[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09195036A - Vapor deposition device and production of thin film - Google Patents

Vapor deposition device and production of thin film

Info

Publication number
JPH09195036A
JPH09195036A JP2728496A JP2728496A JPH09195036A JP H09195036 A JPH09195036 A JP H09195036A JP 2728496 A JP2728496 A JP 2728496A JP 2728496 A JP2728496 A JP 2728496A JP H09195036 A JPH09195036 A JP H09195036A
Authority
JP
Japan
Prior art keywords
film
thin film
vapor deposition
heating element
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2728496A
Other languages
Japanese (ja)
Inventor
Toshiharu Kurauchi
倉内  利春
Tadashi Morita
正 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2728496A priority Critical patent/JPH09195036A/en
Publication of JPH09195036A publication Critical patent/JPH09195036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide technology for forming a thin film (compound thin film in particular) on the inside face of a hollow object to be film-formed represented by a slender tube. SOLUTION: At the time of forming a thin film on the inside face of an object to be film-formed having a hollow inside face, the opening parts 161 and 162 are airtightly clogged by clogging members 51 and 52 having a conductive heating element 3 in which a vapor depositing material is arranged, and vapor deposition is executed while the same is evacuated. After the vapor deposition, reactive gases are introduced from gas introducing ports 41 and 42 provided on the clogging members 51 and 52 , and voltage is applied to the space between the conductive heating element 3 and the object 9 to be film- formed to generate plasma of the reactive gases, by which the thin film formed in the object to be film-formed and the reactive gases can be brought into reaction. The compound thin film having a compsn. close to the stoichiometric compsn. can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は蒸着技術にかかり、
特に、中空の被成膜対象物の内面に薄膜を形成する技術
に関する。
TECHNICAL FIELD The present invention relates to a vapor deposition technique,
In particular, the present invention relates to a technique for forming a thin film on the inner surface of a hollow object to be film-formed.

【0002】[0002]

【従来の技術】従来技術の一般的な蒸着装置を図7の符
号102で示して説明すると、この蒸着装置102は真
空室110を有しており、その底面には、るつぼ117
が配置されている。るつぼ117内には、成膜したい物
質から成る蒸着材料116が配置されており、図示しな
い真空ポンプで真空室110内を真空排気し、フィラメ
ント113で発生させた電子ビーム115を磁極によっ
て曲げ、蒸着材料116に照射すると蒸気流118が発
生し、るつぼ117の上方に配置された平板状の基板1
14の表面に前記蒸着材料116を構成する物質の薄膜
を形成することができるものである。
2. Description of the Related Art A general vapor deposition apparatus of the prior art will be described with reference to numeral 102 in FIG. 7. The vapor deposition apparatus 102 has a vacuum chamber 110, and a crucible 117 is provided on the bottom surface thereof.
Is arranged. In the crucible 117, a vapor deposition material 116 made of a substance to be deposited is arranged. The vacuum chamber 110 is evacuated by a vacuum pump (not shown), and the electron beam 115 generated by the filament 113 is bent by a magnetic pole to vapor deposit. When the material 116 is irradiated, a vapor flow 118 is generated, and the flat plate-shaped substrate 1 is placed above the crucible 117.
A thin film of a substance forming the vapor deposition material 116 can be formed on the surface of 14.

【0003】しかしながらこのような平板状の基板11
4ではなく、中空に形成された被成膜対象物の内面に薄
膜を形成したいという要請がある。かかる場合、被成膜
対象物に設けられた開口部を蒸着材料116側に向け、
その内面に薄膜を成膜しようとしても、蒸気流118
は、内周面の蒸発源に近い方に優先的に付着するため、
均一な膜を形成することができない。
However, such a flat substrate 11
There is a demand for forming a thin film on the inner surface of the object to be film-formed, which is hollow instead of 4. In such a case, the opening provided in the film formation target is directed toward the vapor deposition material 116,
Even if an attempt is made to form a thin film on the inner surface, the vapor flow 118
Is preferentially attached to the inner peripheral surface closer to the evaporation source,
A uniform film cannot be formed.

【0004】特に、化合物薄膜を形成したい場合には、
真空室内に反応性ガスを導入して蒸着材料物質と反応さ
せる必要があるが、従来の蒸着装置では、中空の被成膜
対象物内部にプラズマを発生させることができず、膜質
の良い化合物薄膜を得ることができないという不都合が
あった。中空の被成膜対象物に薄膜を形成する場合のこ
れら不都合は、イオンプレーティング法やCVD法を用
いても生じてしまう。
Particularly, when it is desired to form a compound thin film,
It is necessary to introduce a reactive gas into the vacuum chamber to react with the vapor deposition material, but in the conventional vapor deposition equipment, plasma cannot be generated inside the hollow film-forming target, and a compound thin film of good film quality is obtained. There was an inconvenience that I could not get. These inconveniences when forming a thin film on a hollow object to be film-formed occur even by using the ion plating method or the CVD method.

【0005】かかる場合、ターゲットを被成膜対象物の
内部に配置してスパッタ法によって内面に薄膜を形成す
ることも考えられるが、被成膜対象物が細長い管状体で
ある等の場合には、被成膜対象物の内面とターゲットが
近接してしまい、スパッタガス圧力を通常よりも高くし
なければ安定な放電が維持できなくなってしまう(通常
のスパッタ圧力は10-3〜10-2Pa)。高い圧力でス
パッタを行うと、得られる薄膜の膜質が悪化するばかり
でなく、ターゲット表面が反応により生じた化合物で覆
われてしまい、極端に低いスパッタリングレートしか得
られなくなってしまい、量産性の面からも実用にならな
かった。
In such a case, it is conceivable that the target is placed inside the object to be film-formed and a thin film is formed on the inner surface by the sputtering method. However, when the object to be film-formed is an elongated tubular body, etc. The inner surface of the film-forming target and the target come close to each other, and stable discharge cannot be maintained unless the sputtering gas pressure is higher than usual (normal sputtering pressure is 10 −3 to 10 −2 Pa). ). If sputtering is performed at high pressure, not only the quality of the resulting thin film deteriorates, but also the target surface is covered with the compound generated by the reaction, and only an extremely low sputtering rate can be obtained. It didn't even become practical.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記従来技術
の不都合を解決するために創作されたもので、その目的
は、細長い管に代表される中空の被成膜対象物の内面に
薄膜を形成する技術を提供することにあり、更には、そ
のような中空の被成膜対象物の内面に、化合物薄膜を形
成できる技術を提供することにある。
The present invention was created in order to solve the above-mentioned disadvantages of the prior art, and its purpose is to form a thin film on the inner surface of a hollow film-forming target represented by an elongated tube. Another object of the present invention is to provide a technique of forming a compound thin film, and further to provide a technique of forming a compound thin film on the inner surface of such a hollow film-forming target.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明装置は、少なくとも一つの開口
部を有し、内部が中空の被成膜対象物の内面に薄膜を形
成する蒸着装置であって、前記開口部を気密に閉塞する
閉塞部材と、蒸着材料が配置され、前記閉塞部材に設け
られた導電性発熱体とを有し、前記被成膜対象物の内部
を真空排気できるように構成されたことを特徴とする。
この場合、請求項2記載の発明装置のように、前記閉塞
部材に反応性ガスを導入するガス導入孔を設けてもよ
く、また、請求項3記載の発明装置のように、前記被成
膜対象物と前記導電性発熱体とを電気的に絶縁し、前記
導電性発熱体と前記被成膜対象物との間に電圧を印加し
て前記ガス導入孔から導入した反応性ガスをプラズマ化
できるように構成してもよい。
In order to solve the above problems, an invention apparatus according to claim 1 has a thin film formed on the inner surface of a film-forming target object having at least one opening and having a hollow inside. In the vapor deposition apparatus, a closing member that airtightly closes the opening, a vapor deposition material is provided, and a conductive heating element provided in the closing member is provided, and the interior of the film formation target is It is characterized in that it can be evacuated.
In this case, a gas introduction hole for introducing a reactive gas may be provided in the closing member as in the invention device according to claim 2, and the film formation target may be formed as in the invention device according to claim 3. The target and the conductive heating element are electrically insulated from each other, and a voltage is applied between the conductive heating element and the target object to be film-formed to convert the reactive gas introduced from the gas introduction hole into plasma. It may be configured to be possible.

【0008】また、請求項4記載の発明方法は、少なく
とも一つの開口部を有し、内部が中空の被成膜対象物の
内面に薄膜を形成する薄膜製造方法であって、蒸着材料
が配置された導電性発熱体を前記被成膜対象物内に位置
させ、前記開口部を気密に閉塞して前記被成膜対象物の
内部を真空排気し、前記導電性発熱体に通電して前記蒸
着材料を蒸発させることを特徴とする。
The invention method according to claim 4 is a thin film manufacturing method for forming a thin film on an inner surface of a film-forming target object having at least one opening and having a hollow interior, wherein a vapor deposition material is disposed. The conductive heating element is positioned inside the film formation target, the opening is hermetically closed to evacuate the inside of the film formation target, and the conductive heat generation element is energized to The vapor deposition material is vaporized.

【0009】請求項5記載の発明方法は、少なくとも一
つの開口部を有し、内部が中空の被成膜対象物の内面に
薄膜を形成する薄膜製造方法であって、蒸着材料が配置
された導電性発熱体を前記被成膜対象物内に位置させ、
前記被成膜対象物内を真空排気し、前記導電性発熱体に
通電して前記蒸着材料を蒸発させ、前記被成膜対象物の
内面に前記蒸着材料の薄膜を形成し、前記被成膜対象物
内に反応性ガスを導入し、前記被成膜対象物と前記導電
性発熱体との間に電圧を印加して前記反応性ガスをプラ
ズマ化し、該反応性ガスと前記被成膜対象物内面に形成
された薄膜とを反応させ、化合物薄膜を形成することを
特徴とする。この場合、請求項6記載の発明方法のよう
に、前記蒸着材料を蒸発させる際、前記被成膜対象物内
に前記反応性ガスを導入するようにしてもよい。
The invention method according to claim 5 is a thin film manufacturing method for forming a thin film on the inner surface of a film-forming target having at least one opening and having a hollow interior, wherein a vapor deposition material is arranged. Positioning a conductive heating element in the film formation target,
The inside of the film formation target is evacuated, the conductive heating element is energized to evaporate the vapor deposition material, and a thin film of the vapor deposition material is formed on the inner surface of the film formation target. A reactive gas is introduced into an object, and a voltage is applied between the object to be film-formed and the conductive heating element to turn the reactive gas into plasma, and the reactive gas and the object to be film-formed. It is characterized in that a compound thin film is formed by reacting with the thin film formed on the inner surface of the object. In this case, when the vapor deposition material is evaporated, the reactive gas may be introduced into the film formation target as in the method of the sixth aspect of the invention.

【0010】このような本発明装置の構成によれば、少
なくとも一つの開口部を有し、内部が中空の被成膜対象
物の内面に薄膜を形成する場合に、前記開口部を気密に
閉塞する閉塞部材を設けて被成膜対象物内部を真空排気
するようにし、また、その閉塞部材に蒸着材料が配置さ
れた導電性発熱体を設けたので、真空室を設けなくて
も、この導電性発熱体に通電して被成膜対象物の内面に
前記蒸着材料の均一な薄膜を形成することが可能とな
る。
According to such a configuration of the device of the present invention, when forming a thin film on the inner surface of a film-forming target having at least one opening and having a hollow inside, the opening is hermetically closed. Since the inside of the object to be film-formed is evacuated by a vacuum, and the conductive heating element in which the vapor deposition material is disposed is provided in the closing member, this conductive material can be used without a vacuum chamber. It becomes possible to form a uniform thin film of the vapor deposition material on the inner surface of the film formation target by energizing the heat generating element.

【0011】この場合、この蒸着装置の閉塞部材に反応
性ガスを導入するガス導入孔を設けておけば、反応性ガ
スを導入しながら前記蒸着材料を蒸発させることができ
るので、蒸着材料と反応性ガスとを反応させることも可
能となる。
In this case, if a gas introduction hole for introducing the reactive gas is provided in the closing member of the vapor deposition apparatus, the vapor deposition material can be vaporized while introducing the reactive gas, and thus the vapor deposition material reacts with the vapor deposition material. It is also possible to react with a characteristic gas.

【0012】更に、前記導電性発熱体と前記被成膜対象
物とを電気的に絶縁しておき、被成膜対象物内部を真空
にし、反応性ガスを導入しながら前記導電性発熱体と前
記被成膜対象物との間に電圧を印加すれば前記反応性ガ
スのプラズマが発生するので、被成膜対象物の内面に形
成された薄膜と反応性ガスを反応させ、化学量論組成に
近い化合物薄膜を得ることが可能となる。
Further, the electrically conductive heating element and the object to be film-formed are electrically insulated from each other, the inside of the object to be film-formed is evacuated, and the reactive gas is introduced while introducing a reactive gas. Since plasma of the reactive gas is generated when a voltage is applied between the film formation target and the stoichiometric composition, the thin film formed on the inner surface of the film formation target is reacted with the reactive gas. It is possible to obtain a compound thin film close to

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を図面を用い
て説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0014】<蒸着装置>図1の符号2は、本発明の蒸
着装置の一例を示したものであり、内部が中空の被成膜
対象物9の内面に薄膜を形成するものである。この被成
膜対象物9は、陽電子を加速、貯蔵する加速器に使用さ
れる部材であり、内面にTiN薄膜を形成することによ
って二次電子放出を低減させ、陽電子を長寿命化させよ
うとするものである。
<Evaporation Apparatus> Reference numeral 2 in FIG. 1 shows an example of the evaporation apparatus of the present invention, which forms a thin film on the inner surface of a film-forming target 9 having a hollow inside. The film-forming target 9 is a member used in an accelerator for accelerating and storing positrons. By forming a TiN thin film on the inner surface, secondary electron emission is reduced and the positron life is extended. It is a thing.

【0015】該被成膜対象物9は、金属材料が管状に形
成され、両端に開口部161、162が形成された管状部
191(内径50mm×長さ約2000mm)と、その管
状部191の中央付近に張り出された凸部192を有して
おり、管状部191と凸部192とで全体の形状がT字状
になるようにされている。前記蒸着装置2は、閉塞部材
1、52を有しており、各閉塞部材51、52は、それぞ
れ絶縁ブッシュ211、212を介して開口部161、1
2に取り付けられ、被成膜対象物9の内部を気密に閉
塞するように構成されている。
The object 9 to be film-formed has a tubular portion 19 1 (inner diameter 50 mm × length 2000 mm) in which a metallic material is formed in a tubular shape and openings 16 1 and 16 2 are formed at both ends, and the tubular portion. The portion 19 1 has a protruding portion 19 2 which is projected near the center thereof, and the tubular portion 19 1 and the protruding portion 19 2 are configured so that the overall shape is a T-shape. The vapor deposition device 2 has closing members 5 1 , 5 2 , and the closing members 5 1 , 5 2 have openings 16 1 , 1 through insulating bushes 21 1 , 21 2 , respectively.
6 2 and is configured to hermetically close the inside of the film formation target 9.

【0016】閉塞部材51、52には、それぞれ絶縁物2
1、222を介して電極151、152が設けられてお
り、該電極151、152の間には、管状部191の内部
の中心軸線上に位置するように、タングステンフィラメ
ントから成る導電性発熱体3が設けられている。電極1
1、152には加熱電源18が接続されており、この加
熱電源18によって導電性発熱体3の両端に交流電圧を
印加して通電したり、導電性発熱体3にDC電圧を印加
することで、その導電性発熱体3と被成膜対象物9との
間にDC電圧を印加できるように構成されている。ま
た、各閉塞部材51、52には、それぞれガス導入孔
1、42が設けられており、マスフローコントローラー
141、142を介して、被成膜対象物9内部に、窒素ガ
スや酸素ガス等の各種ガスを直接導入できるように構成
されている。
The closing members 5 1 , 5 2 are made of an insulating material 2 respectively.
Electrodes 15 1 and 15 2 are provided via 2 1 and 22 2 , and a tungsten filament is provided between the electrodes 15 1 and 15 2 so as to be located on the central axis of the tubular portion 19 1. A conductive heating element 3 composed of is provided. Electrode 1
A heating power source 18 is connected to 5 1 and 15 2, and the heating power source 18 applies an AC voltage to both ends of the conductive heating element 3 to energize it, or applies a DC voltage to the conductive heating element 3. Thus, the DC voltage can be applied between the conductive heating element 3 and the film formation target 9. In addition, each of the closing members 5 1 and 5 2 is provided with gas introduction holes 4 1 and 4 2 , respectively, and nitrogen gas is introduced into the film formation target 9 through the mass flow controllers 14 1 and 14 2. And various gases such as oxygen gas can be directly introduced.

【0017】前記凸部192の端部には開口部163が形
成されており、その開口部163には、絶縁ブッシュ2
3を介して排気パイプ20の一端が接続されている。
排気パイプ20の他端には真空ポンプ13が設けられて
おり、この真空ポンプ13を起動すると、被成膜対象物
9の内部を真空排気できるように構成されている。ま
た、被成膜対象物9にはバイアス電源17が接続され、
被成膜対象物9と導電性発熱体3との間に電圧が印加で
きるように構成されている。
An opening 16 3 is formed at an end of the convex portion 19 2 and the insulating bush 2 is formed in the opening 16 3.
One end of the exhaust pipe 20 is connected via 1 3 .
A vacuum pump 13 is provided at the other end of the exhaust pipe 20, and when the vacuum pump 13 is activated, the inside of the film formation target 9 can be evacuated. A bias power source 17 is connected to the film-forming target 9,
A voltage can be applied between the film-forming target 9 and the conductive heating element 3.

【0018】<薄膜製造方法の実施例1>この蒸着装置
2を用い、前記被成膜対象物9の内面へ薄膜を形成する
薄膜製造方法の一実施例について説明する。まず、真空
ポンプ13を用いて被成膜対象物9の内部を1.0×1
-6Torr以下の圧力になるまで真空排気した。その後、
マスフローコントローラー141、142によって、被成
膜対象物9内部が0.1Torrの圧力になるまで窒素ガス
を導入し、バイアス電源17により、導電性発熱体9に
対して被成膜対象物9が−0.5kVの電位になるよう
にして窒素ガスプラズマを発生させ、被成膜対象物9内
面のボンバードクリーニングを行った。
<First Embodiment of Thin Film Manufacturing Method> An embodiment of a thin film manufacturing method for forming a thin film on the inner surface of the film-forming target 9 by using the vapor deposition apparatus 2 will be described. First, the inside of the film formation target 9 is 1.0 × 1 by using the vacuum pump 13.
It was evacuated to a pressure of 0 -6 Torr or less. afterwards,
Nitrogen gas was introduced by the mass flow controllers 14 1 and 14 2 until the inside of the film formation target 9 reached a pressure of 0.1 Torr, and the bias power supply 17 was applied to the conductive heating element 9 to form the film formation target 9 Was set to a potential of −0.5 kV to generate a nitrogen gas plasma, and the inner surface of the film formation target 9 was bombarded cleaned.

【0019】ボンバードクリーニング後、バイアス電源
17を停止させるとともに被成膜対象物9内部への窒素
ガスの導入を停止し、再度1.0×10-6Torr以下の圧
力になるまで真空排気した後、加熱電源18を起動して
交流電圧を発生させ、導電性発熱体3を加熱した。
After the bombard cleaning, the bias power supply 17 is stopped, the introduction of nitrogen gas into the film-forming target 9 is stopped, and the chamber is evacuated again to a pressure of 1.0 × 10 -6 Torr or less. Then, the heating power source 18 was activated to generate an AC voltage, and the conductive heating element 3 was heated.

【0020】この導電性発熱体3には、その部分拡大図
である図2に示すように、チタン線10が螺旋状に巻回
されており、導電性発熱体3が発熱するとチタン線10
が溶融し、溶融チタンが導電性発熱体3表面を均一に濡
らすように構成されている。
As shown in FIG. 2, which is a partially enlarged view of the conductive heating element 3, a titanium wire 10 is spirally wound. When the conductive heating element 3 generates heat, the titanium wire 10 is heated.
Are melted, and the molten titanium uniformly wets the surface of the conductive heating element 3.

【0021】前記加熱電源18の起動によりチタン線1
0が溶融してチタン蒸気流が発生し、被成膜対象物9の
管状部191の内面に均一に到達し、1000Åの厚み
のTi薄膜が成膜された。
The titanium wire 1 is activated when the heating power source 18 is activated.
0 melted to generate a titanium vapor flow, which uniformly reached the inner surface of the tubular portion 19 1 of the object 9 to be film-formed, and a Ti thin film having a thickness of 1000 Å was formed.

【0022】Ti薄膜の形成後、直ちにガス導入孔
1、42から窒素ガスを導入し、マスフローコントロー
ラー141、142によって0.1Torrの窒素ガス圧力を
維持しながら、導電性発熱体3を接地電位に置き、バイ
アス電源17を起動して被成膜対象物9に−1.0kV
のDC電圧を印加して、被成膜対象物9内部に均一なプ
ラズマを発生させた。このプラズマにより5分間Ti薄
膜を窒化してTiN薄膜を形成させた。
Immediately after the formation of the Ti thin film, nitrogen gas was introduced from the gas introduction holes 4 1 and 4 2 and the conductive heating element 3 was maintained while maintaining the nitrogen gas pressure of 0.1 Torr by the mass flow controllers 14 1 and 14 2 . Is set to the ground potential, the bias power supply 17 is activated, and the film formation target 9 is -1.0 kV.
Was applied to generate uniform plasma inside the film formation target 9. The Ti thin film was nitrided by this plasma for 5 minutes to form a TiN thin film.

【0023】全長2000mmの管状部191内に形成
されたTiN薄膜の膜厚を、図3に示す位置A〜Eにお
いて測定した。その結果を下記表1に示す。
The thickness of the TiN thin film formed in the tubular portion 19 1 having a total length of 2000 mm was measured at positions A to E shown in FIG. The results are shown in Table 1 below.

【0024】[0024]

【表1】 [Table 1]

【0025】この表1の膜厚分布から、TiN薄膜は、
管状部191の長手方向に対してほぼ均一な膜厚に形成
されていることが分かる。
From the thickness distribution of Table 1, the TiN thin film is
It can be seen that the tubular portion 19 1 is formed to have a substantially uniform film thickness in the longitudinal direction.

【0026】また、このTiN薄膜の深さ方向の組成を
オージェ分析法により求めた。その分析結果を図4のグ
ラフに示す。薄膜表面の組成は反応性スパッタによって
作成した場合のTiN薄膜の組成と同等程度である。
The composition in the depth direction of this TiN thin film was determined by Auger analysis. The analysis result is shown in the graph of FIG. The composition of the thin film surface is approximately the same as the composition of the TiN thin film formed by reactive sputtering.

【0027】<薄膜製造方法の実施例2>未成膜の被成
膜対象物9を用い、その内面に上記実施例1と同じ条件
で真空排気、ボンバードクリーニング、Ti薄膜の形成
を行った後、ガス導入孔41、42から直ちに窒素ガスを
導入し、被成膜対象物9内の圧力を0.1Torrに維持し
ながら、今度は被成膜対象物9を接地電位に置き、導電
性発熱体3に+1.0kVのDC電圧を印加した。この
場合も被成膜対象物9内部にプラズマが発生し、上記実
施例1と同様の膜厚分布、組成のTiN薄膜を得ること
ができた。
<Second Embodiment of Thin Film Manufacturing Method> An undeposited film-forming target 9 is used, and after vacuum evacuation, bombard cleaning, and formation of a Ti thin film on its inner surface under the same conditions as in the first embodiment, Nitrogen gas was immediately introduced from the gas introduction holes 4 1 and 4 2 to maintain the pressure inside the film formation target 9 at 0.1 Torr, and this time, the film formation target 9 was placed at the ground potential to make it conductive. A DC voltage of +1.0 kV was applied to the heating element 3. Also in this case, plasma was generated inside the film-forming target 9, and a TiN thin film having the same film thickness distribution and composition as in Example 1 could be obtained.

【0028】なお、上述のように、Ti薄膜の成膜後に
被成膜対象物9と導電性発熱体3との間に印加する電圧
をDC電圧とせず、高周波電圧としても被成膜対象物9
内にプラズマを発生させることができ、この場合も、上
記実施例1と同様の膜厚分布、組成のTiN薄膜を得る
ことができた。
As described above, the voltage to be applied between the film-forming target 9 and the conductive heating element 3 after the Ti thin film is formed is not the DC voltage, and the film-forming target is also a high frequency voltage. 9
Plasma can be generated inside, and in this case as well, a TiN thin film having the same film thickness distribution and composition as in Example 1 could be obtained.

【0029】<薄膜製造方法の実施例3>未成膜の被成
膜対象物9に対し、実施例1と同様の条件で真空排気と
ボンバードクリーニングを行い、一旦1.0×10-6To
rr以下の圧力まで真空排気した後、マスフローコントロ
ーラー141、142によって流量制御しながら、キャリ
アガスと窒素ガスとの混合ガス(窒素ガス分圧は1.0
×10-4Torr)を導入し、電極151、152の間に接続
された加熱電源18を起動して交流電圧を発生させ、被
成膜対象物9の温度が100℃になるようにしながら導
電性発熱体3に通電して、被成膜対象物9内面にTiN
x薄膜を形成した(x≦1.0)。このときのTiNx薄膜の
成膜速度は2.0Å/秒であった。
<Third Embodiment of Thin Film Manufacturing Method> The film-forming target 9 that has not been formed is subjected to vacuum evacuation and bombard cleaning under the same conditions as in the first embodiment, and then once 1.0 × 10 −6 To
After vacuum evacuation to a pressure of rr or less, while controlling the flow rate by the mass flow controllers 14 1 and 14 2 , a mixed gas of carrier gas and nitrogen gas (nitrogen gas partial pressure is 1.0
X 10 −4 Torr) is introduced, and the heating power supply 18 connected between the electrodes 15 1 and 15 2 is activated to generate an AC voltage so that the temperature of the film formation target 9 becomes 100 ° C. While the conductive heating element 3 is energized, TiN is deposited on the inner surface of the film-forming target 9.
An x thin film was formed (x ≦ 1.0). The film formation rate of the TiN x thin film at this time was 2.0 Å / sec.

【0030】次に、実施例1と同様の条件でプラズマを
生成したところ前記TiNx薄膜が窒化され、化学量論
組成のTiN薄膜を得ることができた。このときに得ら
れたTiN薄膜のオージェ分析結果を図5のグラフに示
す。
Next, when plasma was generated under the same conditions as in Example 1, the TiN x thin film was nitrided, and a TiN thin film having a stoichiometric composition could be obtained. The Auger analysis result of the TiN thin film obtained at this time is shown in the graph of FIG.

【0031】以上はチタン線10を蒸着材料に、窒素ガ
スを反応性ガスに用いてTiN薄膜を形成する場合につ
いて説明したが、本発明の蒸着材料はチタンに限定され
るものではない。また、反応性ガスについても窒素ガス
に限定されるものではなく、アンモニアガス、酸素ガ
ス、炭化水素ガス(例えばCH4ガス等)の各種のガスを
用いて、窒化膜、酸化膜、炭化膜を形成することができ
る。
Although the case where the TiN thin film is formed by using the titanium wire 10 as the vapor deposition material and nitrogen gas as the reactive gas has been described above, the vapor deposition material of the present invention is not limited to titanium. Also, the reactive gas is not limited to nitrogen gas, and various gases such as ammonia gas, oxygen gas, and hydrocarbon gas (for example, CH 4 gas) are used to form a nitride film, an oxide film, and a carbon film. Can be formed.

【0032】また、図6に示すような、全体が筒状に形
成された被成膜対象物9'については、前記閉塞部材52
に代え、開口部162に閉塞部材5'2を設けて気密に閉
塞させ、該閉塞部材5'2が有する開口部16'3に絶縁ブ
ッシュ21'3を介して排気パイプ20'の一端を接続
し、排気パイプ20'の他端に真空ポンプ13を接続し
て蒸着装置52を構成させれば、被成膜対象物9'内を
真空排気することができ、閉塞部材151、15'2の間
に設けられた導電性発熱体3やガス導入孔41、42によ
り、上記実施例1、2と同様にTi薄膜やTiN薄膜を
形成できる。この閉塞部材52を両方の開口部161、1
2に設けて被成膜対象物9の内部を真空排気するよう
にしてもよい。
Further, as shown in FIG. 6, with respect to the film-forming target 9'which is entirely formed in a tubular shape, the closing member 5 2
Instead, the closing member 5 ′ 2 is provided in the opening 16 2 so as to be airtightly closed, and one end of the exhaust pipe 20 ′ is connected to the opening 16 ′ 3 of the closing member 5 ′ 2 through the insulating bush 21 ′ 3. By connecting and connecting the vacuum pump 13 to the other end of the exhaust pipe 20 ′ to configure the vapor deposition device 52, the inside of the film formation target 9 ′ can be evacuated and the closing members 15 1 , 15 ′. By the conductive heating element 3 and the gas introduction holes 41, 42 provided between the two , a Ti thin film or a TiN thin film can be formed as in the first and second embodiments. This closing member 5 2 is connected to both openings 16 1 , 1
The inside of the object to be film 9 provided on the 6 2 may be evacuated.

【0033】なお、化合物薄膜を形成する場合には、蒸
着とプラズマによる反応とを交互に繰り返して行う化合
物薄膜の製造方法も本発明に含まれる。また、化合物薄
膜を形成する場合は、開口部を閉塞させて被成膜対象物
内部を真空排気する方法に限定されるものではない。蒸
着材料が配置された導電性発熱体を中空の被成膜対象物
内部に位置させ、その導電性発熱体を蒸着源とプラズマ
発生用電極の両方に用いるものであれば本発明に含まれ
る。
When forming a compound thin film, the present invention also includes a method for producing a compound thin film in which vapor deposition and plasma reaction are alternately repeated. Further, when forming the compound thin film, the method is not limited to the method of closing the opening and evacuating the inside of the film formation target. The present invention is included in the present invention as long as a conductive heating element on which a vapor deposition material is placed is positioned inside a hollow object to be film-formed and the conductive heating element is used as both a vapor deposition source and a plasma generating electrode.

【0034】[0034]

【発明の効果】本発明により、被成膜対象物の開口部を
閉塞して真空排気すれば、真空室を設けなくても被成膜
対象物の内面に薄膜を形成できる。この場合、形成され
る薄膜の膜厚分布を均一にすることができる。また、導
電性発熱体を被成膜対象物内部に導入した反応性ガスを
プラズマ化する電極に用いることができるので均一な膜
質の化合物薄膜を形成することが可能となる。
According to the present invention, a thin film can be formed on the inner surface of a film-forming target without providing a vacuum chamber by closing the opening of the film-forming target and evacuating the chamber. In this case, the thickness distribution of the formed thin film can be made uniform. Further, since the conductive heating element can be used as an electrode for converting the reactive gas introduced into the film formation target into plasma, it is possible to form a compound thin film having a uniform film quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の蒸着装置の一例を示す図FIG. 1 is a diagram showing an example of a vapor deposition device of the present invention.

【図2】 導電性発熱体の部分拡大図FIG. 2 is a partially enlarged view of a conductive heating element.

【図3】 膜厚測定位置を説明するための図FIG. 3 is a diagram for explaining a film thickness measurement position.

【図4】 本発明方法の一例により成膜したTiN薄膜
のオージェ分析結果
FIG. 4 is a result of Auger analysis of a TiN thin film formed by an example of the method of the present invention.

【図5】 本発明方法の他の例により成膜したTiN薄
膜のオージェ分析結果
FIG. 5: Auger analysis result of TiN thin film formed by another example of the method of the present invention

【図6】 本発明の蒸着装置の他の例を示す図FIG. 6 is a diagram showing another example of the vapor deposition device of the present invention.

【図7】 従来技術の蒸着装置の一例FIG. 7 shows an example of a conventional vapor deposition device.

【符号の説明】[Explanation of symbols]

2、52……蒸着装置 3……導電性発熱体 41、42……ガス導入孔 51、52、5'2……閉塞部材 9……被成膜対象物 10……蒸着材料 161〜163、16'3……開口部2, 52 ...... deposition apparatus 3 ...... conductive heating element 4 1, 4 2 ...... gas introducing hole 5 1, 5 2, 5 '2 ...... closure member 9 ...... deposition target object 10 ...... deposition material 16 1 to 16 3 , 16 ' 3 ...... Aperture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一つの開口部を有し、内部が
中空の被成膜対象物の内面に薄膜を形成する蒸着装置で
あって、 前記開口部を気密に閉塞する閉塞部材と、 蒸着材料が配置され前記閉塞部材に設けられた導電性発
熱体とを有し、 前記被成膜対象物の内部を真空排気できるように構成さ
れたことを特徴とする蒸着装置。
1. A vapor deposition apparatus for forming a thin film on an inner surface of an object to be film-formed, which has at least one opening and has a hollow inside, and a closing member which hermetically closes the opening, and a vapor deposition material. And a conductive heating element provided in the closing member, and configured so that the inside of the film formation target can be evacuated.
【請求項2】 前記閉塞部材には反応性ガスを導入する
ガス導入孔が設けられたことを特徴とする請求項1記載
の蒸着装置。
2. The vapor deposition apparatus according to claim 1, wherein the closing member is provided with a gas introduction hole for introducing a reactive gas.
【請求項3】 前記被成膜対象物と前記導電性発熱体と
は電気的に絶縁され、 前記導電性発熱体と前記被成膜対象物との間に電圧を印
加して前記ガス導入孔から導入された反応性ガスをプラ
ズマ化できるように構成されたことを特徴とする請求項
2記載の蒸着装置。
3. The film forming target and the conductive heating element are electrically insulated from each other, and a voltage is applied between the conductive heating element and the film forming target to introduce the gas introduction hole. 3. The vapor deposition apparatus according to claim 2, wherein the reactive gas introduced from the above is configured to be turned into plasma.
【請求項4】 少なくとも一つの開口部を有し、内部が
中空の被成膜対象物の内面に薄膜を形成する薄膜製造方
法であって、 蒸着材料が配置された導電性発熱体を前記被成膜対象物
内に位置させ、 前記開口部を気密に閉塞して前記被成膜対象物の内部を
真空排気し、 前記導電性発熱体に通電して前記蒸着材料を蒸発させる
ことを特徴とする薄膜製造方法。
4. A thin-film manufacturing method for forming a thin film on an inner surface of a film-forming target having at least one opening and having a hollow inside, wherein the conductive heating element on which a vapor deposition material is disposed is coated with the conductive heating element. It is positioned inside the film-forming target, the opening is hermetically closed, the interior of the film-forming target is evacuated, and the conductive heating element is energized to vaporize the vapor deposition material. Thin film manufacturing method.
【請求項5】 少なくとも一つの開口部を有し、内部が
中空の被成膜対象物の内面に薄膜を形成する薄膜製造方
法であって、 蒸着材料が配置された導電性発熱体を前記被成膜対象物
内に位置させ、 前記被成膜対象物内を真空排気し、前記導電性発熱体に
通電して前記蒸着材料を蒸発させ、前記被成膜対象物の
内面に前記蒸着材料の薄膜を形成し、 前記被成膜対象物内に反応性ガスを導入し、 前記被成膜対象物と前記導電性発熱体との間に電圧を印
加して前記反応性ガスをプラズマ化し、該反応性ガスと
前記被成膜対象物内面に形成された薄膜とを反応させる
ことを特徴とする薄膜製造方法。
5. A thin-film manufacturing method for forming a thin film on an inner surface of a film-forming target having at least one opening and having a hollow inside, wherein the conductive heating element on which a vapor deposition material is disposed is applied to the target. Located inside the film formation target, the inside of the film formation target is evacuated, the conductive heating element is energized to vaporize the vapor deposition material, and the vapor deposition material is deposited on the inner surface of the film formation target. A thin film is formed, a reactive gas is introduced into the film formation target, and a voltage is applied between the film formation target and the conductive heating element to convert the reactive gas into plasma, A method of manufacturing a thin film, comprising reacting a reactive gas with a thin film formed on the inner surface of the film formation target.
【請求項6】 前記蒸着材料を蒸発させる際、前記被
成膜対象物内に前記反応性ガスを導入することを特徴と
する請求項5記載の薄膜製造方法。
6. The thin film manufacturing method according to claim 5, wherein the reactive gas is introduced into the film formation target when the vapor deposition material is evaporated.
JP2728496A 1996-01-22 1996-01-22 Vapor deposition device and production of thin film Pending JPH09195036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2728496A JPH09195036A (en) 1996-01-22 1996-01-22 Vapor deposition device and production of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2728496A JPH09195036A (en) 1996-01-22 1996-01-22 Vapor deposition device and production of thin film

Publications (1)

Publication Number Publication Date
JPH09195036A true JPH09195036A (en) 1997-07-29

Family

ID=12216782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2728496A Pending JPH09195036A (en) 1996-01-22 1996-01-22 Vapor deposition device and production of thin film

Country Status (1)

Country Link
JP (1) JPH09195036A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035623A (en) * 2005-07-22 2007-02-08 Sandvik Intellectual Property Ab Apparatus in which plasma activity is raised
WO2006019565A3 (en) * 2004-07-15 2007-04-26 Sub One Technology Inc Method and system for coating internal surfaces of prefabricated process piping in the field
JP2008531856A (en) * 2005-03-07 2008-08-14 サブ−ワン テクノロジー, インコーポレイテッド Method and system for coating inner surfaces using reverse flow cycles and other techniques
WO2014192928A1 (en) * 2013-05-31 2014-12-04 本田技研工業株式会社 Preliminary treatment method for workpiece
CN107502862A (en) * 2017-09-27 2017-12-22 聂恒志 A kind of plasma fortified method and device of cylindrical metallic inner surface

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019565A3 (en) * 2004-07-15 2007-04-26 Sub One Technology Inc Method and system for coating internal surfaces of prefabricated process piping in the field
US7300684B2 (en) * 2004-07-15 2007-11-27 Sub-One Technology, Inc. Method and system for coating internal surfaces of prefabricated process piping in the field
JP2008506840A (en) * 2004-07-15 2008-03-06 サブ−ワン テクノロジー, インコーポレイテッド Method and system for on-site coating of internal surfaces of pre-assembled process piping
JP2008531856A (en) * 2005-03-07 2008-08-14 サブ−ワン テクノロジー, インコーポレイテッド Method and system for coating inner surfaces using reverse flow cycles and other techniques
JP2007035623A (en) * 2005-07-22 2007-02-08 Sandvik Intellectual Property Ab Apparatus in which plasma activity is raised
WO2014192929A1 (en) * 2013-05-31 2014-12-04 本田技研工業株式会社 Carbon-coating-film cleaning method and device
WO2014192928A1 (en) * 2013-05-31 2014-12-04 本田技研工業株式会社 Preliminary treatment method for workpiece
CN105229197A (en) * 2013-05-31 2016-01-06 本田技研工业株式会社 Carbon coating purging method and device
JP5982570B2 (en) * 2013-05-31 2016-08-31 本田技研工業株式会社 Carbon coating cleaning method and apparatus
JP6030759B2 (en) * 2013-05-31 2016-11-24 本田技研工業株式会社 Work pre-processing method
US9994957B2 (en) 2013-05-31 2018-06-12 Honda Motor Co., Ltd. Preliminary treatment method for workpiece
US10273581B2 (en) 2013-05-31 2019-04-30 Honda Motor Co., Ltd. Carbon-coating-film cleaning method and device
CN107502862A (en) * 2017-09-27 2017-12-22 聂恒志 A kind of plasma fortified method and device of cylindrical metallic inner surface

Similar Documents

Publication Publication Date Title
US3604970A (en) Nonelectron emissive electrode structure utilizing ion-plated nonemissive coatings
US6359378B1 (en) Amplifier having multilayer carbon-based field emission cathode
JPS61201769A (en) Reactive vapor deposition of oxide, nitride and oxide nitride
JPH09195036A (en) Vapor deposition device and production of thin film
EP1239056A1 (en) Improvement of a method and apparatus for thin film deposition, especially in reactive conditions
JP2002177765A5 (en) Thin film preparation method
JPS6154869B2 (en)
US5114559A (en) Thin film deposition system
JP3685670B2 (en) DC sputtering equipment
JPH03122266A (en) Production of thin nitride film
JPH0644893A (en) Cathode structure
JP3698680B2 (en) Deposition method
JPS60251269A (en) Method and apparatus for ionic plating
JPS628409A (en) Formation of transparent conducting metal oxide film
JPS6116731B2 (en)
JPH02157123A (en) Production of thin barium titanate film
JPH08288273A (en) Manufacture of tin barrier film and device therefor
JPH0428862A (en) Plasma producing device
JPS61253734A (en) Ion source
KR950004782B1 (en) Method for making a metallic compound film
JPS5813006B2 (en) Sankabutsuhandoutaihakumakuno Seizouhouhou
JPH0196373A (en) Ion plating apparatus
JPH06128731A (en) Production of thin-film oxide
JPS5847465B2 (en) Multi-anode hot cathode discharge type ion plating equipment
JPH0342677Y2 (en)