JPH09195795A - Remaining life evaluation method for gas turbine stationary blade and device thereof - Google Patents
Remaining life evaluation method for gas turbine stationary blade and device thereofInfo
- Publication number
- JPH09195795A JPH09195795A JP452196A JP452196A JPH09195795A JP H09195795 A JPH09195795 A JP H09195795A JP 452196 A JP452196 A JP 452196A JP 452196 A JP452196 A JP 452196A JP H09195795 A JPH09195795 A JP H09195795A
- Authority
- JP
- Japan
- Prior art keywords
- crack
- remaining life
- gas turbine
- stationary blade
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Of Engines (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はガスタービンにおい
て、疲労やクリープによる損傷を受け、点検・補修等の
処置が必要となる静翼の余寿命評価方法とその装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for evaluating the remaining life of a stationary blade in a gas turbine, which is damaged by fatigue and creep and requires inspection and repair.
【0002】[0002]
【従来の技術】ガスタービンの静翼はプラントの起動・
停止に伴う熱ひずみの繰り返しにより、使用中に部材表
面にき裂が発生する。また高温下で長時間使用されるた
め材質の劣化が生じる。そのため、事故や故障によりプ
ラントを長時間停止させることのないよう、運転の安全
性や機器の信頼性を保つために、適当な時期にプラント
を停止して、部材の点検を行っている。静翼について
は、表面に発生するき裂長さや減肉量等の損傷について
調査が行われている。そして、各損傷ごとに基準値を設
け、その値を越えていれば交換・補修といった処置がと
られるようになっている。しかし、機器の安定した運用
や信頼性を確保するためには、将来の損傷や劣化の進展
を把握する必要があり、き裂や変形といった損傷の進展
を予測する手法がいくつか提案されている。2. Description of the Related Art A stationary blade of a gas turbine is used for starting a plant
Due to repeated thermal strain associated with the stoppage, a crack is generated on the surface of the member during use. Further, since it is used at high temperature for a long time, the material is deteriorated. Therefore, in order to prevent the plant from being stopped for a long time due to an accident or failure, the plant is stopped at an appropriate time and the members are inspected in order to maintain the safety of operation and the reliability of the equipment. With respect to the stationary vanes, investigations have been conducted on damage such as crack length and surface loss that occur on the surface. A standard value is set for each damage, and if it exceeds the standard value, measures such as replacement and repair can be taken. However, in order to ensure stable operation and reliability of equipment, it is necessary to understand the progress of future damage and deterioration, and some methods for predicting the progress of damage such as cracks and deformation have been proposed. .
【0003】[0003]
【発明が解決しようとする課題】上述したように、損傷
の進展を予測する手法はいくつか提案されているが、そ
の損傷の限界値は、経験的に定められることが多く、場
合によっては過度に安全側の評価となっていることもあ
る。また、点検は定期的にプラントを停止して、数週間
かけて行われるため、プラントの稼働率を高くするため
に、点検作業を合理化し、点検期間を短縮するといった
要求もある。As described above, some methods for predicting the progress of damage have been proposed, but the limit value of damage is often empirically determined, and in some cases it may be excessive. In some cases, it is evaluated as safe. Further, since the inspection is regularly performed over several weeks by stopping the plant, there is also a demand for rationalizing the inspection work and shortening the inspection period in order to increase the operation rate of the plant.
【0004】本発明の目的は、ガスタービン静翼につい
て、点検時に観察されたき裂の進展解析と同時に、材質
の劣化評価を行い、許容できる最大のき裂長さを求め、
合理的な余寿命評価を行うことのできる手法とその装置
を提供することにある。The object of the present invention is to evaluate the deterioration of the material of a gas turbine stationary blade at the same time as the crack propagation analysis observed at the time of inspection, and obtain the maximum allowable crack length.
An object of the present invention is to provide a method and a device capable of performing a reasonable remaining life evaluation.
【0005】[0005]
【課題を解決するための手段】上述したように、許容で
きるき裂長さは材質の劣化に伴い減少するため、劣化評
価を行う必要がある。As described above, since the allowable crack length decreases with the deterioration of the material, it is necessary to evaluate the deterioration.
【0006】本発明は以下のことを特徴とする。The present invention is characterized by the following.
【0007】(1)ガスタービン静翼の寿命評価方法に
おいて、構造解析より推定される応力を基に、部材に発
生するき裂の成長を予測し、また、使用中の部材から採
取した微小試験片を用いて破壊試験を行い、破壊エネル
ギの低下量から限界となるき裂長さを求め、それらの結
果と点検時に観察されたき裂の長さから部品の余寿命を
求める。(1) In a method of evaluating the life of a gas turbine stationary blade, the growth of cracks occurring in a member is predicted based on the stress estimated from structural analysis, and a small test taken from the member in use. A fracture test is performed using a piece, the limit crack length is determined from the amount of decrease in the fracture energy, and the remaining life of the component is determined from the results and the crack length observed during inspection.
【0008】(2)又は、(1)において、部品をいく
つかの部位に分け、その各部位における最大のき裂長さ
を計測し、そのき裂長さに基づいて余寿命を評価するこ
とを特徴とする。In (2) or (1), the parts are divided into several parts, the maximum crack length at each part is measured, and the remaining life is evaluated based on the crack length. And
【0009】(3)又は、(1)において、点検時に観
察されたき裂長さと、それまでの運転履歴より、そのき
裂が存在する位置に発生する応力を推定し、その応力値
を基にき裂進展解析を行い、余寿命を求めることを特徴
とする。In (3) or (1), the stress generated at the position where the crack exists is estimated from the crack length observed at the time of inspection and the operation history up to that time, and the stress value is estimated based on the stress value. The feature is that crack extension analysis is performed and the remaining life is obtained.
【0010】(4)又は、(1)において、破壊試験か
ら得られる破壊エネルギと炭化物の析出量などの組織変
化量との関係を求め、破壊試験を行わない部品について
は、最大長さのき裂近傍の組織変化を観察し、上記関係
から破壊エネルギを推定し、限界き裂長さを求めること
を特徴とする。In (4) or (1), the relationship between the fracture energy obtained from the fracture test and the amount of change in the structure such as the amount of carbide precipitation is obtained, and the maximum length of the parts not subjected to the fracture test is It is characterized by observing the microstructure change in the vicinity of the crack, estimating the fracture energy from the above relation, and determining the critical crack length.
【0011】(5)又は、(1)において、破壊試験で
得られる破壊エネルギの低下量と温度および時間との関
係を予め求めておき、点検時に行われる破壊試験の結果
と上記関係から、使用中の部材の温度を推定することを
特徴とする。In (5) or (1), the relation between the decrease amount of the fracture energy obtained in the destructive test and the temperature and time is obtained in advance, and it is used from the result of the destructive test conducted at the time of inspection and the above relation. It is characterized by estimating the temperature of the member inside.
【0012】(6)又は、ガスタービン静翼の余寿命評
価装置において、部材に発生する最大き裂の長さと、破
壊試験の結果を入力することで、き裂の進展解析と限界
き裂長さの低下量の推定を行い、その結果を表示し、ま
た入力されたデータをデータベースの中に記録し、次回
以降の点検時にデータとして使用することを特徴とす
る。(6) Alternatively, in the residual life evaluation system for a gas turbine stationary blade, the crack growth analysis and the limit crack length can be analyzed by inputting the maximum crack length generated in the member and the result of the fracture test. It is characterized in that the amount of decrease in the data is estimated, the result is displayed, the input data is recorded in the database, and it is used as the data at the time of the next and subsequent inspections.
【0013】本発明では静翼の表面から微小試験片を採
取し、その破壊試験を行うことで劣化評価を行い、限界
き裂長さを求める。また、静翼の損傷を考えると、き裂
が部材を貫通し、開口するまで進展すると、そこを通し
て冷却空気の漏洩が生じ、機能の喪失につながる。一つ
でもき裂が貫通すると、そのようなことが生じると考え
られるので、問題となるのは最も深くまで進展している
き裂ということになり、そのようなき裂は表面長も最大
であると考えられる。そこで、点検時には最大長さのき
裂およびそれと合体するようなき裂だけを検出すればよ
く、そうすることで点検作業を合理化することが可能と
なる。In the present invention, a minute test piece is sampled from the surface of the vane, and a destructive test is carried out to evaluate the deterioration and obtain the critical crack length. Further, considering damage to the stationary blade, when a crack penetrates the member and propagates until it opens, cooling air leaks through the crack, leading to loss of function. If even one crack penetrates, it is thought that such a thing will occur, so the problem is that the crack propagates to the deepest, and such a crack also has the maximum surface length. it is conceivable that. Therefore, at the time of inspection, it is only necessary to detect the maximum length crack and the crack that merges with the maximum length, and by doing so, it becomes possible to rationalize the inspection work.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は本発明の基本的なブロック図であ
る。構造解析1で計算により求まる応力を基に破壊力学
パラメータ演算器2で応力拡大係数やJ積分といったき
裂進展解析に用いられるパラメータが計算され、それと
材料データ4からき裂進展解析演算器3によりき裂進展
曲線が求められる。一方、点検データ5から評価の対象
となる最大き裂長さが得られ、それとき裂進展解析結果
から深さ方向への進展量が求められる。さらに、静翼か
ら採取される微小試験片より得られる破壊試験データ7
を基に限界き裂長さ評価装置により限界き裂長さが求ま
る。それらを合わせて余寿命評価装置9で余寿命が求め
られる。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a basic block diagram of the present invention. Fracture mechanics parameter calculator 2 calculates the parameters used for crack growth analysis such as stress intensity factor and J-integral based on the stress calculated by structural analysis 1. A crack growth curve is required. On the other hand, the maximum crack length to be evaluated is obtained from the inspection data 5, and at that time, the amount of propagation in the depth direction is obtained from the crack growth analysis result. Furthermore, destructive test data obtained from micro test pieces collected from the vane 7
Based on the above, the limit crack length evaluation device determines the limit crack length. The remaining life is obtained by the remaining life evaluation device 9 by combining them.
【0015】図2は余寿命評価の特性図である。損傷の
成長評価と長時間使用に伴う材質の劣化評価の両者を行
うことで余寿命評価が達成され、余寿命が求まる。図1
における構造解析1からき裂進展解析演算器3までの流
れで損傷進展曲線10が求まり、破壊試験データ7と限
界き裂長さ評価装置8により限界損傷寸法の低下を表す
曲線11が得られ、それらを合わせて評価することで部
品の余寿命が求まることになる。以下にそれらの各作業
についての詳しい説明を行う。FIG. 2 is a characteristic diagram of remaining life evaluation. By performing both damage growth evaluation and material deterioration evaluation due to long-term use, the remaining life evaluation is achieved and the remaining life is obtained. FIG.
The damage growth curve 10 is obtained by the flow from the structural analysis 1 to the crack growth analysis calculator 3 in FIG. 1, and the fracture test data 7 and the limit crack length evaluation device 8 obtain the curve 11 representing the decrease in the critical damage dimension. By evaluating together, the remaining life of the parts can be obtained. A detailed explanation of each of these tasks is given below.
【0016】図3は図2における損傷成長曲線を求める
手順についてのものである。まず、有限要素法などによ
る構造解析1により問題となる部位の応力値が求められ
る。ここで問題となるのは、部材深さ方向へのき裂進展
であるので、部材内部の応力分布12が求められる。こ
のような応力分布を多項式近似することで、次式により
破壊力学パラメータである応力拡大係数Kが求まる。FIG. 3 shows the procedure for obtaining the damage growth curve in FIG. First, the stress value of the problematic portion is obtained by the structural analysis 1 by the finite element method or the like. Since the problem here is the crack growth in the depth direction of the member, the stress distribution 12 inside the member is obtained. The stress intensity factor K, which is a fracture mechanics parameter, can be obtained by the polynomial approximation of such a stress distribution.
【0017】[0017]
【数1】 [Equation 1]
【0018】ここで、F0,F1,F2,…はき裂の形状
係数、A0,A1,A2,…は応力分布を多項式近似した
ときの各項の係数、aはき裂長さ、tは板厚、σ0 は部
材外表面での応力値である。このK値によりき裂進展評
価を行うことになるが、場合によっては、数1で求めら
れた応力拡大係数を例えば次式によりJ積分値Jに変換
し、そのJ値によりき裂進展評価を行う場合もある。Here, F 0 , F 1 , F 2 , ... are the shape factors of the crack, A 0 , A 1 , A 2 , ... are the coefficients of each term when the stress distribution is polynomial approximated, and a is The crack length, t is the plate thickness, and σ 0 is the stress value on the outer surface of the member. Although the crack growth evaluation is performed based on this K value, in some cases, the stress intensity factor obtained by the equation 1 is converted into the J integral value J by the following equation, and the crack growth evaluation is performed based on the J value. It may be done.
【0019】[0019]
【数2】 [Equation 2]
【0020】J積分の計算式については他にもいくつか
提案されており、数2による評価が困難なときは他の式
を用いてもよい以上のような計算によりK値やJ値とい
った破壊力学パラメータとき裂深さの関係13が得られ
る。き裂進展解析には、このK値あるいはJ値とき裂進
展速度da/dNとの関係Several other formulas for the J-integral have been proposed, and other formulas may be used when the evaluation by the equation 2 is difficult. The K value or J value is destroyed by the above calculation. A relationship 13 between the dynamic parameter and the crack depth is obtained. For crack growth analysis, the relationship between this K value or J value and the crack growth rate da / dN
【0021】[0021]
【数3】 (Equation 3)
【0022】を実験により求めておく必要がある。数3
中のC,mはそれぞれ実験により求められる定数であ
る。また式中のΔは、負荷1サイクル中のK値(J値)
の変動幅であることを示している。この数3に数1また
は数2で求められたK値やJ値を代入し積分することで
き裂進展曲線15が求められる。It is necessary to experimentally obtain Number 3
C and m in the figure are constants obtained by experiments. Also, Δ in the formula is K value (J value) during one load cycle.
It shows that the fluctuation range is. The crack growth curve 15 can be obtained by substituting the K value and the J value obtained by the equation 1 or the equation 2 into the equation 3 and integrating them.
【0023】実際の静翼の損傷は、その取付位置により
燃焼ガス温度などの使用条件がばらつくため、翼により
異なってくる。構造解析の際に、それらを考慮して静翼
に発生する応力値を求めることは非常に困難である。そ
こで、き裂進展曲線の横軸を、例えばき裂が部材を貫通
する繰り返し数といった適当な寿命で基準化しておけ
ば、解析的に求まるき裂進展曲線は応力によらず1本の
曲線となるので、点検時に観察されたき裂長さから、そ
の寿命比が求められることになる。また、図4のように
いくつかの応力値に対してき裂進展曲線を求めておき、
点検時のき裂長さとそれまでの起動・停止回数から部材
に発生する応力を推定することで、各静翼ごとの負荷条
件のばらつきに対応することができる。The actual damage of the vane varies depending on the vane because the operating conditions such as the combustion gas temperature vary depending on the mounting position. In structural analysis, it is very difficult to determine the stress value generated in the vane in consideration of them. Therefore, if the horizontal axis of the crack growth curve is standardized by an appropriate life such as the number of repetitions of a crack penetrating a member, the crack growth curve obtained analytically will be one curve regardless of stress. Therefore, the life ratio is obtained from the crack length observed at the time of inspection. Further, as shown in FIG. 4, crack growth curves are obtained for some stress values,
By estimating the stress generated in the member from the crack length at the time of inspection and the number of times of starting and stopping until then, it is possible to cope with the variation in the load condition for each stationary blade.
【0024】点検時に得られるデータはき裂の表面長で
あり、実際のき裂深さを直接求めることは困難である。
静翼に生じる負荷はいわゆる熱衝撃的な負荷であり、内
表面に比べて外表面における応力変動が大きくなる。そ
のためき裂の形状も、表面長に比べて深さ方向の進展量
が小さい偏平なものとなる。そこで、上述したき裂進展
解析や廃棄された翼を切断するなどして、き裂表面長と
深さの関係を図5のようなかたちで求めておき、その関
係を用いることで、点検時に観察されたき裂表面長から
その深さ方向の進展量が求められる。The data obtained during inspection is the surface length of the crack, and it is difficult to directly determine the actual crack depth.
The load generated on the stationary blade is a so-called thermal shock load, and the stress variation on the outer surface is larger than that on the inner surface. Therefore, the shape of the crack is also flat with the amount of propagation in the depth direction being smaller than the surface length. Therefore, the relationship between the crack surface length and the depth is obtained in the form as shown in Fig. 5 by performing the crack growth analysis and cutting the discarded blades, etc., and by using the relationship, at the time of inspection. From the observed crack surface length, the amount of propagation in the depth direction can be obtained.
【0025】実機静翼には多数のき裂が発生するが、一
つでも貫通し、開口したき裂があれば効率や信頼性の低
下に結びつくため、最も深くまで進展しているき裂が問
題となる。このようなき裂は表面長も最大であると考え
られる。現在のところ、点検時には発生した全てのき裂
を計測し記録しているが、損傷評価の際に必要となるの
は最大長さのき裂である。そこで、微小なき裂は計測せ
ず、最大長さあるいはそれに近い長さのき裂のみを計測
することで、点検時の作業量を低減させることができ
る。なお、静翼内の部位が異なれば応力分布等もいくら
か異なってくるので、図6に示すように、静翼をいくつ
かの部位に分け各部位の中での最大のき裂長さに着目し
た進展評価が必要となる。Many cracks are generated in the stationary blade of the actual machine, but if there is even one crack that penetrates and is open, it will lead to a decrease in efficiency and reliability. It becomes a problem. It is considered that such a crack also has the largest surface length. Currently, all cracks that occur during inspection are measured and recorded, but the maximum length of crack is required for damage evaluation. Therefore, it is possible to reduce the amount of work at the time of inspection by measuring only a crack having a maximum length or a length close to it without measuring a minute crack. Note that the stress distribution and the like will differ somewhat if the parts within the vane are different, so as shown in FIG. 6, the vane was divided into several parts and attention was paid to the maximum crack length in each part. Progress evaluation is required.
【0026】図7は限界き裂長さの評価のために行う破
壊試験の説明図である。試験片22は標準的には10mm
角,厚さ0.5mm のものが使用される。静翼は外表面が
高温ガスに曝され、内表面が冷却されるため、材質の劣
化は外表面近くに集中していると考えられる。そこで静
翼に対しては、このような板厚の小さい試験片を用いた
評価が有効になる。パンチャ19に荷重を加えて試験片
を破壊することで、図8のような荷重−変位曲線が得ら
れる。使用時間に伴って、材料劣化が進行することによ
り、荷重−変位曲線の最大荷重および破壊時の変位が小
さくなる。図中斜線で示した、最大荷重までの荷重−変
位曲線下の面積から破壊エネルギが求まる。図9のよう
に、破壊エネルギと破壊靭性値との関係を予め求めてお
けば、この破壊試験により破壊靭性値の低下量が求めら
れ、限界き裂長さが決定されることになる。図1の限界
き裂長さ評価装置では、図9に示す関係と構造解析等に
より求められる応力および温度から限界き裂長さが決定
される。FIG. 7 is an explanatory diagram of a destructive test conducted for evaluation of the limit crack length. The test piece 22 is typically 10 mm
The corner and the thickness of 0.5mm are used. Since the outer surface of the vane is exposed to the high temperature gas and the inner surface is cooled, it is considered that the deterioration of the material is concentrated near the outer surface. Therefore, for a stationary blade, evaluation using a test piece having such a small plate thickness is effective. A load-displacement curve as shown in FIG. 8 is obtained by applying a load to the puncher 19 and breaking the test piece. As the material deteriorates with use time, the maximum load of the load-displacement curve and the displacement at breakage become small. The fracture energy is obtained from the area under the load-displacement curve up to the maximum load, which is indicated by the diagonal lines in the figure. As shown in FIG. 9, if the relationship between the fracture energy and the fracture toughness value is obtained in advance, the reduction amount of the fracture toughness value is obtained by this fracture test, and the critical crack length is determined. In the critical crack length evaluation device of FIG. 1, the critical crack length is determined from the relationship shown in FIG. 9 and the stress and temperature obtained by structural analysis or the like.
【0027】この破壊試験は、実機静翼から試験片を採
取して行うため、全ての静翼について行うことはでき
ず、数枚の静翼を抜き出してのサンプリング試験とな
り、破壊試験を行わない静翼についても、別の方法で破
壊エネルギを推定する必要がある。材質劣化が生じた静
翼表面近くの模式図を図10に示す。表面に酸化層23
が形成されるだけでなく、炭化物24が結晶粒界25に
析出することが確認されている。この炭化物の析出が材
質劣化の大きな要因になっていると考えられている。そ
こで、この炭化物の析出量と破壊エネルギの関係を破壊
試験の際に求めておき、破壊試験を行わない翼について
は、最大長さのき裂周辺の組織観察をレプリカ法などに
より行い、その結果、得られた炭化物析出量から破壊エ
ネルギを推定する。なお、広範囲にわたって組織観察を
行うのはかなりの時間と労力を要するが、実際にはき裂
の進展に対する劣化の影響が問題となるので、進展評価
の対象としている最大長さのき裂周辺についてのみ組織
観察を行えばよい。また、長時間使用後の破壊エネルギ
の低下量の推定を行う必要がある、そこで図12のよう
に、いくつかの温度条件で時効時間と破壊エネルギの関
係を求めておき、破壊試験の結果とそれまでの運転時間
から部材の温度を推定し、その温度を基に長時間使用後
の破壊エネルギ低下量が求められる。Since this destructive test is performed by collecting test pieces from the actual machine vanes, it cannot be performed on all the vanes, and it is a sampling test with several vanes taken out, and no destructive test is conducted. With respect to the stationary blade, it is necessary to estimate the fracture energy by another method. FIG. 10 shows a schematic diagram near the surface of the vane where the material deterioration has occurred. Oxide layer 23 on the surface
It has been confirmed that not only is formed, but also carbides 24 are precipitated at the grain boundaries 25. It is considered that the precipitation of carbides is a major factor in material deterioration. Therefore, the relationship between the precipitation amount of this carbide and the fracture energy was obtained during the fracture test.For blades that were not subjected to the fracture test, the structure around the crack with the maximum length was observed by the replica method, etc. The fracture energy is estimated from the obtained carbide precipitation amount. Note that it takes a considerable amount of time and labor to observe the structure over a wide area, but in reality, the influence of deterioration on the growth of cracks poses a problem. Only the tissue observation should be performed. In addition, it is necessary to estimate the amount of decrease in the fracture energy after long-term use. Therefore, as shown in FIG. 12, the relationship between the aging time and the fracture energy is obtained under some temperature conditions, and the results of the fracture test are obtained. The temperature of the member is estimated from the operating time until then, and the amount of reduction in the fracture energy after long-term use is obtained based on that temperature.
【0028】図13は、以上のような、き裂進展評価と
材質劣化評価の両者により静翼の余寿命評価を行った結
果を示す図である。構造解析あるいは点検時に観察され
たき裂長さより応力値を求め、破壊力学パラメータを計
算し、き裂進展解析を行うことでき裂進展曲線が得られ
る。また、破壊試験により得られた破壊エネルギから限
界き裂長さの低下量が求められる。それらの曲線の交点
が寿命となり、それと現在の損傷量から余寿命が求ま
る。図1の余寿命評価装置9では図13に示す作業を行
うことになる。なお、この限界き裂長さは、その時点で
の破壊靭性値から求められるが、その破壊靭性値は温度
と応力およびき裂長さの関数になる。すなわち、構造解
析あるいは点検時に観察されたき裂長さおよび破壊試験
により推定された応力および温度の値と破壊靭性値から
限界き裂長さが求められるが、上述したようにき裂の深
さ方向の進展量は表面長に比べてかなり小さくなるた
め、限界き裂長さは深さと表面長の両者を考慮して評価
する必要がある。FIG. 13 is a diagram showing the results of the residual life evaluation of the stationary blade based on both the crack growth evaluation and the material deterioration evaluation as described above. The crack growth curve can be obtained by obtaining the stress value from the crack length observed at the time of structural analysis or inspection, calculating the fracture mechanics parameter, and performing the crack growth analysis. Further, the reduction amount of the critical crack length is obtained from the fracture energy obtained by the fracture test. The intersection of these curves becomes the life, and the remaining life is obtained from it and the current damage amount. The remaining life evaluation apparatus 9 of FIG. 1 performs the work shown in FIG. The critical crack length is obtained from the fracture toughness value at that time, and the fracture toughness value is a function of temperature, stress and crack length. That is, the critical crack length is determined from the crack length observed during structural analysis or inspection and the stress and temperature values estimated by the fracture test and the fracture toughness value. Since the amount is much smaller than the surface length, it is necessary to evaluate the critical crack length considering both depth and surface length.
【0029】本実施例では、き裂進展や材料劣化に関す
る材料データが幾つか必要となり、それらのデータは基
本的には実験で求められることになるが、点検時に観察
されるき裂長さやそれに基づいて推定される応力や破壊
試験より得られる破壊エネルギおよび起動・停止回数や
運転時間等もデータの一部として材料データベース4に
記録され、次回以降の点検時に使用される。In the present embodiment, some material data on crack growth and material deterioration are required, and these data will basically be obtained by experiments, but based on the crack length observed at the time of inspection and it. The estimated stress, the fracture energy obtained from the fracture test, the number of times of starting and stopping, the operating time, etc. are recorded as a part of the data in the material database 4 and are used at the time of the next inspection.
【0030】[0030]
【発明の効果】本発明により、ガスタービン静翼につい
て、点検時に観察されたき裂の進展解析による損傷の成
長評価および破壊試験による限界き裂長さの評価が可能
となり、精度のよい余寿命評価が可能となる。また、最
大き裂長さに着目することにより点検作業が合理化さ
れ、稼働率の向上が図れる。As described above, according to the present invention, it is possible to evaluate the growth of damage by the crack propagation analysis observed at the time of inspection and the critical crack length by the fracture test for the gas turbine stationary blade, and the accurate remaining life can be evaluated. It will be possible. Also, by paying attention to the maximum crack length, the inspection work can be rationalized and the operation rate can be improved.
【図1】本発明手法のブロック図。FIG. 1 is a block diagram of the method of the present invention.
【図2】余寿命評価の特性図。FIG. 2 is a characteristic diagram of remaining life evaluation.
【図3】き裂進展解析のフローチャート。FIG. 3 is a flowchart of crack growth analysis.
【図4】き裂進展曲線の応力による変化を示す特性図。FIG. 4 is a characteristic diagram showing a change in a crack growth curve due to stress.
【図5】静翼におけるき裂表面長と深さの関係を示す特
性図。FIG. 5 is a characteristic diagram showing a relationship between a crack surface length and a depth in a stationary blade.
【図6】点検時の静翼の部分分割の一例を示す説明図。FIG. 6 is an explanatory view showing an example of partial division of a stationary blade at the time of inspection.
【図7】破壊試験の説明図。FIG. 7 is an explanatory diagram of a destructive test.
【図8】破壊試験で得られる荷重−変位曲線を示す特性
図。FIG. 8 is a characteristic diagram showing a load-displacement curve obtained in a destructive test.
【図9】破壊エネルギと破壊靭性値の関係を示す特性図FIG. 9 is a characteristic diagram showing the relationship between fracture energy and fracture toughness value.
【図10】長時間使用後の静翼の組織の説明図。FIG. 10 is an explanatory view of the structure of the stationary blade after being used for a long time.
【図11】破壊エネルギと炭化物析出量の関係を示す特
性図。FIG. 11 is a characteristic diagram showing the relationship between fracture energy and carbide precipitation amount.
【図12】破壊エネルギの低下曲線の温度による変化を
示す特性図。FIG. 12 is a characteristic diagram showing a change in a breaking energy decrease curve with temperature.
【図13】静翼の余寿命評価を行った結果を示す特性
図。FIG. 13 is a characteristic diagram showing the result of evaluation of remaining life of a stationary blade.
1…構造解析、2…破壊力学パラメータ演算器、3…き
裂進展解析演算器、4…材料データベース、5…点検デ
ータ、6…き裂深さ評価装置、7…破壊試験データ、8
…限界き裂長さ評価装置、9…余寿命評価装置。1 ... Structural analysis, 2 ... Fracture mechanics parameter calculator, 3 ... Crack growth analysis calculator, 4 ... Material database, 5 ... Inspection data, 6 ... Crack depth evaluation device, 7 ... Fracture test data, 8
... Limit crack length evaluation device, 9 ... Remaining life evaluation device.
Claims (6)
て、構造解析より推定される応力を基に、部材に発生す
るき裂の成長を予測し、また、使用中の部材から採取し
た微小試験片を用いて破壊試験を行い、破壊エネルギの
低下量から限界となるき裂長さを求め、それらの結果と
点検時に観察されたき裂の長さから部品の余寿命を求め
ることを特徴とするガスタービン静翼の余寿命評価方
法。1. A method of evaluating the life of a gas turbine vane, in which a crack growth occurring in a member is predicted based on a stress estimated from a structural analysis, and a micro test piece collected from a member in use. A gas turbine characterized by conducting a destructive test using a crack energy, determining the limit crack length from the amount of decrease in the fracture energy, and calculating the remaining life of the component from the results and the crack length observed during inspection. A method for evaluating the remaining life of a stationary blade.
に分け、その各部位における最大のき裂長さを計測し、
そのき裂長さに基づいて余寿命を評価するガスタービン
静翼の余寿命評価方法。2. The component according to claim 1, wherein the part is divided into several parts, and the maximum crack length at each part is measured,
A method for evaluating the remaining life of a gas turbine stationary blade, which evaluates the remaining life based on the crack length.
裂長さと、それまでの運転履歴より、そのき裂が存在す
る位置に発生する応力を推定し、その応力値を基にき裂
進展解析を行い、余寿命を求めるガスタービン静翼の余
寿命評価方法。3. The crack growth analysis according to claim 1, wherein the stress generated at the position where the crack exists is estimated from the crack length observed at the time of inspection and the operation history until then, and the crack growth analysis is performed based on the stress value. A method for evaluating the remaining life of a gas turbine stationary blade by performing the above.
破壊エネルギと炭化物の析出量などの組織変化量との関
係を求め、破壊試験を行わない部品については、最大長
さのき裂近傍の組織変化を観察し、上記関係から破壊エ
ネルギを推定し、限界き裂長さを求めるガスタービン静
翼の余寿命評価方法。4. The relationship between the fracture energy obtained from the fracture test and the amount of change in the structure such as the amount of carbide precipitation obtained in the fracture test according to claim 1, and the parts not subjected to the fracture test are tested in the vicinity of the maximum length crack. A method for evaluating the remaining life of a gas turbine stationary blade by observing the microstructural change, estimating the fracture energy from the above relationship, and determining the critical crack length.
壊エネルギの低下量と温度および時間との関係を予め求
めておき、点検時に行われる破壊試験の結果と上記関係
から、使用中の部材の温度を推定するガスタービン静翼
の余寿命評価方法。5. The member in use according to claim 1, wherein the relationship between the amount of decrease in the breaking energy obtained in the destructive test, the temperature, and the time is previously obtained, and the result of the destructive test performed at the time of inspection and the above relationship are used. Life Residue Evaluation Method for Gas Turbine Stator Blades that Estimates the Temperature of Engines.
て、部材に発生する最大き裂の長さと、破壊試験の結果
を入力することで、き裂の進展解析と限界き裂長さの低
下量の推定を行い、その結果を表示し、また入力された
データをデータベースの中に記録し、次回以降の点検時
にデータとして使用することを特徴とするガスタービン
静翼の余寿命評価装置。6. A crack propagation analysis and a reduction amount of a limit crack length by inputting a maximum crack length generated in a member and a result of a fracture test in a residual life evaluation apparatus for a gas turbine stationary blade. The gas turbine stationary blade residual life evaluation device is characterized in that the estimated results are displayed, the input data is recorded in a database, and the data is used as data for the next and subsequent inspections.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP452196A JPH09195795A (en) | 1996-01-16 | 1996-01-16 | Remaining life evaluation method for gas turbine stationary blade and device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP452196A JPH09195795A (en) | 1996-01-16 | 1996-01-16 | Remaining life evaluation method for gas turbine stationary blade and device thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09195795A true JPH09195795A (en) | 1997-07-29 |
Family
ID=11586362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP452196A Pending JPH09195795A (en) | 1996-01-16 | 1996-01-16 | Remaining life evaluation method for gas turbine stationary blade and device thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09195795A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002156325A (en) * | 2000-11-17 | 2002-05-31 | Babcock Hitachi Kk | Surface crack depth analytical method of metal member |
JP2008051659A (en) * | 2006-08-24 | 2008-03-06 | Mitsubishi Heavy Ind Ltd | Method for evaluating lifetime |
WO2009017013A1 (en) | 2007-07-27 | 2009-02-05 | Mitsubishi Heavy Industries, Ltd. | Crack progress predicting method and program |
JP2009175110A (en) * | 2008-01-25 | 2009-08-06 | Mitsubishi Heavy Ind Ltd | Method for evaluating lifetime |
WO2010038305A1 (en) * | 2008-10-03 | 2010-04-08 | 三菱重工業株式会社 | Evaluation index setting method and program thereof |
JP2011179878A (en) * | 2010-02-26 | 2011-09-15 | Tokyo Electric Power Co Inc:The | Method for evaluating toughness of high temperature use member |
JP2012047177A (en) * | 2010-08-27 | 2012-03-08 | General Electric Co <Ge> | Method and system for assessing residual life of turbomachine airfoil |
US20120089336A1 (en) * | 2010-07-14 | 2012-04-12 | Baker Hughes Incorporated | System and method for estimating remaining useful life of a downhole tool |
CN103808515A (en) * | 2012-11-12 | 2014-05-21 | 中航商用航空发动机有限责任公司 | Blade separator and engine containment test device |
US8919202B2 (en) | 2010-04-08 | 2014-12-30 | General Electric Company | System and method for monitoring health of stator vanes |
CN112378671A (en) * | 2020-11-13 | 2021-02-19 | 东北大学 | Sliding pair friction wear test bed and method for stator blade adjusting mechanism of gas compressor |
CN116773374A (en) * | 2023-06-15 | 2023-09-19 | 上海发电设备成套设计研究院有限责任公司 | Cylinder stress corrosion and low cycle fatigue long life monitoring method for nuclear turbine |
-
1996
- 1996-01-16 JP JP452196A patent/JPH09195795A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002156325A (en) * | 2000-11-17 | 2002-05-31 | Babcock Hitachi Kk | Surface crack depth analytical method of metal member |
JP2008051659A (en) * | 2006-08-24 | 2008-03-06 | Mitsubishi Heavy Ind Ltd | Method for evaluating lifetime |
WO2009017013A1 (en) | 2007-07-27 | 2009-02-05 | Mitsubishi Heavy Industries, Ltd. | Crack progress predicting method and program |
US8109150B2 (en) | 2007-07-27 | 2012-02-07 | Mitsubishi Heavy Industries, Ltd. | Crack-propagation prediction method and program |
EP2963406A1 (en) | 2007-07-27 | 2016-01-06 | Mitsubishi Hitachi Power Systems, Ltd. | Crack-propagation prediction method and program |
JP2009175110A (en) * | 2008-01-25 | 2009-08-06 | Mitsubishi Heavy Ind Ltd | Method for evaluating lifetime |
WO2010038305A1 (en) * | 2008-10-03 | 2010-04-08 | 三菱重工業株式会社 | Evaluation index setting method and program thereof |
JPWO2010038305A1 (en) * | 2008-10-03 | 2012-02-23 | 三菱重工業株式会社 | Evaluation index setting method and program thereof |
JP2011179878A (en) * | 2010-02-26 | 2011-09-15 | Tokyo Electric Power Co Inc:The | Method for evaluating toughness of high temperature use member |
US8919202B2 (en) | 2010-04-08 | 2014-12-30 | General Electric Company | System and method for monitoring health of stator vanes |
US8825414B2 (en) * | 2010-07-14 | 2014-09-02 | Baker Hughes Incorporated | System and method for estimating remaining useful life of a downhole tool |
US20120089336A1 (en) * | 2010-07-14 | 2012-04-12 | Baker Hughes Incorporated | System and method for estimating remaining useful life of a downhole tool |
JP2012047177A (en) * | 2010-08-27 | 2012-03-08 | General Electric Co <Ge> | Method and system for assessing residual life of turbomachine airfoil |
CN103808515A (en) * | 2012-11-12 | 2014-05-21 | 中航商用航空发动机有限责任公司 | Blade separator and engine containment test device |
CN103808515B (en) * | 2012-11-12 | 2016-08-03 | 中航商用航空发动机有限责任公司 | Blade segregation apparatus and electromotor including experiment device |
CN112378671A (en) * | 2020-11-13 | 2021-02-19 | 东北大学 | Sliding pair friction wear test bed and method for stator blade adjusting mechanism of gas compressor |
CN116773374A (en) * | 2023-06-15 | 2023-09-19 | 上海发电设备成套设计研究院有限责任公司 | Cylinder stress corrosion and low cycle fatigue long life monitoring method for nuclear turbine |
CN116773374B (en) * | 2023-06-15 | 2024-05-31 | 上海发电设备成套设计研究院有限责任公司 | Cylinder stress corrosion and low cycle fatigue long life monitoring method for nuclear turbine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5851197B2 (en) | Stress corrosion cracking life evaluation method for metal materials and inspection plan formulation system for structures used in corrosive water environment | |
CA2072029A1 (en) | Turbine blade assessment system | |
JPH09195795A (en) | Remaining life evaluation method for gas turbine stationary blade and device thereof | |
EP3642455B1 (en) | Life extension of power turbine disks exposed to in-service corrosion damage | |
EP1408201B1 (en) | Steam turbine inspection method | |
US20040240600A1 (en) | Positron annihilation for inspection of land based industrial gas turbine components | |
Lakshmi et al. | Overview of NDT methods applied on an aero engine turbine rotor blade | |
JP2009174859A (en) | Remaining lifetime evaluation method of machine part | |
JP2001330542A (en) | Fatigue life evaluation method and fatigue lift evaluation device for coated component of gas turbine | |
JP5010422B2 (en) | Degradation evaluation method for heat resistant steel and degradation evaluation method for turbine | |
JPH10160646A (en) | Method for anticipating fatigue life of structure member | |
EP2256474A1 (en) | Method of estimating material property value of ceramic, method of estimating material property value of heat-insulating coating material, method of estimating remaining life of heat-insulating coating material, method of estimating remaining life of high-temperature member, and apparatus for obtaining material property value | |
JP3414582B2 (en) | High temperature equipment life monitoring device | |
JP2804701B2 (en) | Gas turbine coating blade deterioration diagnosis method and apparatus | |
JPH08160035A (en) | Method and apparatus for controlling life of high temperature part of gas turbine | |
JPH11237912A (en) | Method and device for maintenance and management of high-temperature structural member | |
JP3015599B2 (en) | Creep damage evaluation method for ferritic heat-resistant steel | |
JP5492057B2 (en) | Damage prediction method for heat-resistant steel welds | |
JP5412540B2 (en) | Degradation evaluation method for heat resistant steel and degradation evaluation method for turbine | |
Keller | A practical approach to implementing linear elastic fracture mechanics in gas turbine rotor disk analyses | |
JP2001264227A (en) | Deterioration evaluation method of coating layer | |
JPH10170416A (en) | Method for evaluating creep life of high-temperature device material | |
Narasimhachary et al. | Life assessment of large gas turbine blades | |
JP2020118566A (en) | High-temperature apparatus remaining life evaluation method and remaining life evaluation assisting system | |
Woodford | Accelerated high temperature performance evaluation for alloy optimization, embrittlement, and life assessment |