases as the film thickness of the Cr nonmagnetic underlayer film decreases. ing. However, as a non-magnetic underlayer, Ti, Ta, Ag, M
In the case of using a ternary Cr alloy film consisting of two kinds of elements selected from o and Si and Cr, the coercive force is obtained even if the Cr alloy nonmagnetic underlayer film is formed to an extremely thin film thickness of 25 to 350 Å. It was found that the decrease in Hc was suppressed.
【0008】非磁性下地膜として用いるCr合金を2元
系とした場合は、膜厚を薄くした時保磁力の低下が抑え
られる元素もあるが3元系に比べて十分ではなく、また
逆にCr膜に比べて保磁力が著しく低下してしまう元素
もある。図1に、Taの組成割合を変化させたCrTa
Ag10合金、CrTaAg15合金、CrTa合金の各非
磁性下地膜(膜厚=300Å)の上に成膜したCo75C
r16Pt6 Ta3 磁性膜(磁性膜の残留磁化膜厚積Br
T=100Gμm)の保磁力変化を示したが、3元系の
Cr合金を非磁性下地膜としたものはTaの組成割合が
ある範囲において特異的に保磁力Hcが高くなり、特に
Taを5〜25at%とした範囲において、2元系のC
r合金を非磁性下地膜としたものよりも保磁力が高かっ
た。各成分における同様な試験並びに他の性状試験によ
り、Ti,Ta,Ag,Mo,Siの各元素の添加量と
しては5〜25at%が望ましいようである。尚、図1
中におけるCrTaAg10合金、CrTaAg15合金、
CrTa合金は、Taの組成をAat%とした場合、正
確にはCr(100-10-A)TaA Ag10合金、Cr
(100-15-A)TaA Ag15合金、Cr(100-A) TaA 合金
と表記されるべきものである。When the Cr alloy used as the non-magnetic underlayer is made of a binary system, some elements can suppress the decrease in coercive force when the film thickness is made thin, but it is not sufficient as compared with the ternary system, and conversely. Some elements have a significantly lower coercive force than the Cr film. In Fig. 1, CrTa with varying composition ratio of Ta
Co 75 C formed on each non-magnetic base film (thickness = 300Å) of Ag 10 alloy, CrTaAg 15 alloy, CrTa alloy
r 16 Pt 6 Ta 3 magnetic film (remanent magnetization film thickness product Br of the magnetic film
T = 100 Gμm), the coercive force Hc was specifically increased in the range where the composition ratio of Ta was in the range where the composition ratio of Ta was 5%. In the range of up to 25 at%, binary C
The coercive force was higher than that of the r alloy with the non-magnetic underlayer. From similar tests and other property tests on each component, it seems that the addition amount of each element of Ti, Ta, Ag, Mo and Si is preferably 5 to 25 at%. FIG.
CrTaAg 10 alloy, CrTaAg 15 alloy,
CrTa alloy is exactly Cr (100-10-A) Ta A Ag 10 alloy, Cr when the composition of Ta is Aat%.
It should be described as (100-15-A) Ta A Ag 15 alloy and Cr (100-A) Ta A alloy.
【0009】また、本発明に用いる3元系Cr合金非磁
性下地膜におけるTi,Ta,Ag,Mo,Siから選
ばれる2種の元素の合計割合は10〜40at%とする
が、40at%より多いと保磁力や保磁力角型比S* が
低下してしまい、10at%より少ないとCr膜と近似
した物性しか得られず、合金にした効果が殆ど得られな
い。尚、前記のように3元系Cr合金非磁性下地膜の膜
厚は25〜350Åとすることが望ましいが、25Åよ
り薄いと如何なる合金組成のCr合金膜を用いても保磁
力Hcの低下を抑えることが困難であり、350Åより
厚いとその上に成膜するCo合金磁性膜の結晶粒子粗大
化により媒体ノイズ低減化が困難になる。Further, the total proportion of two kinds of elements selected from Ti, Ta, Ag, Mo and Si in the ternary Cr alloy non-magnetic underlayer film used in the present invention is 10 to 40 at%, but from 40 at%. If it is too large, the coercive force or the coercive force squareness ratio S * is lowered. If it is less than 10 at%, only the physical properties similar to those of the Cr film are obtained, and the effect of alloying is hardly obtained. As described above, it is desirable that the thickness of the ternary Cr alloy non-magnetic underlayer film is 25 to 350 Å, but if the thickness is less than 25 Å, the coercive force Hc will decrease even if a Cr alloy film of any alloy composition is used. It is difficult to suppress, and if it is thicker than 350 Å, it becomes difficult to reduce the medium noise due to the coarsening of the crystal grains of the Co alloy magnetic film formed thereon.
【0010】前記本発明における磁性膜としては、Co
合金膜が用いられ、特にその組成を限定するものではな
いが、CoCrPt、CoCrPtTaなどのPtを含
有するCo合金を好適に用いることができる。特に下地
の効果が顕著に表われるのはCoCrPtTaを用いた
時であり、前記のように非磁性下地膜として3元系Cr
合金膜を用いた時にCr合金非磁性下地膜の膜厚の薄い
領域で保磁力Hcの低下を抑えられるのであるが、この
原因としては、非磁性下地膜と磁性膜との各合金結晶の
格子定数整合性が向上するためと考えられる。Co合金
磁性膜としてCoCrPtTaを用いる場合についてさ
らに詳細に説明すると、合金組成としては、Co
(100-X-Y-Z) CrX PtY TaZ で示される組成式で、
13at%≦X≦20at%、4at%≦Y≦8at
%、2at%≦Z≦5at%であることが望ましい。C
r濃度が20at%を越えると保磁力の低下が著しくな
り、MRメディアに適さなくなる傾向がある。また、P
t濃度が前記上限を越えるとノイズが大きくなり、前記
下限を下回ると高い保磁力が得られない傾向がある。同
様にTa濃度が前記上限を越えると高い保磁力が得られ
ず、下限を下回るとノイズが増加する傾向がある。As the magnetic film in the present invention, Co
An alloy film is used, and the composition thereof is not particularly limited, but a Co alloy containing Pt such as CoCrPt or CoCrPtTa can be preferably used. In particular, the effect of the underlayer is remarkable when CoCrPtTa is used. As described above, the ternary Cr film is used as the nonmagnetic underlayer film.
When an alloy film is used, a decrease in coercive force Hc can be suppressed in a region where the thickness of the Cr alloy nonmagnetic underlayer film is thin. This is caused by the lattice of each alloy crystal of the nonmagnetic underlayer film and the magnetic film. This is considered to be because the consistency of constants is improved. The case where CoCrPtTa is used for the Co alloy magnetic film will be described in more detail.
(100-XYZ) Cr X Pt Y Ta Z
13 at% ≦ X ≦ 20 at%, 4 at% ≦ Y ≦ 8 at
%, 2 at% ≦ Z ≦ 5 at% are desirable. C
When the r concentration exceeds 20 at%, the coercive force is remarkably reduced, and it tends to be unsuitable for MR media. Also, P
If the t concentration exceeds the upper limit, noise increases, and if the t concentration falls below the lower limit, a high coercive force tends not to be obtained. Similarly, if the Ta concentration exceeds the upper limit, a high coercive force cannot be obtained, and if the Ta concentration is lower than the lower limit, noise tends to increase.
【0011】尚、Co合金磁性膜の膜厚は、MRヘッド
用の磁性媒体であることを考慮すると、残留磁化膜厚積
BrTを50〜130Gμmとなるように調整すること
が望ましい。残留磁化膜厚積BrTが50Gμmを下回
ると適切な出力が得られず、130Gμmを越えるとM
Rメディアに適した特性を得ることができない。The film thickness of the Co alloy magnetic film is preferably adjusted so that the residual magnetization film thickness product BrT is 50 to 130 Gμm, considering that it is a magnetic medium for an MR head. When the residual magnetization film thickness product BrT is less than 50 Gμm, an appropriate output cannot be obtained, and when it exceeds 130 Gμm, M
It is not possible to obtain characteristics suitable for R media.
【0012】[0012]
〈実施例1〉まず、Ni−PメッキAl基板に、表面粗
さRa15Åのテクスチャリングを施した後、DCマグ
ネトロンスパッタ装置内にセットした。次に、到達真空
度2×10-6Torrまで排気した後、前記基板を23
0℃に加熱した状態で、非磁性下地膜としてCr80Ta
10Ag10合金を300Å成膜し、引き続き磁性膜として
Co75Cr16Pt6 Ta3 合金を成膜した。さらに、磁
性膜の上には保護膜としてカーボンを150Å成膜し
た。成膜時のAr圧力は、各々3mTorrとした。磁
性膜の膜厚は残留磁化膜厚積(BrT)で110Gμm
であった。この実施例1により作製した磁気記録媒体の
磁気特性は、振動式磁気特性装置(VSM)を用いて測
定した。磁気記録媒体の記録再生特性は、再生部に磁気
抵抗(MR)素子を有する複合型薄膜磁気ヘッドを用
い、線記録密度140KFCI(測定範囲28.14m
m、回転数5400rpm)にて測定した。この実施例
1の磁気記録媒体の保磁力(Hc)は2800 Oe 、保
磁力角型比(S* )は84.9%、記録再生時のノイズ
は2.95μVであった。<Example 1> First, a Ni-P plated Al substrate was subjected to texturing with a surface roughness Ra15Å and then set in a DC magnetron sputtering apparatus. Next, after evacuation to an ultimate vacuum of 2 × 10 −6 Torr, the substrate is removed to 23
Cr 80 Ta as a non-magnetic underlayer in a state of being heated to 0 ° C
A 300 Å film of 10 Ag 10 alloy was formed, and subsequently a Co 75 Cr 16 Pt 6 Ta 3 alloy was formed as a magnetic film. Further, carbon was deposited as a protective film on the magnetic film at a thickness of 150 °. The Ar pressure during film formation was 3 mTorr. The film thickness of the magnetic film is 110 Gμm in the residual magnetization film thickness product (BrT).
Met. The magnetic characteristics of the magnetic recording medium manufactured according to Example 1 were measured using a vibration type magnetic characteristic device (VSM). The recording / reproducing characteristics of the magnetic recording medium were measured by using a composite type thin film magnetic head having a magnetoresistive (MR) element in the reproducing section and a linear recording density of 140 KFCI (measurement range: 28.14 m).
m, rotation speed 5400 rpm). The magnetic recording medium of Example 1 had a coercive force (Hc) of 2,800 Oe, a coercive force squareness ratio (S * ) of 84.9%, and a noise during recording / reproduction of 2.95 μV.
【0013】〈実施例2〉非磁性下地膜の合金組成をC
r70Ta20Ag10とした以外は前記実施例1と同様にし
て磁気記録媒体を作製した。この実施例2の磁気記録媒
体の保磁力(Hc)は3010 Oe 、保磁力角型比(S
* )は82.6%、記録再生時のノイズは2.65μV
であった。<Embodiment 2> The alloy composition of the non-magnetic underlayer is C
A magnetic recording medium was produced in the same manner as in Example 1 except that r 70 Ta 20 Ag 10 was used. The coercive force (Hc) of the magnetic recording medium of Example 2 was 3010 Oe, and the coercive force squareness ratio (S
* ) Is 82.6%, and noise during recording / playback is 2.65 μV
Met.
【0014】〈比較例1〉非磁性下地膜をCrとした以
外は前記実施例1と同様にして磁気記録媒体を作製し
た。この比較例1の磁気記録媒体の保磁力(Hc)は2
011 Oe 、保磁力角型比(S* )は88.6%、記録
再生時のノイズは3.89μVであった。<Comparative Example 1> A magnetic recording medium was prepared in the same manner as in Example 1 except that the non-magnetic underlayer was made of Cr. The coercive force (Hc) of the magnetic recording medium of Comparative Example 1 is 2
011 Oe, coercive force squareness ratio (S * ) was 88.6%, and noise during recording and reproduction was 3.89 μV.
【0015】〈比較例2〉非磁性下地膜の合金組成をC
r80Ta20とした以外は前記実施例1と同様にして磁気
記録媒体を作製した。この比較例2の磁気記録媒体の保
磁力(Hc)は2111 Oe 、保磁力角型比(S* )は
87.8%、記録再生時のノイズは3.75μVであっ
た。Comparative Example 2 The alloy composition of the non-magnetic underlayer is C
A magnetic recording medium was produced in the same manner as in Example 1 except that r 80 Ta 20 was used. The coercive force (Hc) of the magnetic recording medium of Comparative Example 2 was 2111 Oe, the coercive force squareness ratio (S * ) was 87.8%, and the noise during recording / reproduction was 3.75 μV.
【0016】〈比較例3〉非磁性下地膜の合金組成をC
r90Ag10とした以外は前記実施例1と同様にして磁気
記録媒体を作製した。この比較例3の磁気記録媒体の保
磁力(Hc)は1536 Oe 、保磁力角型比(S* )は
86.1%、記録再生時のノイズは4.25μVであっ
た。<Comparative Example 3> The alloy composition of the non-magnetic underlayer is C
A magnetic recording medium was prepared in the same manner as in Example 1 except that r 90 Ag 10 was used. The coercive force (Hc) of the magnetic recording medium of Comparative Example 3 was 1536 Oe, the coercive force squareness ratio (S * ) was 86.1%, and the noise during recording and reproduction was 4.25 μV.
【0017】〈比較例4〉非磁性下地膜の合金組成をC
r50Ta30Ag20とした以外は前記実施例1と同様にし
て磁気記録媒体を作製した。この比較例4の磁気記録媒
体の保磁力(Hc)は1950 Oe 、保磁力角型比(S
* )は80.9%、記録再生時のノイズは4.01μV
であった。<Comparative Example 4> The alloy composition of the non-magnetic underlayer is C
A magnetic recording medium was produced in the same manner as in Example 1 except that r 50 Ta 30 Ag 20 was used. The coercive force (Hc) of the magnetic recording medium of Comparative Example 4 was 1950 Oe and the coercive force squareness ratio (S
* ) Is 80.9%, and noise during recording and playback is 4.01 μV
Met.
【0018】〈実施例3〉非磁性下地膜の合金組成をC
r65Ta20Ti15とした以外は前記実施例1と同様にし
て磁気記録媒体を作製した。この実施例3の磁気記録媒
体の保磁力(Hc)は2866 Oe 、保磁力角型比(S
* )は89.9%、記録再生時のノイズは2.88μV
であった。<Embodiment 3> The alloy composition of the non-magnetic underlayer is C
A magnetic recording medium was produced in the same manner as in Example 1 except that r 65 Ta 20 Ti 15 was used. The coercive force (Hc) of the magnetic recording medium of Example 3 is 2866 Oe, and the coercive force squareness ratio (S
* ) Is 89.9%, and noise during recording / playback is 2.88 μV
Met.
【0019】〈比較例5〉非磁性下地膜の合金組成をC
r55Ta30Ti15とした以外は前記実施例1と同様にし
て磁気記録媒体を作製した。この比較例5の磁気記録媒
体の保磁力(Hc)は1283 Oe 、保磁力角型比(S
* )は61.1%、記録再生時のノイズは5.04μV
であった。<Comparative Example 5> The alloy composition of the non-magnetic underlayer is C
A magnetic recording medium was produced in the same manner as in Example 1 except that r 55 Ta 30 Ti 15 was used. The magnetic recording medium of Comparative Example 5 had a coercive force (Hc) of 1283 Oe and a coercive force squareness ratio (S
* ) Is 61.1%, noise during recording and playback is 5.04μV
Met.
【0020】〈実施例4〉非磁性下地膜の合金組成をC
r70Mo20Si10とした以外は前記実施例1と同様にし
て磁気記録媒体を作製した。この実施例4の磁気記録媒
体の保磁力(Hc)は2934 Oe 、保磁力角型比(S
* )は89.1%、記録再生時のノイズは2.74μV
であった。<Embodiment 4> The alloy composition of the non-magnetic underlayer is C
A magnetic recording medium was produced in the same manner as in Example 1 except that r 70 Mo 20 Si 10 was used. The coercive force (Hc) of the magnetic recording medium of Example 4 was 2934 Oe, and the coercive force squareness ratio (S
* ) Is 89.1%, and noise during recording / playback is 2.74 μV
Met.
【0021】〈比較例6〉非磁性下地膜の合金組成をC
r85Si15とした以外は前記実施例1と同様にして磁気
記録媒体を作製した。この比較例6の磁気記録媒体の保
磁力(Hc)は1688 Oe 、保磁力角型比(S* )は
88.3%、記録再生時のノイズは4.23μVであっ
た。<Comparative Example 6> The alloy composition of the non-magnetic underlayer is C
except that the r 85 Si 15 was prepared a magnetic recording medium in the same manner as in Example 1. The coercive force (Hc) of the magnetic recording medium of Comparative Example 6 was 1688 Oe, the coercive force squareness ratio (S * ) was 88.3%, and the noise during recording and reproduction was 4.23 μV.
【0022】〈実施例5〉非磁性下地膜の合金組成をC
r65Ta25Ag10とし、Co合金磁性膜の膜厚を残留磁
化膜厚積(BrT)で80Gμmとした以外は前記実施
例1と同様にして磁気記録媒体を作製した。この実施例
5の磁気記録媒体の保磁力(Hc)は2940 Oe 、保
磁力角型比(S* )は83.5%、記録再生時のノイズ
は2.25μVであった。<Embodiment 5> The alloy composition of the non-magnetic underlayer is C
A magnetic recording medium was produced in the same manner as in Example 1 except that r 65 Ta 25 Ag 10 was used, and the film thickness of the Co alloy magnetic film was 80 Gμm in terms of residual magnetization film thickness product (BrT). The coercive force (Hc) of the magnetic recording medium of Example 5 was 2940 Oe, the coercive force squareness ratio (S * ) was 83.5%, and the noise during recording and reproduction was 2.25 μV.
【0023】〈実施例6〉非磁性下地膜の合金組成をC
r70Ta20Ag10、膜厚を100Åとした以外は前記実
施例1と同様にして磁気記録媒体を作製した。この実施
例6の磁気記録媒体の保磁力(Hc)は2666 Oe 、
保磁力角型比(S* )は86.8%、記録再生時のノイ
ズは2.91μVであった。<Embodiment 6> The alloy composition of the non-magnetic underlayer is C
A magnetic recording medium was produced in the same manner as in Example 1 except that r 70 Ta 20 Ag 10 and the film thickness were 100 Å. The coercive force (Hc) of the magnetic recording medium of Example 6 was 2666 Oe,
The coercive force squareness ratio (S * ) was 86.8%, and the noise during recording and reproduction was 2.91 μV.
【0024】〈実施例7〉非磁性下地膜の合金組成をC
r70Ta20Ag10、膜厚を100Åとし、Co合金磁性
膜の膜厚を残留磁化膜厚積(BrT)で55Gμmとし
た以外は前記実施例1と同様にして磁気記録媒体を作製
した。この実施例7の磁気記録媒体の保磁力(Hc)は
2430 Oe 、保磁力角型比(S* )は84.3%、記
録再生時のノイズは2.97μVであった。<Embodiment 7> The alloy composition of the non-magnetic underlayer is C
A magnetic recording medium was prepared in the same manner as in Example 1 except that r 70 Ta 20 Ag 10 , the film thickness was 100 Å, and the film thickness of the Co alloy magnetic film was 55 Gμm in terms of residual magnetization film thickness product (BrT). The coercive force (Hc) of the magnetic recording medium of Example 7 was 2430 Oe, the coercive force squareness ratio (S * ) was 84.3%, and the noise during recording and reproduction was 2.97 μV.
【0025】〈実施例8〉非磁性下地膜の合金組成をC
r70Ta20Ag10、膜厚を25Åとし、Co合金磁性膜
の膜厚を残留磁化膜厚積(BrT)で110Gμmとし
た以外は前記実施例1と同様にして磁気記録媒体を作製
した。この実施例8の磁気記録媒体の保磁力(Hc)は
2205 Oe 、保磁力角型比(S* )は80.1%、記
録再生時のノイズは3.02μVであった。<Embodiment 8> The alloy composition of the non-magnetic underlayer is C
A magnetic recording medium was produced in the same manner as in Example 1 except that r 70 Ta 20 Ag 10 , the film thickness was 25 Å, and the film thickness of the Co alloy magnetic film was 110 Gμm in the residual magnetization film thickness product (BrT). The coercive force (Hc) of the magnetic recording medium of Example 8 was 2205 Oe, the coercive force squareness ratio (S * ) was 80.1%, and the noise during recording and reproduction was 3.02 μV.
【0026】〈実施例9〉非磁性基板を単結晶Siとし
た以外は前記実施例1と同様にして磁気記録媒体を作製
した。この実施例9の磁気記録媒体の保磁力(Hc)は
2460 Oe 、保磁力角型比(S* )は83.2%、記
録再生時のノイズは2.74μVであった。Example 9 A magnetic recording medium was manufactured in the same manner as in Example 1 except that the non-magnetic substrate was single crystal Si. The magnetic recording medium of Example 9 had a coercive force (Hc) of 2460 Oe, a coercive force squareness ratio (S * ) of 83.2%, and a recording / reproducing noise of 2.74 μV.
【0027】〈実施例10〉非磁性基板を結晶化ガラス
(OHARA製)とした以外は前記実施例1と同様にし
て磁気記録媒体を作製した。この実施例10の磁気記録
媒体の保磁力(Hc)は2315 Oe 、保磁力角型比
(S* )は82.5%、記録再生時のノイズは2.91
μVであった。Example 10 A magnetic recording medium was prepared in the same manner as in Example 1 except that the non-magnetic substrate was crystallized glass (made by OHARA). The coercive force (Hc) of the magnetic recording medium of Example 10 was 2315 Oe, the coercive force squareness ratio (S * ) was 82.5%, and the noise during recording and reproduction was 2.91.
It was μV.
【0028】以上本発明の実施例を記載したが、本発明
は前記実施例に限定されるものではなく、特許請求の範
囲に記載の構成を変更しない限りどのようにでも実施す
ることができる。Although the embodiments of the present invention have been described above, the present invention is not limited to the above-mentioned embodiments and can be carried out in any manner as long as the configuration described in the claims is not changed.
【0029】[0029]
【発明の効果】本発明の磁気記録媒体は、非磁性下地膜
として特定組成の3元系Cr合金を用いることによりそ
の膜厚を25〜350Åに薄くしても保磁力Hcが低下
することなく、Co合金磁性膜の結晶粒径を細粒化する
ことができ、媒体ノイズを低減させたMRヘッド対応の
磁気記録媒体として利用することができる。In the magnetic recording medium of the present invention, the coercive force Hc does not decrease even if the film thickness is reduced to 25 to 350 Å by using the ternary Cr alloy having a specific composition as the non-magnetic underlayer film. The crystal grain size of the Co alloy magnetic film can be made finer, and the Co alloy magnetic film can be used as a magnetic recording medium corresponding to an MR head with reduced medium noise.
【0030】さらに、Co合金磁性膜として特定組成の
CoCrPtTa合金を用いると、特に高保磁力が得ら
れるものとなる。Further, when a CoCrPtTa alloy having a specific composition is used as the Co alloy magnetic film, a particularly high coercive force can be obtained.
【図1】Ta組成の異なるCr合金非磁性下地膜上に成
膜したCo75Cr16Pt6 Ta3 磁性膜の保磁力変化を
示すグラフである。FIG. 1 is a graph showing changes in coercive force of Co 75 Cr 16 Pt 6 Ta 3 magnetic films formed on Cr alloy non-magnetic underlayer films having different Ta compositions.
Claims (4)
i,Ta,Ag,Mo,Siから選ばれる2種の元素と
Crとからなる3元系Cr合金膜を形成し、該Cr合金
膜の上に、磁性膜としてCoを主成分とする合金膜を形
成した磁気記録媒体であって、 前記非磁性下地膜は、Cr以外の2種の元素の合計割合
が10〜40at%であることを特徴とする磁気記録媒
体。1. T as a non-magnetic underlayer on a non-magnetic substrate
An alloy film containing Co as a main component is formed on the Cr alloy film by forming a ternary Cr alloy film containing two kinds of elements selected from i, Ta, Ag, Mo and Si and Cr. The non-magnetic underlayer film, wherein the total proportion of two kinds of elements other than Cr is 10 to 40 at%.
0Åであることを特徴とする請求項1に記載の磁気記録
媒体。2. The non-magnetic underlayer film has a thickness of 25 to 35.
The magnetic recording medium according to claim 1, wherein the magnetic recording medium is 0Å.
rX PtY TaZ で示される組成式で、13at%≦X
≦20at%、4at%≦Y≦8at%、2at%≦Z
≦5at%であることを特徴とする請求項1又は2に記
載の磁気記録媒体。3. The alloy composition of the magnetic film is Co (100-XYZ) C.
In the composition formula represented by r X Pt Y Ta Z , 13 at% ≦ X
≤20 at%, 4 at% ≤Y≤8 at%, 2 at% ≤Z
3. The magnetic recording medium according to claim 1, wherein ≦ 5 at%.
0〜130Gμmであることを特徴とする請求項1〜3
のいずれか1項に記載の磁気記録媒体。4. The remanence film thickness product (BrT) of the magnetic film is 5
4. The thickness is from 0 to 130 Gm.
The magnetic recording medium according to any one of 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1803696A JPH09190621A (en) | 1996-01-09 | 1996-01-09 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1803696A JPH09190621A (en) | 1996-01-09 | 1996-01-09 | Magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09190621A true JPH09190621A (en) | 1997-07-22 |
Family
ID=11960454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1803696A Pending JPH09190621A (en) | 1996-01-09 | 1996-01-09 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09190621A (en) |
-
1996
- 1996-01-09 JP JP1803696A patent/JPH09190621A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3143611B2 (en) | Ultrathin nucleation layer for magnetic thin film media and method of making the layer | |
US6156404A (en) | Method of making high performance, low noise isotropic magnetic media including a chromium underlayer | |
JP2561655B2 (en) | In-plane magnetic recording medium | |
US6562489B2 (en) | Magnetic recording medium and magnetic storage apparatus | |
US5879783A (en) | Low noise magnetic recording medium and method of manufacturing | |
EP0531035B1 (en) | Magnetic recording medium | |
JP3298893B2 (en) | Bicrystalline cluster magnetic recording media | |
JP2005251373A (en) | Magnetic recording medium, manufacturing method of the same, and magnetic storage device | |
JP2006185489A (en) | Magnetic recording medium and magnetic storage device | |
JP2003123243A (en) | Magnetic recording medium and method of manufacturing the same | |
JPH10302242A (en) | Magnetic alloy having textural nucleus creation layer and production thereof | |
JP3588039B2 (en) | Magnetic recording medium and magnetic recording / reproducing device | |
US7427446B2 (en) | Magnetic recording medium with antiparallel magnetic layers and CrN based underlayer, magnetic storage apparatus and method of producing magnetic recording medium | |
JP3052915B2 (en) | Perpendicular magnetic recording medium and method of manufacturing the same | |
US7141272B2 (en) | Method of producing magnetic recording medium | |
JP2003067909A (en) | Perpendicular magnetic recording medium | |
US6090496A (en) | Magnetic recording medium and non-magnetic alloy film | |
JPH1041134A (en) | Magnetic recording medium and its manufacturing method | |
JPH09190621A (en) | Magnetic recording medium | |
JP4482849B2 (en) | Perpendicular magnetic recording medium and manufacturing method thereof | |
US6749956B1 (en) | Magnetic recording medium | |
JP2001503180A (en) | Magnetic recording media comprising an underlayer of nickel-aluminum or iron-aluminum | |
JPH11110733A (en) | Magnetic recording medium and nonmagnetic alloy film | |
JP4534402B2 (en) | Perpendicular magnetic recording medium and manufacturing method thereof | |
JPH09161256A (en) | Magnetic recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20031211 |
|
A131 | Notification of reasons for refusal |
Effective date: 20031224 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040219 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050426 |