JPH09196739A - Method and implement for detection of liquid - Google Patents
Method and implement for detection of liquidInfo
- Publication number
- JPH09196739A JPH09196739A JP8318793A JP31879396A JPH09196739A JP H09196739 A JPH09196739 A JP H09196739A JP 8318793 A JP8318793 A JP 8318793A JP 31879396 A JP31879396 A JP 31879396A JP H09196739 A JPH09196739 A JP H09196739A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- light
- sample
- flow path
- body fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Optical Measuring Cells (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は微量の液体の有無を
光学的手法により検知する方法、その方法に供する器具
及びそれらを用いた微量液体定量装置に関する。特に微
量の生物学的液体試料を分析に供するのに有用である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the presence or absence of a trace amount of liquid by an optical method, an instrument used for the method, and a trace amount liquid metering device using them. Particularly, it is useful for providing a minute amount of biological liquid sample for analysis.
【0002】[0002]
【従来の技術】液体中の成分分析、特に体液中成分の分
析において、簡易に測定できる使い捨て乾式分析器具の
利用が普及している。体液の分析は患者または患畜の負
担軽減のため、できるだけ少量の試料で行うのが通常で
あり、生物災害等を防止するため試料を分析器具の流路
内に閉じ込めて、ポンプで吸引することにより試料を移
動させて流路内で反応や測定を行う方法が用いられてい
る。また、細菌等を含む試料の場合には特に試料を試料
受容口等に滴下するピペッティング等の操作回数を少な
くすることが望まれている。2. Description of the Related Art In the analysis of components in liquids, especially in the analysis of components in body fluids, the use of disposable dry analytical instruments that can be easily measured is widespread. In order to reduce the burden on patients or animals, the analysis of bodily fluids is usually performed with as little sample as possible.To prevent biological hazards, etc., the sample is trapped in the flow path of the analytical instrument and aspirated by a pump. A method is used in which a sample is moved and a reaction or measurement is performed in a channel. Further, in the case of a sample containing bacteria or the like, it is particularly desired to reduce the number of operations such as pipetting for dropping the sample to the sample receiving port or the like.
【0003】従来、液体の検知方法で一般的には、電極
を用いて液接触時の導通の変化を検出する方法、超音波
を照射して液体の有無を検出する方法、液体の存在、非
存在下における静電容量の変化等を検出する方法等があ
る。しかし、微量の生物学的液体試料を測定するため
の、厚さの薄い、気密性が高い器具は、その中に電極を
構成することは構造的に難しく、又薄層となっている微
量の生物学的液体試料を超音波や静電容量の微小変化に
より検知することは困難であり、試料の移送量を正確に
制御することは容易ではなかった。Conventionally, a liquid detecting method is generally a method of detecting a change in conduction at the time of liquid contact using electrodes, a method of irradiating ultrasonic waves to detect the presence or absence of liquid, the presence or absence of liquid. For example, there is a method of detecting a change in electrostatic capacity in the presence. However, a thin instrument with high airtightness for measuring a minute amount of a biological liquid sample is structurally difficult to construct an electrode therein, and a minute amount of a thin layer is necessary. It is difficult to detect a biological liquid sample by ultrasonic waves or a minute change in capacitance, and it is not easy to accurately control the sample transfer amount.
【0004】光学的には、従来光を透過させてその透過
率の変化から液体の有無を検出する方法が用いられてい
る。しかし、厚さが0.05〜0.5mmである流路に
おける薄層の液体の有無を検知するには、その透過率の
変化は微弱であり検知できる信号として用いるのは困難
であった。Optically, a method of transmitting light and detecting the presence or absence of a liquid from the change in the transmittance is conventionally used. However, in detecting the presence or absence of a thin layer of liquid in a channel having a thickness of 0.05 to 0.5 mm, the change in the transmittance is weak and it is difficult to use it as a detectable signal.
【0005】[0005]
【発明が解決しようとする課題】本発明は上述の状況に
鑑み、微量かつ薄層になっている分析器具での液体の検
知を容易に行う方法、該方法に用いる器具、分析器具お
よび微量液体定量装置を提供することを目的とする。In view of the above situation, the present invention provides a method for easily detecting a liquid in a trace amount and a thin analytical instrument, an instrument used in the method, an analytical instrument and a trace amount liquid. An object is to provide a quantification device.
【0006】[0006]
【課題を解決するための手段】即ち本発明の第1は、少
なくとも流路上面より上部部分が透明材料により形成さ
れ、微量液体が流れる上面が平面である流路を有する成
形体において、流路上面の法線に対して42〜62°の
範囲で入射し、該流路上面で反射または透過した光を受
光し、その強度を測定することにより流路内の液体の有
無を検知する液体検知方法である。Means for Solving the Problems That is, the first aspect of the present invention is to provide a molded article having a flow path in which at least an upper part of the flow path from an upper surface thereof is made of a transparent material, and a top surface through which a trace amount of liquid flows is a flat surface. Liquid detection that detects the presence or absence of liquid in the flow channel by receiving light incident on the upper surface normal line in the range of 42 to 62 °, reflected or transmitted by the flow channel upper surface, and measuring the intensity thereof. Is the way.
【0007】本発明の第2は、少なくとも流路上面より
上部部分が透明材料により形成され、微量液体が流れる
上面が平面である流路を有する成形体であって、流路上
面に対して42〜62°の角度で入射面および射出面を
成形体外面に形成した流路内の液体の有無を検知する液
体検知部分を有する器具である。A second aspect of the present invention is a molded article having a flow path in which at least a portion above the flow path upper surface is made of a transparent material, and the upper surface through which a small amount of liquid flows is a flat surface, and the flow path upper surface is 42 It is an instrument having a liquid detection part for detecting the presence or absence of liquid in a flow channel in which an entrance surface and an exit surface are formed on the outer surface of a molded body at an angle of ˜62 °.
【0008】本発明の第3は、上記液体検知部分を少な
くとも1つ備えた試料の光学特性を測定して体液成分分
析を行う分析器具であり、試料受容口とポンプ接続口を
有し、該試料受容口と該ポンプ接続口の間に少なくとも
1つの試料処理室と少なくとも1つの測光室、または少
なくとも1つの試料処理室兼測光室を有し、必要に応じ
て血球分離部分、試料溜、廃液溜を備え、それぞれが少
なくとも1つの空気穴を有する流路で結合されている体
液成分分析器具であって、1つの試料受容口から複数の
流路へ定量的に試料が分割されて複数の測定に試料が供
給されるよう構成されている。A third aspect of the present invention is an analytical instrument for measuring the optical characteristics of a sample equipped with at least one of the above-mentioned liquid detecting portions to analyze a body fluid component, which has a sample receiving port and a pump connecting port. At least one sample processing chamber and at least one photometric chamber, or at least one sample processing chamber / photometric chamber are provided between the sample receiving port and the pump connection port, and if necessary, a blood cell separating portion, a sample reservoir, and a waste liquid. A body fluid component analyzing instrument comprising a reservoir, each of which is connected by a flow path having at least one air hole, wherein a sample is quantitatively divided from one sample receiving port into a plurality of flow paths to perform a plurality of measurements. Is configured to be supplied with the sample.
【0009】本発明の第4は、上記液体検知部分を備え
た体液成分分析器具を装着し、該体液成分分析器具の空
気穴を開閉する空気弁と入射面へ光を入射する光源と反
射光または透過光を受光する受光器よりなる液体検知手
段と流体検知と同時に空気穴を開閉する空気開閉手段と
を備えた微量液体定量装置である。In a fourth aspect of the present invention, a body fluid component analyzing instrument having the above-mentioned liquid detecting portion is mounted, an air valve for opening and closing an air hole of the body fluid component analyzing instrument, a light source for making light incident on an incident surface, and a reflected light. Alternatively, it is a trace amount liquid quantification device provided with a liquid detection means including a light receiver for receiving transmitted light and an air opening / closing means for opening / closing an air hole at the same time as fluid detection.
【0010】[0010]
【発明の実施の形態】一般に、光が屈折率nの物質から
屈折率n0 の物質に入る時に、入射角をθ、屈折角をθ
0 とすれば、nsinθ=n0 sinθ0 という屈折の
法則が成立する。光が屈折率の大きなところから屈折率
の小さなところにでる場合はn>n0で、入射角が相当
大きくなるとnsinθ/n0 >1となり、どんな屈折
率をとっても上記の法則を満足せず全反射する。この場
合の入射角が臨界角である。例えば、空気に対するガラ
スの屈折率をn/n0 =1.52とすれば、nsinθ
/n0 =1という条件を満たす角度は約42°となる。
したがってガラスの内部を通ってくる光が空気との境界
面にあたる入射角が42°以上のとき、光は全部ガラス
の内部に反射して空気の側に出てこない。この場合反射
光の強さを入射光の強さで割った値が反射率であり、こ
の値は一般に入射角と共に増大する。BEST MODE FOR CARRYING OUT THE INVENTION Generally, when light enters a substance having a refractive index n 0 from a substance having a refractive index n, the incident angle is θ and the refraction angle is θ.
If 0 , then the refraction law of n sin θ = n 0 sin θ 0 holds. When light goes from a place with a large refractive index to a place with a small refractive index, n> n 0 , and when the incident angle is considerably large, n sin θ / n 0 > 1, which means that the above law cannot be satisfied regardless of the refractive index. reflect. The incident angle in this case is the critical angle. For example, if the refractive index of glass with respect to air is n / n 0 = 1.52, then nsin θ
The angle satisfying the condition of / n 0 = 1 is about 42 °.
Therefore, when the incident angle of the light passing through the inside of the glass at the interface with the air is 42 ° or more, the light is totally reflected inside the glass and does not go out to the air side. In this case, the value obtained by dividing the intensity of the reflected light by the intensity of the incident light is the reflectance, and this value generally increases with the incident angle.
【0011】このように流路が空気で満たされている場
合に全反射する角度で光を入射するときに、空気の側に
たとえば水が流入すると、(ガラスの屈折率=1.5
2)/(水の屈折率=1.33)=1.14となり、n
sinθ/n0 =1を満たす角度は約62°となるので
入射角は全反射せず反射率は減少する。したがって、こ
の反射光の変化を検知することにより流路内の液体の有
無を容易に検知することができる。When light is incident at an angle of total reflection when the flow path is filled with air as described above, if, for example, water flows into the air side (refractive index of glass = 1.5
2) / (refractive index of water = 1.33) = 1.14, and n
Since the angle satisfying sin θ / n 0 = 1 is about 62 °, the incident angle is not totally reflected and the reflectance is reduced. Therefore, the presence or absence of the liquid in the flow path can be easily detected by detecting the change in the reflected light.
【0012】少なくとも流路上面より上部部分の透明材
料はガラス、アクリル樹脂、ポリスチレン樹脂等が用い
られるが、その屈折率は約1.5である。一方流路を満
たす生物学的液体である血漿の屈折率は約1.35であ
る。したがって、流路上面へ流路上面の法線に対して4
2〜62°の光を入射し、液体の有無に従って生じる反
射光の強度の変化を測定することにより液体の有無を検
知できる。この場合、流路より下部の部分は必ずしも透
明材料である必要はない。Glass, acrylic resin, polystyrene resin, or the like is used as the transparent material at least above the upper surface of the flow path, and its refractive index is about 1.5. On the other hand, the refractive index of plasma, which is a biological liquid that fills the channel, is about 1.35. Therefore, 4 to the upper surface of the flow path with respect to the normal to the upper surface of the flow path.
The presence or absence of the liquid can be detected by injecting the light of 2 to 62 ° and measuring the change in the intensity of the reflected light generated according to the presence or absence of the liquid. In this case, the portion below the flow path does not necessarily need to be a transparent material.
【0013】反射光の強度の変化を測定する代わりに液
体の透過光の強度の変化を測定してもよい。透過光の測
定を行うときは流路より下部も透明材料で形成されてい
る必要がある。Instead of measuring the change in the intensity of the reflected light, the change in the intensity of the transmitted light of the liquid may be measured. When measuring transmitted light, it is necessary that the lower part of the channel is also made of a transparent material.
【0014】本発明の、流路内の液体の有無を検知する
液体検知機構を有する分析器具は、少なくとも流路上面
より上部部分が透明材料により形成されており、微量液
体が流れる流路を有する成形体であって、流路上面に対
して42〜62°の角度で入射面および射出面を成形体
外面に形成しているものである。流路上部は入射面と射
出面の中間に配置される。流路上面の反射光を測定する
ときは、入射面および射出面は成形体外面の同一平面に
形成され、流路上面の透過光を測定するときは、入射面
および射出面は成形体外面の相対する面に形成される。The analytical instrument of the present invention, which has a liquid detection mechanism for detecting the presence or absence of liquid in the flow channel, has a flow channel in which a trace amount of liquid flows, in which at least the upper portion of the flow channel upper surface is made of a transparent material. In the molded body, the incident surface and the injection surface are formed on the outer surface of the molded body at an angle of 42 to 62 ° with respect to the upper surface of the flow path. The upper part of the flow path is arranged between the entrance surface and the exit surface. When measuring the reflected light on the upper surface of the channel, the incident surface and the exit surface are formed on the same plane as the outer surface of the molded body, and when measuring the transmitted light on the upper surface of the channel, the incident surface and the exit surface are formed on the outer surface of the molded body. Formed on opposite surfaces.
【0015】入射面または射出面は、その光が透過する
面が流路上面に対して42〜62°の角度をなすように
形成されればよく、その面は成形体外面に対して外部へ
突起して設けても、凹状に設けてもよい。また、入射面
および射出面の周囲に黒インク等でマスキングを施す
と、成形体内での迷光を防止することができる。The incident surface or the exit surface may be formed so that the surface through which the light is transmitted forms an angle of 42 to 62 ° with respect to the upper surface of the flow path, and the surface is external to the outer surface of the molded body. It may be provided as a protrusion or as a concave shape. Further, masking the periphery of the entrance surface and the exit surface with black ink or the like can prevent stray light in the molded body.
【0016】本発明の液体検知部分を体液成分分析器具
に設けることにより、微量の生物学的液体を定量的に供
給することができる。図1に本発明の第1実施態様であ
る体液成分分析器具の平面図を示す。試料が全血であ
り、血球を分離して血漿を分析に供する場合を例に示
す。この分析器具は試料受容口(1)、血球分離領域
(2)、第1空気穴(3)、第2空気穴(4)、液体検
知部分(5)、試料処理室兼測光室(6)、ポンプ接続
口(7)とそれらを結合している流路(8)より構成さ
れている。試料受容口(1)より全血を供給し、ポンプ
接続口(7)より吸引すると血球分離領域(2)で分離
された血漿が流路(8)に導き出される。血漿が液体検
知部分(5)に到達するのを検知すると、ポンプ接続口
(7)は一旦開放されて流路(8)内の減圧が解除され
る。このとき血漿がほんのわずか試料受容口(1)側に
後退する。次に第1空気穴(3)を開口した状態で吸引
し、血漿の先端を液体検知部分(5)まで移送する。第
1空気穴(3)を閉じ、第2空気穴(4)を開口して吸
引すると、第2空気穴(4)から液体検知部分(5)ま
での間の血漿のみを試料処理室兼測光室(6)に移送
し、分析に供することができる。By providing the liquid detecting portion of the present invention in the body fluid component analyzing instrument, a minute amount of biological liquid can be quantitatively supplied. FIG. 1 shows a plan view of a body fluid component analyzing instrument according to a first embodiment of the present invention. An example is shown where the sample is whole blood and blood cells are separated and plasma is used for analysis. This analytical instrument includes a sample receiving port (1), a blood cell separation area (2), a first air hole (3), a second air hole (4), a liquid detecting portion (5), a sample processing chamber and a photometric chamber (6). , A pump connection port (7) and a flow path (8) connecting them. When whole blood is supplied from the sample receiving port (1) and aspirated from the pump connecting port (7), the plasma separated in the blood cell separation region (2) is guided to the flow channel (8). When the blood plasma is detected to reach the liquid detection portion (5), the pump connection port (7) is once opened and the depressurization in the flow path (8) is released. At this time, the plasma retreats only slightly toward the sample receiving port (1) side. Next, the first air hole (3) is opened and sucked, and the tip of the plasma is transferred to the liquid detection portion (5). When the first air hole (3) is closed and the second air hole (4) is opened and suctioned, only the blood plasma between the second air hole (4) and the liquid detection portion (5) is used as the sample processing chamber and photometry. It can be transferred to the chamber (6) for analysis.
【0017】図2は、本発明の第1実施態様である体液
成分分析器具の別の態様の平面図を示す。この体液成分
分析器具でも、試料として全血を用い、血球を分離して
血漿を分析する場合を例として説明する。この分析器具
は試料受容口(101)、血球分離領域(102)、第
1空気穴(103)、第2空気穴(105)、第1液体
検知部分(104)、第2液体検知部分(106)、試
料処理室兼測光室(107)、ポンプ接続口(108)
とそれらを結合している流路(109)より構成されて
いる。試料受容口(101)より全血を供給し、ポンプ
接続口(108)より吸引すると血球分離領域(10
2)で分離された血漿が流路(109)に導き出され
る。血漿が第1液体検知部分(104)に到達するのを
検知すると、第2空気穴(105)は一旦開放されて流
路(109)内の減圧が解除される。このとき流路(1
09)内の血漿がほんのわずか試料受容口(101)側
に後退する。次に第1空気穴(103)を開口し、第2
空気穴(105)を閉口した状態で吸引し、血漿の先端
を第2液体検知部分(106)まで移送する。第1空気
穴(103)を閉口し、第2空気穴(105)を開口し
て吸引すると、第2空気穴(105)から第2液体検知
部分(106)までの間の血漿のみを試料処理室兼測光
室(107)に移送し、分析に供することができる。FIG. 2 shows a plan view of another embodiment of the body fluid component analyzing instrument according to the first embodiment of the present invention. Also in this body fluid component analysis instrument, a case where whole blood is used as a sample and blood cells are separated to analyze plasma will be described as an example. This analytical instrument includes a sample receiving port (101), a blood cell separation region (102), a first air hole (103), a second air hole (105), a first liquid detecting portion (104), and a second liquid detecting portion (106). ), Sample processing chamber and photometric chamber (107), pump connection port (108)
And a flow path (109) connecting them. When whole blood is supplied from the sample receiving port (101) and aspirated from the pump connecting port (108), the blood cell separation region (10
The plasma separated in 2) is led to the channel (109). When the blood plasma is detected to reach the first liquid detection portion (104), the second air hole (105) is once opened and the decompression in the flow path (109) is released. At this time, the flow path (1
The plasma in 09) recedes slightly toward the sample receiving port (101) side. Then open the first air hole (103),
The air hole (105) is suctioned in a closed state, and the tip of the plasma is transferred to the second liquid detection portion (106). When the first air hole (103) is closed and the second air hole (105) is opened and sucked, only the plasma between the second air hole (105) and the second liquid detection portion (106) is processed. It can be transferred to the chamber / photometric chamber (107) and used for analysis.
【0018】図3は図1および図2の体液成分分析器具
の液体検知部分(5、104、106)の断面図を示
す。この場合は成形体が透明材料で作られた上部プレー
ト(11)および下部プレート(12)により構成さ
れ、流路(8、109)が下部プレート(12)に形成
されており、入射面(14)と射出面(15)が上部プ
レート(11)に形成されている。流路(8、109)
の法線(16)に対して42〜62°の範囲の入射角
(17)は入射面(14)を垂直に通過し、流路上面
(13)で反射し、射出面(15)を垂直に通過し受光
器(図示せず)により測光され、その値により流路
(8、109)内の液体の有無を検知できるようになっ
ている。FIG. 3 is a sectional view of the liquid detecting portion (5, 104, 106) of the body fluid component analyzing instrument of FIGS. 1 and 2. In this case, the molded body is composed of an upper plate (11) and a lower plate (12) made of a transparent material, the flow paths (8, 109) are formed in the lower plate (12), and the incident surface (14) is formed. ) And the exit surface (15) are formed on the upper plate (11). Channel (8,109)
The incident angle (17) in the range of 42 to 62 ° with respect to the normal line (16) of (1) passes vertically through the incident surface (14), is reflected by the flow path upper surface (13), and is perpendicular to the exit surface (15). After passing through, the light is measured by a light receiver (not shown), and the presence or absence of liquid in the flow paths (8, 109) can be detected by the value.
【0019】図4に示したのは、前記液体検知部分を備
えた体液成分分析器具において試料溜を設け、試料溜よ
り分岐している空気穴を有する3つの流路を備えた本発
明の第2実施態様の体液成分分析器具である。全血試料
の場合を例に説明する。試料受容口(20)に供給され
た全血は第3ポンプ接続口(35)からの吸引によって
血球分離領域(21)で血球と血漿に分離される。血漿
は試料溜(23)を満たした後、第3液体検知部分(2
9)に到達する。そこで一旦第1、第2および第3ポン
プ接続口(33、34、35)を開放し大気圧に戻した
後、第1空気穴(22)を開口する。それぞれ分岐した
流路(36、37、38)に設けられた第2、第3およ
び第4空気穴(24、25、26)を閉じたままそれぞ
れのポンプで吸引し、血漿を流路に導入する。血漿は3
つの流路をそれぞれに移動し、第1、第2および第3液
体検知部分(27、28、29)にて液体の存在が検知
されたときに第2、第3および第4空気穴(24、2
5、26)を開口すると一定量の血漿がそれぞれの流路
に計量されたことになる。その後、第1、第2および第
3試料処理室兼測光室(30、31、32)において、
必要に応じ試料の前処理、反応、測光等を行い種々の体
液成分分析が行われる。FIG. 4 shows a sample of the body fluid component analyzing instrument having the liquid detecting portion, which is provided with a sample reservoir and which has three flow paths having air holes branched from the sample reservoir. It is a body fluid component analysis instrument of 2 embodiment. The case of a whole blood sample will be described as an example. Whole blood supplied to the sample receiving port (20) is separated into blood cells and plasma in the blood cell separating region (21) by suction from the third pump connecting port (35). After the plasma fills the sample reservoir (23), the third liquid sensing portion (2
Reach 9). Therefore, the first, second and third pump connection ports (33, 34, 35) are once opened to return to atmospheric pressure, and then the first air hole (22) is opened. The second, third and fourth air holes (24, 25, 26) provided in the branched flow paths (36, 37, 38) are sucked by the respective pumps while being closed, and plasma is introduced into the flow paths. To do. Plasma is 3
When the presence of liquid is detected in the first, second and third liquid detecting portions (27, 28, 29), the second, third and fourth air holes (24 Two
Opening (5, 26) means that a certain amount of plasma is measured in each flow path. Then, in the first, second and third sample processing chambers / photometric chambers (30, 31, 32),
If necessary, sample pretreatment, reaction, photometry, etc. are performed to analyze various body fluid components.
【0020】以下の表1に図4の体液成分分析器具を用
いた血漿の分割採取の具体的なプロセスを示す。Table 1 below shows a specific process for dividing and collecting plasma using the body fluid component analyzer of FIG.
【表1】 血漿の分割採取のプロセス ○:開いている状態 ×:閉じている状態 S:ポンプがポンプ接続口に接続されたまま止まってい
る状態 M:ポンプがポンプ接続口に接続されたまま動いている
状態 L:ポンプ接続口を開放して流路内を大気圧に戻す状態[Table 1] Process of divided collection of plasma ◯: Open state ×: Closed state S: Pump is stopped while being connected to the pump connection port M: Pump is operating while being connected to the pump connection port L: Pump connection port Open to return the flow path to atmospheric pressure
【0021】ステップ1で、第1および第2ポンプが、
第1および第2ポンプ接続口(33、34)に接続され
ているが、その動作が停止された状態で、第3ポンプ接
続口(35)に接続した第3ポンプを作動し、第1、第
2、第3ならびに第4空気穴(22、24、25、2
6)を閉止した状態とすると、第3ポンプ接続口(3
5)を介しての吸引により液体は、第3流路(38)を
通って第3液体検知部分(29)まで流れて、ここで液
体が検知される。ステップ2で、第1、第2および第3
ポンプ接続口(33、34、35)を第1、第2および
第3ポンプから分離して大気に開放して、第1空気穴
(22)を開口して、第3流路(38)を大気圧とす
る。ステップ3で、第1ポンプおよび第2ポンプが第1
および第2ポンプ接続口(33、34)に接続されてい
るが、その動作が停止された状態で第3ポンプ接続口
(35)に第3ポンプを接続して作動させるとともに、
第1空気穴(22)を開口して液体の先端が第3液体検
知部分(29)まで達するようにする。ステップ4で、
第3液体検知部分(29)で液体が検知されたら第1空
気穴(22)を閉口して、第4空気穴(26)を開口す
る。これにより第4空気穴(26)から第3液体検知部
分(29)までの液体が、第3試料処理室兼測光室(3
2)へ向かう第3流路(38)に流入する。すなわち定
量の液体を第3流路(38)内の第3試料処理室兼測光
室(32)の直前まで流入させる。第3液体検知部分
(29)が液体を検知しなくなったら第3ポンプの動作
を停止する。ステップ5で、第4空気穴(26)を閉
じ、第1ポンプおよび第3ポンプが第1および第3ポン
プ接続口(33、35)に接続されているが、その動作
が停止された状態で第2ポンプ接続口(34)に第2ポ
ンプを接続して作動させるとともに、第1空気穴(2
2)を開口して液体の先端が第2液体検知部分(28)
まで達するようにする。ステップ6で、第2液体検知部
分(28)で液体が検知されたら第1空気穴(22)を
閉口して、第3空気穴(25)を開口する。これにより
第3空気穴(25)から第2液体検知部分(28)まで
の液体を第2流路(37)内の第2試料処理室兼測光室
(31)の直前まで流入させる。第2液体検知部分(2
8)が液体を検知しなくなったら第2ポンプの動作を停
止する。ステップ7で、第3空気穴(25)を閉じ、第
2ポンプおよび第3ポンプが第2および第3ポンプ接続
口(34、35)に接続されているが、その動作が停止
された状態で第1ポンプ接続口(33)に第1ポンプを
接続して作動させるとともに、第1空気穴(22)を開
口して液体の先端が第1液体検知部分(27)まで達す
るようにする。ステップ8で、第1液体検知部分(2
7)で液体が検知されたら第1空気穴(22)を閉口し
て、第2空気穴(24)を開口する。これにより第2空
気穴(24)から第1液体検知部分(27)までの液体
を第1流路(36)内の第1試料処理室兼測光室(3
0)の直前まで流入させる。第1液体検知部分(27)
が液体を検知しなくなったら第1ポンプの動作を停止す
る。ステップ9で、第1、第2および第3ポンプをそれ
ぞれ第1、第2および第3ポンプ接続口(33、34、
35)に接続してすべてのポンプを作動させるととも
に、第1空気穴(22)を閉じ、第2、第3および第4
空気穴(24、25、26)を開口して第1、第2およ
び第3流路(36、37、38)内の一定量の液体を第
1、第2および第3試料処理室兼測光室(30、31、
32)に通して反応させ、光学的に測定する。なお、ス
テップ1は流路内に血漿を導入するためのステップであ
り、第1、第2および第3ポンプ接続口(33、34、
35)のいずれより吸引を行ってもよい。In step 1, the first and second pumps are
The third pump connected to the third pump connection port (35) is operated while the operation of the first and second pump connection ports (33, 34) is stopped. Second, third and fourth air holes (22, 24, 25, 2)
When 6) is closed, the third pump connection port (3
By suction via 5), the liquid flows through the third flow path (38) to the third liquid detection portion (29), where the liquid is detected. In step 2, first, second and third
The pump connection ports (33, 34, 35) are separated from the first, second and third pumps and opened to the atmosphere, the first air holes (22) are opened, and the third flow path (38) is opened. Atmospheric pressure. In step 3, the first pump and the second pump are first
While being connected to the second pump connection port (33, 34), the operation is stopped, the third pump is connected to the third pump connection port (35) to operate, and
The first air hole (22) is opened so that the tip of the liquid reaches the third liquid detecting portion (29). In step 4,
When the liquid is detected by the third liquid detecting portion (29), the first air hole (22) is closed and the fourth air hole (26) is opened. As a result, the liquid from the fourth air hole (26) to the third liquid detecting portion (29) is allowed to flow into the third sample processing chamber / photometering chamber (3
It flows into the third flow path (38) toward 2). That is, a fixed amount of liquid is flown into the third flow path (38) just before the third sample processing chamber / photometric chamber (32). When the third liquid detecting portion (29) stops detecting liquid, the operation of the third pump is stopped. In step 5, the fourth air hole (26) is closed and the first pump and the third pump are connected to the first and third pump connection ports (33, 35), but the operation is stopped. A second pump is connected to the second pump connection port (34) to operate, and a first air hole (2
2) is opened so that the tip of the liquid is the second liquid detecting portion (28).
To reach. In step 6, when the liquid is detected by the second liquid detecting portion (28), the first air hole (22) is closed and the third air hole (25) is opened. As a result, the liquid from the third air hole (25) to the second liquid detecting portion (28) is made to flow into the second flow path (37) just before the second sample processing chamber / photometric chamber (31). Second liquid detection part (2
When 8) no longer detects the liquid, the operation of the second pump is stopped. In step 7, the third air hole (25) is closed and the second pump and the third pump are connected to the second and third pump connection ports (34, 35), but the operation is stopped. The first pump is connected to the first pump connection port (33) to operate, and the first air hole (22) is opened so that the tip of the liquid reaches the first liquid detection portion (27). In step 8, the first liquid sensing portion (2
When the liquid is detected in 7), the first air hole (22) is closed and the second air hole (24) is opened. As a result, the liquid from the second air hole (24) to the first liquid detection portion (27) is allowed to flow into the first sample processing chamber / photometering chamber (3) in the first flow path (36).
Inflow until just before 0). First liquid detection part (27)
Stops the operation of the first pump when no longer detects liquid. In step 9, the first, second and third pumps are respectively connected to the first, second and third pump connection ports (33, 34,
35) to activate all pumps and to close the first air vent (22) to the second, third and fourth
The air holes (24, 25, 26) are opened so that a fixed amount of liquid in the first, second and third flow paths (36, 37, 38) can be used for the first, second and third sample processing chambers and photometry. Room (30, 31,
The reaction is carried out through 32), and the mixture is optically measured. In addition, step 1 is a step for introducing plasma into the flow channel, and includes the first, second and third pump connection ports (33, 34,
Suction may be performed by any of 35).
【0022】図5は、本発明の第2実施態様である体液
成分分析器具の別の態様の平面図を示す。全血を試料と
する場合を例に説明する。試料受容口(119)に供給
された全血は第3ポンプ接続口(135)からの吸引に
よって血球分離領域(120)で血球と血漿に分離され
る。血漿は試料溜(122)を満たした後、第1液体検
知部分(123)に到達する。そこで一旦それぞれ分岐
した流路(136、137、138)に設けられた第
2、第3および第4空気穴(124、125、126)
を開口し大気圧に戻した後、第1空気穴(121)を開
口する。次に第2、第3および第4空気穴(124、1
25、126)を閉口し、それぞれのポンプで吸引し、
血漿を分岐した流路(136、137、138)に導入
する。血漿は3つの流路をそれぞれに移動し、第2、第
3および第4液体検知部分(127、128、129)
にて液体の存在が検知されたときに、第1空気穴(12
1)を開口し、第2、第3および第4空気穴(124、
125、126)を開口すると、一定量の血漿がそれぞ
れの流路(136、137、138)に計量されたこと
になる。その後、第1、第2および第3試料処理室兼測
光室(130、131、132)において、必要に応じ
て試料の前処理、反応、測光等を行い種々の体液成分分
析が行われる。FIG. 5 is a plan view of another embodiment of the body fluid component analyzing instrument according to the second embodiment of the present invention. A case where whole blood is used as a sample will be described as an example. Whole blood supplied to the sample receiving port (119) is separated into blood cells and plasma in the blood cell separating region (120) by suction from the third pump connecting port (135). The plasma reaches the first liquid sensing portion (123) after filling the sample reservoir (122). Then, the second, third and fourth air holes (124, 125, 126) provided in the flow paths (136, 137, 138) once branched, respectively.
Is opened and returned to atmospheric pressure, and then the first air hole (121) is opened. Then the second, third and fourth air holes (124, 1
25, 126) closed and sucked with each pump,
The plasma is introduced into the branched flow paths (136, 137, 138). Plasma travels through each of the three flow paths to the second, third and fourth liquid sensing portions (127, 128, 129).
When the presence of liquid is detected at, the first air hole (12
1) is opened and the second, third and fourth air holes (124,
When 125, 126) are opened, a certain amount of plasma is metered into the respective flow paths (136, 137, 138). Thereafter, in the first, second, and third sample processing chambers / photometric chambers (130, 131, 132), if necessary, sample pretreatment, reaction, photometry, etc. are performed to analyze various body fluid components.
【0023】以下に図5の体液成分分析器具を用いた血
漿の分割採取の具体的なプロセスを説明する。ステップ
1で、第1および第2ポンプが第1および第2ポンプ接
続口(133、134)に接続されているが、その作動
が停止された状態で第3ポンプ接続口(135)に接続
した第3ポンプを作動し、第1、第2、第3および第4
空気穴(121、124、125、126)を閉口した
状態とすると、第3ポンプ接続口(135)を介しての
吸引により液体は第1液体検知部分(123)にまで流
れて、ここで液体が検知される。この検知により第2、
第3および第4空気穴(124、125、126)を開
口して流路内を大気圧とする。ステップ2で、第1空気
穴(121)を開口し、第1および第2ポンプが第1お
よび第2ポンプ接続口(133、134)に接続されて
いるが、その作動が停止された状態で第3ポンプ接続口
(135)に第3ポンプを接続して作動させるととも
に、第2、第3および第4空気穴(124、125、1
26)を閉口した状態で液体の先端が第4液体検知部分
(129)まで達するようにする。ステップ3で、第4
液体検知部分(129)で液体が検知されたら第1空気
穴(121)を閉口し、第4空気穴(126)を開口す
る。これにより、第4空気穴(126)から第4液体検
知部分(129)までの液体が第3試料処理室兼測光室
(132)へ向かう第3流路(138)に流入する。す
なわち、定量の液体を第3流路(138)内の第3試料
処理室兼測光室(132)の直前まで流入される。ステ
ップ4で、第4空気穴(126)を閉口し、第1および
第3ポンプが第1および第3ポンプ接続口(133、1
35)に接続されているが、その作動が停止された状態
で第2ポンプ接続口(134)に第2ポンプを接続して
作動させるとともに、第1空気穴(121)を開口して
液体の先端が第3液体検知部分(128)まで達するよ
うにする。ステップ5で、第3液体検知部分(128)
で液体が検知されたら第1空気穴(121)を閉口し、
第3空気穴(125)を開口する。これにより、第3空
気穴(125)から第3液体検知部分(128)までの
液体が第2試料処理室兼測光室(131)の直前まで流
入する。ステップ6で、第3空気穴(125)を閉口
し、第2および第3ポンプが第2および第3ポンプ接続
口(134、135)に接続されているが、その作動が
停止された状態で第1ポンプ接続口(133)に第1ポ
ンプを接続して作動させるとともに、第1空気穴(12
1)を開口して液体の先端が第2液体検知部分(12
7)まで達するようにする。ステップ7で、第2液体検
知部分(127)で液体が検知されたら第1空気穴(1
21)を閉口し、第2空気穴(124)を開口する。こ
れにより、第2空気穴(124)から第2液体検知部分
(127)までの液体が第1試料処理室兼測光室(13
0)の直前まで流入する。ステップ8で、第1、第2お
よび第3ポンプをそれぞれ第1、第2および第3ポンプ
接続口(133、134、135)に接続して全てのポ
ンプを作動させるとともに、第2、第3および第4空気
穴(124、125、126)を開口して第1、第2お
よび第3流路(136、137、138)の液体を第
1、第2および第3試料処理室兼測光室(130、13
1、132)に通して反応させ、反応終了後に光学的に
測定する。なお、ステップ1は流路内に血漿を導入する
ためのステップであり、第1、第2および第3ポンプ接
続口(133、134、135)のいずれより、および
または、これらを組み合わせて同時に吸引を行ってもよ
い。A specific process of dividing and collecting plasma using the body fluid component analyzer of FIG. 5 will be described below. In step 1, the first and second pumps were connected to the first and second pump connection ports (133, 134), but were connected to the third pump connection port (135) with their operation stopped. Actuating the third pump, the first, second, third and fourth
When the air holes (121, 124, 125, 126) are closed, the liquid flows to the first liquid detection portion (123) by suction through the third pump connection port (135), and the liquid is here. Is detected. The second by this detection,
The third and fourth air holes (124, 125, 126) are opened to bring the inside of the flow path to atmospheric pressure. In step 2, the first air hole (121) is opened and the first and second pumps are connected to the first and second pump connection ports (133, 134), but the operation is stopped. A third pump is connected to the third pump connection port (135) to operate, and the second, third and fourth air holes (124, 125, 1
The tip of the liquid reaches the fourth liquid detecting portion (129) in the state in which 26) is closed. Step 3, 4th
When the liquid is detected by the liquid detecting portion (129), the first air hole (121) is closed and the fourth air hole (126) is opened. As a result, the liquid from the fourth air hole (126) to the fourth liquid detection portion (129) flows into the third flow path (138) toward the third sample processing chamber / photometric chamber (132). That is, a fixed amount of liquid is made to flow into the third flow path (138) just before the third sample processing chamber / photometric chamber (132). In step 4, the fourth air hole (126) is closed and the first and third pumps are connected to the first and third pump connection ports (133, 1).
35), the second pump is connected to the second pump connection port (134) for operation while the operation is stopped, and the first air hole (121) is opened to store the liquid. The tip should reach the third liquid sensing portion (128). In step 5, the third liquid sensing portion (128)
When liquid is detected in, close the first air hole (121),
The third air hole (125) is opened. As a result, the liquid from the third air hole (125) to the third liquid detecting portion (128) flows into just before the second sample processing chamber / photometric chamber (131). In step 6, the third air hole (125) is closed and the second and third pumps are connected to the second and third pump connection ports (134, 135), but their operation is stopped. The first pump is connected to the first pump connection port (133) to operate, and the first air hole (12
1) is opened so that the tip of the liquid is the second liquid detection portion (12
Try to reach 7). In step 7, when the liquid is detected by the second liquid detecting portion (127), the first air hole (1
21) is closed and the second air hole (124) is opened. As a result, the liquid from the second air hole (124) to the second liquid detecting portion (127) is allowed to flow into the first sample processing chamber / photometering chamber (13).
Inflow until just before 0). In step 8, the first, second and third pumps are respectively connected to the first, second and third pump connection ports (133, 134, 135) to operate all the pumps, and the second and third pumps are operated. And the fourth air holes (124, 125, 126) are opened to allow the liquids in the first, second and third flow paths (136, 137, 138) to serve as the first, second and third sample processing chambers and photometric chambers. (130, 13
1, 132) to cause a reaction, and after completion of the reaction, it is optically measured. It should be noted that step 1 is a step for introducing plasma into the flow channel, and suction is performed simultaneously from any of the first, second and third pump connection ports (133, 134, 135) and / or by combining these. You may go.
【0024】[0024]
【実施例】以下本発明にかかる液体検出方法を用いた具
体例について説明する。 (実施例1) 薄層セルでの光の透過と反射の光量比較 2枚の1.5mm厚のポリスチレン樹脂で挟まれた深さ
0.1mm、幅1.0mmの流路を有するプレートの流
路に液体を流し込み、液体検知部分の受光器の光量変化
を調べた。流路上面への入射角が52°となるようにポ
リスチレン樹脂の光照射側に入射面を設けた。受光器側
にも52°の角度の反射光が受けられるように射出面を
設けた。入射面および射出面は縦1mm、幅0.6mm
となるように形成した。光源はエピテックス社製発光ダ
イオードL630、受光器は東芝製ホトトランジスタT
PS613Cを使用した。流路内での送液速度が0.3
μl/秒となるように制御した。受光器の出力を変換し
レコーダに記録させたものを図6に示す。時間の変化を
表すX軸は1目盛りが1秒に相当する。図6より、液体
のないときは3.25ボルトを示しているが液体が流路
に流れてくると電圧は急激に減少し、液体が流路を満た
したときには0.19ボルトにまで下がっているのが分
かる。これは流路内への液体の侵入にともなって流路上
面での受光器への反射光が減少し、流路が液体で満たさ
れてしまうと反射光がほとんどなくなることを示してい
る。これより、液体の有無を検知するレベルを例えば1
ボルトに設定すると、1ボルト以下なら液体は液体検知
部分を満たしており、1ボルト以上であれば液体が液体
検知部分にないことを知ることができる。また、液体の
有無を検知するレベルを例えば1ボルトと2ボルトの2
点に設定すると、液体が液体検知部分を満たしていない
状態、液体が液体検知部分に到達した瞬間、液体が液体
検知部分を満たしている状態のいずれかの状態であるか
を知ることができる。EXAMPLES Specific examples using the liquid detection method according to the present invention will be described below. Example 1 Comparison of Light Transmission and Reflection Light Amounts in Thin-Layer Cell Flow of a plate having a channel having a depth of 0.1 mm and a width of 1.0 mm sandwiched between two 1.5 mm-thick polystyrene resins. The liquid was poured into the passage, and the change in the light quantity of the light receiver of the liquid detection part was examined. An incident surface was provided on the light irradiation side of the polystyrene resin so that the incident angle on the upper surface of the flow channel was 52 °. An exit surface was also provided on the light receiver side so that reflected light at an angle of 52 ° could be received. The entrance and exit surfaces are 1 mm long and 0.6 mm wide
It formed so that it might become. The light source is a light-emitting diode L630 manufactured by Epitex, and the light receiver is a phototransistor T manufactured by Toshiba.
PS613C was used. Liquid transfer rate in the flow path is 0.3
It was controlled so that it was μl / sec. FIG. 6 shows the output of the light receiver converted and recorded in the recorder. One scale on the X-axis representing a change in time corresponds to one second. From FIG. 6, 3.25 V is shown when there is no liquid, but the voltage sharply decreases when the liquid flows into the flow channel, and drops to 0.19 V when the liquid fills the flow channel. I can see it. This means that the reflected light to the light receiver on the upper surface of the flow channel decreases as the liquid enters the flow channel, and the reflected light almost disappears when the flow channel is filled with the liquid. From this, the level for detecting the presence or absence of liquid is set to 1
When the voltage is set to 1 volt, it can be known that the liquid is filled in the liquid detecting portion if the voltage is 1 volt or less, and that the liquid is not in the liquid detecting portion if the voltage is 1 volt or more. In addition, the level for detecting the presence or absence of liquid is, for example, 1 volt and 2 volt.
By setting the point, it is possible to know whether the liquid is not filling the liquid detecting portion, the moment when the liquid reaches the liquid detecting portion, or the state where the liquid is filling the liquid detecting portion.
【0025】(実施例2) 複数の流路を有する分析器
具による測定 図4に示した本発明の体液成分分析器具を用いて前述の
各作動ステップに従って試料の分割定量を行った。血球
分離領域(21)には非対称な孔径を有するメンブレン
フィルター(10mm×10mm)をフィルターの周囲
から血球が漏れないように周縁部で押さえて装着した。
第1、第2および第3試料処理室兼測光室(30、3
1、32)には食用色素青色1号0.5g/l(0.0
5%トリトンX−405水溶液)1.5μlを試薬とし
て滴下乾燥した。流路全体の高さは0.1mm、流路の
幅は1mm、試料溜(23)の体積は5μl、試料処理
室兼測光室の幅は3mmで、第2、第3および第4空気
穴(24、25、26)から第1、第2および第3液体
検知部分(27、28、29)までの距離はそれぞれ1
5mmとした。血液20μlを試料受容口(20)に滴
下し、第3ポンプ接続口(35)以外の全ての空気穴お
よびポンプ接続口が閉じている状態(ステップ1)で第
3ポンプ接続口(35)より吸引すると内部の圧力が低
下し、血漿が流路、試料溜(23)を次々と満たし第3
液体検知部分(29)に到達した。次にステップ2から
9までの操作を行い、第1、第2および第3試料処理室
兼測光室(30、31、32)内の食用青色色素を溶解
させ、青色色素の吸光度を630nmの波長で測定し
た。空気穴は機械側に設けられたゴム板をソレノイドで
駆動させて開閉し、ポンプ接続口はポンプ接続口とポン
プとの間に大気への通路の開放機構を設け、開閉した。
同じ実験を5回行った。結果を以下の表2に示す。(Example 2) Measurement by an analytical instrument having a plurality of flow paths Using the biological fluid component analytical instrument of the present invention shown in FIG. 4, the sample was divided and quantified according to the above-mentioned operation steps. A membrane filter (10 mm × 10 mm) having an asymmetric pore size was attached to the blood cell separation region (21) by pressing the peripheral portion so that blood cells did not leak from the periphery of the filter.
First, second and third sample processing chambers and photometric chambers (30, 3
1, 32) food dye blue No. 1 0.5 g / l (0.0
1.5 μl of 5% Triton X-405 aqueous solution) was added dropwise as a reagent and dried. The height of the entire flow path is 0.1 mm, the width of the flow path is 1 mm, the volume of the sample reservoir (23) is 5 μl, the width of the sample processing chamber / photometric chamber is 3 mm, and the second, third, and fourth air holes are provided. The distance from (24, 25, 26) to the first, second and third liquid sensing portions (27, 28, 29) is 1 each.
5 mm. 20 μl of blood is dripped into the sample receiving port (20), and all the air holes except the third pump connecting port (35) and the pump connecting ports are closed (step 1), and then the third pump connecting port (35) is used. When aspirated, the internal pressure drops and plasma fills the channel and sample reservoir (23) one after another.
The liquid detection part (29) is reached. Next, steps 2 to 9 are performed to dissolve the edible blue dye in the first, second, and third sample processing chambers and photometric chambers (30, 31, 32), and absorb the blue dye at a wavelength of 630 nm. It was measured at. The air hole was opened and closed by driving a rubber plate provided on the machine side with a solenoid, and the pump connection port was opened and closed by providing a mechanism for opening a passage to the atmosphere between the pump connection port and the pump.
The same experiment was performed 5 times. The results are shown in Table 2 below.
【表2】 複数流路を持つ分析器具での吸光度測定 表2より、各実験においてそれぞれ第1、第2および第
3試料処理室兼測光室(30、31、32)の試料濃度
がほぼ同じであり、複数流路(36、37、38)のそ
れぞれを通じて一定量の試料が送液できたことがわか
る。[Table 2] Absorbance measurement with an analytical instrument with multiple channels From Table 2, in each experiment, the sample concentrations of the first, second and third sample processing chambers / photometric chambers (30, 31, 32) are almost the same, and the plurality of flow paths (36, 37, 38) are It can be seen that a fixed amount of sample could be sent through.
【0026】(比較例) 垂直方向での液検知 実施例1と同様な実験を、流路に対して垂直に光を照射
し、透過した光を測定することによって行った。その結
果、液体が液体検知部分を満たしても受光器の値は3.
2ボルトの出力のままで変化せず液の有無を検知できる
だけの信号が得られなかった。これは垂直に入った光が
そのまま透過し、受光器でキャッチできる光量がほとん
ど変化しないためである。Comparative Example Liquid Detection in the Vertical Direction The same experiment as in Example 1 was conducted by irradiating light perpendicularly to the flow channel and measuring the transmitted light. As a result, even if the liquid fills the liquid detection portion, the value of the light receiver is 3.
The output of 2 volts remained unchanged and no signal was obtained to detect the presence or absence of liquid. This is because the light that enters vertically is transmitted as it is, and the amount of light that can be caught by the light receiver hardly changes.
【0027】[0027]
【発明の効果】本発明により、微量かつ薄層になってい
る分析器具での液体の検知を容易に行う方法、その方法
に用いる器具、分析器具および微量液体定量装置を提供
することができた。According to the present invention, it is possible to provide a method for easily detecting a liquid in a trace amount and a thin analytical instrument, an instrument used in the method, an analytical instrument and a trace amount liquid quantification device. .
【図1】本発明の第1実施態様の体液成分分析器具の平
面図FIG. 1 is a plan view of a body fluid component analyzer according to a first embodiment of the present invention.
【図2】本発明の第1実施態様の別の態様の体液成分分
析器具の平面図FIG. 2 is a plan view of a body fluid component analyzer according to another aspect of the first embodiment of the present invention.
【図3】図1および図2の体液成分分析器具のA−A断
面図FIG. 3 is a cross-sectional view taken along the line AA of the body fluid component analysis instrument of FIGS. 1 and 2.
【図4】複数の流路を持つ本発明の第2実施態様の体液
成分分析器具の平面図FIG. 4 is a plan view of a body fluid component analyzer according to a second embodiment of the present invention having a plurality of flow paths.
【図5】本発明の第2実施態様の別の態様の体液成分分
析器具の平面図FIG. 5 is a plan view of a body fluid component analyzer according to another aspect of the second embodiment of the present invention.
【図6】液体検知時の電圧変化を示す図FIG. 6 is a diagram showing a voltage change when a liquid is detected.
1、101 試料受容口 2、102 血球分離領域 3、103 第1空気穴 4、105 第2空気穴 5 液体検知部分 6、107 試料処理室兼測光室 7、108 ポンプ接続口 8、109 流路 9、110 試薬 10、111 測光部 11 上部プレート 12 下部プレート 13 流路上部 14 入射面 15 射出面 16 流路上面の法線 17 入射角 20、119 試料受容口 21、120 血球分離領域 22、121 第1空気穴 23、122 試料溜 24、124 第2空気穴 25、125 第3空気穴 26、126 第4空気穴 27、123 第1液体検知部分 28、127 第2液体検知部分 29、128 第3液体検知部分 30、130 第1試料処理室兼測光室 31、131 第2試料処理室兼測光室 32、132 第3試料処理室兼測光室 33、133 第1ポンプ接続口 34、134 第2ポンプ接続口 35、135 第3ポンプ接続口 36、136 第1流路 37、137 第2流路 38、138 第3流路 104 第1液体検知部分 106 第2液体検知部分 129 第4液体検知部分 1, 101 Sample receiving port 2, 102 Blood cell separation area 3, 103 First air hole 4, 105 Second air hole 5 Liquid detection part 6, 107 Sample processing chamber / photometric chamber 7, 108 Pump connection port 8, 109 Flow path 9, 110 Reagents 10, 111 Photometric part 11 Upper plate 12 Lower plate 13 Channel upper part 14 Incident surface 15 Exit surface 16 Normal line of channel upper surface 17 Incident angle 20, 119 Sample receiving port 21, 120 Blood cell separation area 22, 121 First air hole 23,122 Sample reservoir 24,124 Second air hole 25,125 Third air hole 26,126 Fourth air hole 27,123 First liquid detecting portion 28,127 Second liquid detecting portion 29,128 3 Liquid Detecting Parts 30, 130 First Sample Processing Room / Photometry Room 31, 131 Second Sample Processing Room / Photometry Room 32, 132 Third Sample Processing Room / Photometry Room 33 133 first pump connection port 34, 134 second pump connection port 35, 135 third pump connection port 36, 136 first flow path 37, 137 second flow path 38, 138 third flow path 104 first liquid detection portion 106 Second liquid detection part 129 Fourth liquid detection part
───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅原 祐揮 京都府京都市伏見区竹田桶ノ井町45番地の 3 テラメックス株式会社内 (72)発明者 田口 尊之 兵庫県三田市テクノパーク9番地の1 日 本メジフィジックス株式会社兵庫工場内 (72)発明者 藤岡 茂 東京都千代田区九段北1丁目13番5号 日 本メジフィジックス株式会社東京本部内 (72)発明者 山口 忠雄 兵庫県三田市テクノパーク9番地の1 日 本メジフィジックス株式会社兵庫工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuki Umehara 45, Takeda Okenoi-cho, Fushimi-ku, Kyoto, Kyoto Prefecture 3 Within Terramex Co., Ltd. (72) Inventor Shigeru Fujioka 1-13-5 Kudankita, Chiyoda-ku, Tokyo Nihon Mediphysics Co., Ltd. (72) Tadao Yamaguchi 9 Techno Park, Sanda City, Hyogo Prefecture No. 1 day Inside the Hyogo Factory of Meiji Physics Co., Ltd.
Claims (8)
料により形成され、微量液体が流れる上面が平面である
流路を有する成形体において、該流路上面の法線に対し
て42〜62°の範囲で入射し、該流路上面で反射また
は透過した光を受光し、その強度を測定することにより
流路内の液体の有無を検知する液体検知方法。1. A molded body having a flow path in which at least an upper part of the flow path upper surface is formed of a transparent material, and the upper surface through which a small amount of liquid flows is a flat surface, and the flow path upper surface is 42 to 62 ° with respect to a normal line. The liquid detection method of detecting the presence or absence of the liquid in the flow channel by receiving the light that has entered in the range, reflected or transmitted through the upper surface of the flow channel, and measuring the intensity thereof.
料により形成され、微量液体が流れる上面が平面である
流路を有する成形体であって、該流路上面に対して42
〜62°の角度で光の入射面および射出面を該成形体外
面に形成した、流路内の液体の有無を検知する液体検知
部分を有する器具。2. A molded body having a flow path in which at least an upper part of the flow path is formed of a transparent material, and the upper surface through which a trace amount of liquid flows is a flat surface.
An instrument having a liquid detection part for detecting the presence or absence of liquid in the flow channel, which has an incident surface and an emission surface of light formed on the outer surface of the molded body at an angle of ˜62 °.
一面に形成され、流路上面が該入射面と該射出面との中
間に配置され、かつ該流路上面における反射光が該射出
面を透過するように配置されている請求項2記載の液体
検知部分を有する器具。3. A light entrance surface and an exit surface are formed on the same surface of the molded body, a flow path upper surface is disposed between the entrance surface and the exit surface, and reflected light on the flow path upper surface is An instrument having a liquid sensing portion according to claim 2, wherein the instrument is arranged so as to pass through the exit surface.
対する平面に形成され、流路上面が該入射面と該射出面
との中間に位置され、かつ該流路上面における透過光が
該射出面を透過するように配置されている請求項2記載
の液体検知部分を有する器具。4. A light incident surface and a light emitting surface are formed on opposing flat surfaces of a molded body, a flow path upper surface is located between the light incident surface and the light emitting surface, and transmitted light on the flow path upper surface. An apparatus having a liquid sensing portion according to claim 2, wherein the device is arranged so as to pass through the ejection surface.
液体検知部分を少なくとも1つ有する、試料の光学特性
を測定して体液成分分析を行う分析器具であって、試料
受容口とポンプ接続口を有し、該試料受容口と該ポンプ
接続口の間に少なくとも1つの試料処理室と少なくとも
1つの測光室、または少なくとも1つの試料処理室兼測
光室を有し、必要に応じて血球分離部分、試料溜、廃液
溜を備え、それぞれが少なくとも1つの空気穴を有する
流路で結合されている体液成分分析器具。5. An analytical instrument having at least one liquid detecting part according to claim 2, 3 or 4 for measuring optical characteristics of a sample to analyze a body fluid component, which comprises a sample receiving port. A pump connection port, and at least one sample processing chamber and at least one photometric chamber or at least one sample processing chamber / photometric chamber between the sample receiving port and the pump connection port, and if necessary A body fluid component analysis instrument comprising a blood cell separation portion, a sample reservoir, and a waste fluid reservoir, each of which is connected by a flow path having at least one air hole.
て、該試料溜より分岐している空気穴を有する複数の流
路と、それぞれの流路に請求項2、3または4のいずれ
かに記載の液体検知部分を有する体液成分分析器具。6. The body fluid component analyzing instrument according to claim 5, wherein a plurality of channels having air holes branched from the sample reservoir and each channel are provided. A body fluid component analysis instrument having the liquid detection part according to the above paragraph.
容口に分析に供する試料を滴下し、試料溜に一旦試料を
貯留した後、空気穴を開閉することにより複数の流路を
通じて試料を分岐移送せしめ、それぞれ所定の分析を行
う体液多項目分析方法。7. A sample to be analyzed is dropped into the sample receiving port of the body fluid component analyzing instrument according to claim 6, the sample is once stored in the sample reservoir, and then the air holes are opened and closed to allow the sample to pass through a plurality of channels. A method for multi-item analysis of body fluid, in which each of which is branched and transferred, and a predetermined analysis is performed.
具を装着し、該体液成分分析器具の空気穴を開閉する空
気弁と入射面へ光を入射する光源と反射光または透過光
を受光する受光器よりなる液体検知手段と、液体検知と
同時に空気穴を開閉する空気弁開閉手段とを備えた微量
液体定量装置。8. A body fluid component analyzing instrument according to claim 5 is mounted, and an air valve for opening and closing an air hole of the body fluid component analyzing instrument, a light source for making light incident on an incident surface, and a reflected light or a transmitted light are provided. A trace amount liquid metering device comprising a liquid detecting means composed of a light receiving device for receiving light and an air valve opening / closing means for opening / closing an air hole at the same time as liquid detection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31879396A JP4044163B2 (en) | 1995-11-15 | 1996-11-14 | Liquid detection method and apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32101395 | 1995-11-15 | ||
JP7-321013 | 1995-11-15 | ||
JP31879396A JP4044163B2 (en) | 1995-11-15 | 1996-11-14 | Liquid detection method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09196739A true JPH09196739A (en) | 1997-07-31 |
JP4044163B2 JP4044163B2 (en) | 2008-02-06 |
Family
ID=26569511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31879396A Expired - Fee Related JP4044163B2 (en) | 1995-11-15 | 1996-11-14 | Liquid detection method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4044163B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002243748A (en) * | 2000-10-25 | 2002-08-28 | Microparts G Fuer Mikrostrukturtechnik Mbh | Device for analysis of fluid and controlled conveyance of fluid |
JP2003254896A (en) * | 2002-02-28 | 2003-09-10 | Kokusai Gijutsu Kaihatsu Co Ltd | Sample cartridge, sample analyzing apparatus, and method |
WO2003078979A1 (en) * | 2002-03-20 | 2003-09-25 | Nippon Sheet Glass Co., Ltd. | Micro-chemical system-use chip and mico-chemical system |
JP2005156556A (en) * | 2003-11-21 | 2005-06-16 | Boehringer Ingelheim Microparts Gmbh | Sample carrier |
JP2006125900A (en) * | 2004-10-27 | 2006-05-18 | Hitachi High-Technologies Corp | Liquid carrying substrate, analysis system, and analysis method |
JP2008014661A (en) * | 2006-07-03 | 2008-01-24 | Hitachi Software Eng Co Ltd | Liquid feed system |
WO2008142922A1 (en) * | 2007-05-18 | 2008-11-27 | Horiba, Ltd. | Flow channel sensor and tube fixture used therefor |
US7517499B2 (en) | 2001-09-28 | 2009-04-14 | Ibidi Gmbh | Flow chamber |
JP2009109429A (en) * | 2007-10-31 | 2009-05-21 | Rohm Co Ltd | Microchip and method using same |
JP2009133717A (en) * | 2007-11-30 | 2009-06-18 | Konica Minolta Holdings Inc | Analysis element chip and analyzer using the same |
JP2009133719A (en) * | 2007-11-30 | 2009-06-18 | Konica Minolta Medical & Graphic Inc | Microinspection chip, liquid quantifying method of microinspection chip and inspection device |
WO2009125676A1 (en) * | 2008-04-09 | 2009-10-15 | コニカミノルタエムジー株式会社 | Inspection system |
WO2009136600A1 (en) * | 2008-05-09 | 2009-11-12 | コニカミノルタエムジー株式会社 | Microchip, microchip liquid supply system, and microchip liquid supply method |
US7625760B2 (en) | 1999-08-11 | 2009-12-01 | Asahi Kasei Kabushiki Kaisha | Analyzing cartridge and liquid feed control device |
JP2010531457A (en) * | 2007-11-22 | 2010-09-24 | デジタル バイオテクノロジー カンパニー リミテッド | Microfluidic chip for fluid sample analysis |
US8367424B2 (en) | 2007-10-15 | 2013-02-05 | Rohm Co., Ltd. | Microchip and method of using the same |
WO2014069551A1 (en) * | 2012-10-31 | 2014-05-08 | 日立化成株式会社 | Sensor chip, and measurement device and measurement method using same |
JP2014190925A (en) * | 2013-03-28 | 2014-10-06 | Oem System Co Ltd | Body fluid sample transfer mechanism, body fluid sample transfer method, body fluid component analyzer and body fluid component analysis method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108318380B (en) * | 2018-01-02 | 2021-01-26 | 京东方科技集团股份有限公司 | Fluid detection device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5665605U (en) * | 1979-10-26 | 1981-06-01 | ||
JPS57179150U (en) * | 1981-05-08 | 1982-11-13 | ||
JPS6488230A (en) * | 1987-09-30 | 1989-04-03 | Tokyu Car Corp | Liquid presence detector of tank truck |
JPH04249745A (en) * | 1990-12-29 | 1992-09-04 | Horiba Ltd | Measuring apparatus of liquid |
JPH04301769A (en) * | 1991-03-29 | 1992-10-26 | Nippon Koden Corp | Liquid sensor |
JPH0694724A (en) * | 1985-08-05 | 1994-04-08 | Biotrack Inc | Controller which can detect consumption of fluid containing particle |
JPH0727700A (en) * | 1993-07-14 | 1995-01-31 | Kyoto Daiichi Kagaku:Kk | Apparatus and method for optically measuring component concentration |
JPH07218497A (en) * | 1994-01-28 | 1995-08-18 | Kyoto Electron Mfg Co Ltd | Apparatus and method for measuring degree of pigmentation by dilution method |
JPH07218321A (en) * | 1994-02-07 | 1995-08-18 | Fuji Xerox Co Ltd | Ink tank |
-
1996
- 1996-11-14 JP JP31879396A patent/JP4044163B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5665605U (en) * | 1979-10-26 | 1981-06-01 | ||
JPS57179150U (en) * | 1981-05-08 | 1982-11-13 | ||
JPH0694724A (en) * | 1985-08-05 | 1994-04-08 | Biotrack Inc | Controller which can detect consumption of fluid containing particle |
JPS6488230A (en) * | 1987-09-30 | 1989-04-03 | Tokyu Car Corp | Liquid presence detector of tank truck |
JPH04249745A (en) * | 1990-12-29 | 1992-09-04 | Horiba Ltd | Measuring apparatus of liquid |
JPH04301769A (en) * | 1991-03-29 | 1992-10-26 | Nippon Koden Corp | Liquid sensor |
JPH0727700A (en) * | 1993-07-14 | 1995-01-31 | Kyoto Daiichi Kagaku:Kk | Apparatus and method for optically measuring component concentration |
JPH07218497A (en) * | 1994-01-28 | 1995-08-18 | Kyoto Electron Mfg Co Ltd | Apparatus and method for measuring degree of pigmentation by dilution method |
JPH07218321A (en) * | 1994-02-07 | 1995-08-18 | Fuji Xerox Co Ltd | Ink tank |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7625760B2 (en) | 1999-08-11 | 2009-12-01 | Asahi Kasei Kabushiki Kaisha | Analyzing cartridge and liquid feed control device |
JP2002243748A (en) * | 2000-10-25 | 2002-08-28 | Microparts G Fuer Mikrostrukturtechnik Mbh | Device for analysis of fluid and controlled conveyance of fluid |
US7517499B2 (en) | 2001-09-28 | 2009-04-14 | Ibidi Gmbh | Flow chamber |
JP2003254896A (en) * | 2002-02-28 | 2003-09-10 | Kokusai Gijutsu Kaihatsu Co Ltd | Sample cartridge, sample analyzing apparatus, and method |
WO2003078979A1 (en) * | 2002-03-20 | 2003-09-25 | Nippon Sheet Glass Co., Ltd. | Micro-chemical system-use chip and mico-chemical system |
JP2005156556A (en) * | 2003-11-21 | 2005-06-16 | Boehringer Ingelheim Microparts Gmbh | Sample carrier |
JP2006125900A (en) * | 2004-10-27 | 2006-05-18 | Hitachi High-Technologies Corp | Liquid carrying substrate, analysis system, and analysis method |
JP2008014661A (en) * | 2006-07-03 | 2008-01-24 | Hitachi Software Eng Co Ltd | Liquid feed system |
WO2008142922A1 (en) * | 2007-05-18 | 2008-11-27 | Horiba, Ltd. | Flow channel sensor and tube fixture used therefor |
JP5199083B2 (en) * | 2007-05-18 | 2013-05-15 | 株式会社堀場製作所 | Flow path sensor and tube fixture used therefor |
US8367424B2 (en) | 2007-10-15 | 2013-02-05 | Rohm Co., Ltd. | Microchip and method of using the same |
JP2009109429A (en) * | 2007-10-31 | 2009-05-21 | Rohm Co Ltd | Microchip and method using same |
JP2010531457A (en) * | 2007-11-22 | 2010-09-24 | デジタル バイオテクノロジー カンパニー リミテッド | Microfluidic chip for fluid sample analysis |
JP2009133719A (en) * | 2007-11-30 | 2009-06-18 | Konica Minolta Medical & Graphic Inc | Microinspection chip, liquid quantifying method of microinspection chip and inspection device |
JP2009133717A (en) * | 2007-11-30 | 2009-06-18 | Konica Minolta Holdings Inc | Analysis element chip and analyzer using the same |
WO2009125676A1 (en) * | 2008-04-09 | 2009-10-15 | コニカミノルタエムジー株式会社 | Inspection system |
WO2009136600A1 (en) * | 2008-05-09 | 2009-11-12 | コニカミノルタエムジー株式会社 | Microchip, microchip liquid supply system, and microchip liquid supply method |
JP5182366B2 (en) * | 2008-05-09 | 2013-04-17 | コニカミノルタエムジー株式会社 | Microchip, microchip liquid feeding system, and microchip liquid feeding method |
US8486350B2 (en) | 2008-05-09 | 2013-07-16 | Konica Minolta Medical & Graphic, Inc. | Microchip, microchip liquid supply system, and microchip liquid supply method |
WO2014069551A1 (en) * | 2012-10-31 | 2014-05-08 | 日立化成株式会社 | Sensor chip, and measurement device and measurement method using same |
JPWO2014069551A1 (en) * | 2012-10-31 | 2016-09-08 | 日立化成株式会社 | Sensor chip and measurement system |
JP2014190925A (en) * | 2013-03-28 | 2014-10-06 | Oem System Co Ltd | Body fluid sample transfer mechanism, body fluid sample transfer method, body fluid component analyzer and body fluid component analysis method |
Also Published As
Publication number | Publication date |
---|---|
JP4044163B2 (en) | 2008-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5764356A (en) | Trace liquid detecting and analyzing device | |
JPH09196739A (en) | Method and implement for detection of liquid | |
US5844686A (en) | System for pipetting and photometrically evaluating samples | |
CA1278703C (en) | Analytical apparatus | |
CN108351292B (en) | Porous mirror for optical detection of analytes in fluids | |
KR100675698B1 (en) | An automated point of care detection system including complete sample processing capabilities | |
EP1921439B1 (en) | Measuring device, measuring instrument and method of measuring | |
JP4956533B2 (en) | Cartridge, residual liquid removal method and automatic analyzer | |
US11035784B2 (en) | Methods and systems for optical hemoglobin measurement | |
US8159658B2 (en) | System and method for the automated analysis of samples | |
US20130041236A1 (en) | Sample analysis system and method of use | |
KR102058506B1 (en) | Mechanical washing and measuring device for performing analyses | |
JP7183294B2 (en) | Porous membrane sensor element | |
JP2008524605A (en) | Cartridge for diagnostic assay | |
JP2006322850A (en) | System and method for feeding liquid and channel unit | |
JP2010527443A (en) | Reaction vessel with integrated optical and fluid control elements | |
EP2920574B1 (en) | System and method for integrated multiplexed photometry module | |
JPH04372861A (en) | Detecting apparatus of liquid level | |
CN111246943B (en) | Method and system for integrated multiplexed modular light metering | |
CN106605144A (en) | Methods and systems for point-of-care coagulation assays by optical detection | |
CN207232003U (en) | Biological culture microanalysis cuvette | |
US7629166B2 (en) | Measuring apparatus for interaction of biomolecule | |
JP5507991B2 (en) | applicator | |
CN116106541A (en) | Blood routine and immunity combined detection reagent card | |
CN107449737A (en) | Biological culture microanalysis cuvette |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060718 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070726 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070913 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071025 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071115 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |