[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09194609A - Ion-exchange membrane and its preparation - Google Patents

Ion-exchange membrane and its preparation

Info

Publication number
JPH09194609A
JPH09194609A JP8010848A JP1084896A JPH09194609A JP H09194609 A JPH09194609 A JP H09194609A JP 8010848 A JP8010848 A JP 8010848A JP 1084896 A JP1084896 A JP 1084896A JP H09194609 A JPH09194609 A JP H09194609A
Authority
JP
Japan
Prior art keywords
polymer
ion exchange
membrane
porous membrane
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8010848A
Other languages
Japanese (ja)
Inventor
Mitsuru Kuhata
満 久畑
Yoshio Oka
良雄 岡
Koji Hara
浩二 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8010848A priority Critical patent/JPH09194609A/en
Publication of JPH09194609A publication Critical patent/JPH09194609A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing an ion-exchange membrane which can prevent the ion-exchange membrane from breaking originated by change in repeating of operating condition during operation of an apparatus by using a specified method. SOLUTION: A drawn porous membrane is impregnated with a polymer dissolved in a solvent and, after the polymer is sticked on the porous membrane by drying it, an ion exchange group is introduced on the polymer. In another way, after the drawn porous membrane is impregnated with a polymer and a crosslinking agent dissolved in a solvent, the ion exchange group is introduced on the polymer. As the drawn porous membrane, a polytetrafluoroethylene membrane is cited. Pref. membrane thickness of the drawn porous membrane is 10-200μm and pref. mean pore diameter is 0.1-10μm and pref. porosity is 50-95%. As the polymer, e.g. a polystyrene resin, a polyimide resin and a polyamide resin are cited. This ion-exchange membrane is used in the fields of solid polymer type fuel cells, water electrolytic apparatus, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池、水電解装置などに用いるイオン交換膜であって、
装置の運転状況の繰り返し変化に対する破損のないイオ
ン交換膜およびその製造法に関する。
TECHNICAL FIELD The present invention relates to an ion exchange membrane used in a polymer electrolyte fuel cell, a water electrolysis device, and the like.
The present invention relates to an ion exchange membrane that is free from damages due to repeated changes in the operating conditions of an apparatus and a method for producing the same.

【0002】[0002]

【従来の技術】固体高分子型燃料電池及び水電解装置な
どに用いるイオン交換膜は、エネルギー効率の改善が求
められており、そのためにはイオン交換膜の膜抵抗を低
減する必要がある。そこで、膜厚を薄くするとともに、
樹脂1g当たりのイオン交換基を増やすことが試みられ
ている。しかし、膜厚が薄くなると必然的に強度が低下
するので、イオン交換膜を固体高分子型燃料電池や水電
解装置に組み込む際に破れたり、組み込んだ後に膜の両
側の圧力差によって膜が破裂したり、膜周辺の封止部分
が裂けたりすることがある。このような損傷を防ぐた
め、イオン交換膜およびその製造技術として特公平1−
57693号は、イオン交換樹脂を織布に埋め込む方法
を提案している。また、特開平6−29032号におい
ては、イオン交換樹脂の膨潤・収縮に伴って伸縮できる
膜として弗素樹脂等の延伸多孔膜を補強材に用いる方法
を提案している。
2. Description of the Related Art Ion exchange membranes used for polymer electrolyte fuel cells and water electrolysis devices are required to have improved energy efficiency, and for that purpose, it is necessary to reduce the membrane resistance of the ion exchange membrane. Therefore, while reducing the film thickness,
Attempts have been made to increase the number of ion exchange groups per gram of resin. However, as the film thickness becomes thinner, the strength will inevitably decrease.Therefore, when the ion-exchange membrane is installed in a polymer electrolyte fuel cell or a water electrolysis device, it breaks or the pressure difference between both sides of the film causes the film to burst. Or the sealing portion around the film may be torn. In order to prevent such damage, Japanese Patent Publication No.
57693 proposes a method of embedding an ion exchange resin in a woven fabric. Further, Japanese Patent Application Laid-Open No. 6-29032 proposes a method of using a stretched porous film such as a fluororesin as a reinforcing material as a film capable of expanding and contracting as the ion exchange resin swells and contracts.

【0003】[0003]

【発明が解決しようとする課題】従来の織布などを補強
材として用いたイオン交換膜は、織布の繊維とイオン交
換樹脂との界面にはがれが生じることがあり、その結
果、イオン交換樹脂の脱落によってイオン交換膜に穴が
あいてしまうなどの問題があった。その原因は以下の様
に考えられる。イオン交換樹脂は水分の含有量の変化に
より膨潤及び収縮を起こす。一方、イオン交換膜の補強
材として用いられる織布は、このイオン交換樹脂の膨
潤、収縮に対して、これらを抑制する働きをするため、
織布の繊維とイオン交換樹脂の界面に応力が加わる。そ
れにより、水電解装置および固体高分子型燃料電池など
のように運転状況(出力など)が繰り返し変動する装置
内では、上記応力の繰り返し発生によって、界面に剥離
が生ずるものと考えられる。また、一方で、イオン交換
樹脂は、親水基を有しており、フッ素樹脂等の多孔膜は
疎水性であるため、両者が互いに密着しにくくピンホー
ルができるなどの不良を生じることが多かった。
In the conventional ion exchange membrane using a woven cloth or the like as a reinforcing material, peeling may occur at the interface between the fiber of the woven cloth and the ion exchange resin, and as a result, the ion exchange resin. There was a problem that the ion-exchange membrane was punctured due to the falling off of. The cause is considered as follows. The ion exchange resin causes swelling and contraction depending on the change in water content. On the other hand, the woven fabric used as a reinforcing material for the ion-exchange membrane has a function of suppressing the swelling and shrinkage of the ion-exchange resin.
Stress is applied to the interface between the woven fabric fibers and the ion exchange resin. As a result, in a device such as a water electrolysis device and a polymer electrolyte fuel cell in which the operating conditions (output, etc.) repeatedly fluctuate, it is considered that the interface is separated due to the repeated generation of the stress. On the other hand, since the ion exchange resin has a hydrophilic group and the porous film such as a fluororesin is hydrophobic, it is difficult for the two to adhere to each other, which often causes defects such as pinholes. .

【0004】[0004]

【課題を解決するための手段】本発明者らは、たとえイ
オン交換樹脂の含水量の変化が繰り返し生じても破損せ
ず、かつイオン交換樹脂とフッ素樹脂等の多孔膜が互い
に密着し、ピンホールができ難いイオン交換膜を開発す
べく検討を続けた結果、本発明を完成するに至った。本
発明の要旨は、延伸により作製されたフッ素樹脂等の多
孔膜の少なくとも孔中に、溶媒に溶解したポリマーを含
浸させ、乾燥することにより多孔膜に付着させた後、イ
オン交換基を導入することを特徴とするイオン交換膜の
製造方法および該方法によって作製されたイオン交換膜
にある。
The present inventors have found that even if the water content of the ion exchange resin is repeatedly changed, it is not damaged, and the ion exchange resin and the porous membrane such as a fluororesin adhere to each other, and The present invention has been completed as a result of continuing studies to develop an ion exchange membrane in which holes are less likely to be formed. The gist of the present invention is to impregnate at least the pores of a porous film such as a fluororesin produced by stretching with a polymer dissolved in a solvent and dry it to attach it to the porous film, and then introduce an ion exchange group. And a method for producing an ion exchange membrane, and an ion exchange membrane produced by the method.

【0005】延伸により作製された多孔膜と該多孔膜の
少なくとも孔内に含有されたイオン交換樹脂とからなる
本発明の製造方法により作製されたイオン交換膜は、装
置運転中の運転状況の繰り返し変化などに起因して生じ
るイオン交換膜の破損を防ぐことができる。その理由
は、必ずしも明らかでないが以下の通りであると考えら
れる。本発明の製造方法において、多孔膜として、2軸
延伸により作製した多孔膜を用いる場合、その多孔膜は
3次元的な網目構造がさらに発達しているため、多孔膜
と少なくともその孔内に包含されたイオン交換樹脂とか
らなるイオン交換膜は、イオン交換樹脂の膨潤、収縮に
応じてより大きく伸縮することが可能となる。そのた
め、イオン交換樹脂と多孔膜の界面での剥がれが一層生
じ難くなり、イオン交換膜の破損を防止する効果が増大
するものと考えられる。
An ion exchange membrane produced by the production method of the present invention comprising a porous membrane produced by stretching and an ion exchange resin contained in at least the pores of the porous membrane is a repetitive operating condition during the operation of the apparatus. It is possible to prevent the ion exchange membrane from being damaged due to a change or the like. The reason for this is not clear, but it is considered as follows. In the production method of the present invention, when a porous film produced by biaxial stretching is used as the porous film, the porous film has a three-dimensional network structure further developed, and therefore is included in the porous film and at least the pores thereof. The ion exchange membrane composed of the ion exchange resin thus formed can be expanded and contracted to a greater extent according to the swelling and contraction of the ion exchange resin. Therefore, it is considered that peeling at the interface between the ion exchange resin and the porous membrane is more difficult to occur, and the effect of preventing damage to the ion exchange membrane is increased.

【0006】さらに、本発明では、多孔膜と同様に疎水
性のポリマーを使用することにより、多孔膜とポリマー
が十分になじむため、多孔膜の空孔内にポリマーを隙間
なく付着させることができる。また、その後、ポリマー
にイオン交換基を導入することにより、ピンホールの少
ないイオン交換膜の作製が可能となる。
Further, in the present invention, the use of a hydrophobic polymer as in the case of the porous film allows the polymer to sufficiently blend with the porous film, so that the polymer can be adhered to the pores of the porous film without gaps. . Further, thereafter, by introducing an ion exchange group into the polymer, it becomes possible to produce an ion exchange membrane with few pinholes.

【0007】本発明のもう一つの態様では、ポリマー溶
液に架橋剤を添加し、それを多孔膜に含浸した後、ポリ
マーを多孔膜の孔内で架橋させる。この方法により、多
孔膜の孔内にポリマーが緻密に固定され、それ故に、そ
の後、多数のイオン交換基を導入してもポリマーの脱落
がなくなるものと考えられる。
In another embodiment of the present invention, a cross-linking agent is added to the polymer solution and impregnated into the porous membrane, and then the polymer is cross-linked in the pores of the porous membrane. By this method, it is considered that the polymer is densely fixed in the pores of the porous membrane, and therefore even if a large number of ion exchange groups are subsequently introduced, the polymer does not fall off.

【0008】[0008]

【発明の実施の形態】本発明において用いる多孔膜は、
以下の様にして作製されたものである。フッ素樹脂また
はその他の樹脂を、その結晶融点以下の温度で、少なく
とも一軸方向に延伸し、次いで延伸状態のまま結晶融点
以上に加熱することによって、3次元の網目構造を有す
る本発明で用いる多孔膜とする。上記フッ素樹脂として
は、例えばポリテトラフルオロエチレンなどが挙げら
れ、また、その他の樹脂としては、例えば、ポリプロピ
レン、ポリエチレンなどが挙げられる。上記の樹脂は、
その分子量が10万〜1000万の範囲が好ましい。多
孔膜は、一般的に疎水性である。上記の樹脂を延伸する
ときの温度は、樹脂の種類によって異なるが、一般に結
晶融点以下が好ましい。本発明の方法によって延伸した
多孔膜の好ましい膜厚は、10〜200μm、好ましい
平均孔径は、0.1〜10μmであり、好ましい気孔率
は、50〜95%である。
BEST MODE FOR CARRYING OUT THE INVENTION The porous membrane used in the present invention is
It is produced as follows. A porous film used in the present invention having a three-dimensional network structure by stretching a fluororesin or other resin at least uniaxially at a temperature equal to or lower than its crystalline melting point, and then heating it to a crystalline melting point or higher in the stretched state. And Examples of the fluororesin include polytetrafluoroethylene and the like, and examples of the other resins include polypropylene and polyethylene. The above resin is
The molecular weight thereof is preferably in the range of 100,000 to 10,000,000. Porous membranes are generally hydrophobic. The temperature at which the above resin is stretched varies depending on the type of resin, but is generally preferably below the crystal melting point. The preferred thickness of the porous film stretched by the method of the present invention is 10 to 200 μm, the preferred average pore size is 0.1 to 10 μm, and the preferred porosity is 50 to 95%.

【0009】本発明の方法では、上記多孔膜の少なくと
も孔内に、多孔膜と同様の疎水性のポリマーの溶液を含
浸した後、−SO3H、−N+3または−COOHなど
のイオン交換基を導入し、その後、溶媒を蒸発により除
去することにより、イオン交換膜を作製することができ
る。溶媒の蒸発除去の後に、イオン交換基を導入しても
よい。上記疎水性のポリマーとしては、例えばポリスチ
レン樹脂、ポリイミド樹脂またはポリアミド樹脂が挙げ
られる。その分子量は1万〜500万の範囲が好まし
い。
In the method of the present invention, at least the pores of the porous membrane are impregnated with a solution of a hydrophobic polymer similar to that of the porous membrane, and then ions such as --SO 3 H, --N + H 3 or --COOH are added. An ion exchange membrane can be prepared by introducing an exchange group and then removing the solvent by evaporation. An ion exchange group may be introduced after the solvent is removed by evaporation. Examples of the hydrophobic polymer include polystyrene resin, polyimide resin, and polyamide resin. Its molecular weight is preferably in the range of 10,000 to 5,000,000.

【0010】本発明において、上記疎水性のポリマーを
溶解する溶剤としては、クロロホルム、ベンゼンまたは
ピロリドンなど従来既知の溶剤およびそれらの混合溶液
を用いることができる。また、ポリマー溶液の濃度は、
1〜10%が望ましい。ポリマー溶液を延伸した多孔膜
に含浸させるときの温度は、室温〜120℃の範囲が好
ましく、また含浸させる時間は5分〜7日間が好まし
い。
In the present invention, conventionally known solvents such as chloroform, benzene or pyrrolidone, and mixed solutions thereof can be used as the solvent for dissolving the hydrophobic polymer. The concentration of the polymer solution is
1-10% is desirable. The temperature at which the polymer solution is impregnated into the stretched porous membrane is preferably in the range of room temperature to 120 ° C, and the impregnation time is preferably 5 minutes to 7 days.

【0011】本発明のイオン交換膜において、ポリマー
は、多孔膜100重量部に対して100〜900重量部
の範囲であってよい。
In the ion exchange membrane of the present invention, the amount of the polymer may be 100 to 900 parts by weight based on 100 parts by weight of the porous membrane.

【0012】イオン交換基の導入は、例えば次のように
して行う。多孔膜にポリマー溶液を塗布し、溶媒を蒸発
し、多孔膜の孔中にポリマーを充填する。次に、この膜
を発煙硫酸に浸漬して、−CH基をスルホン化する。イ
オン交換基の量は、イオン交換膜1g当たり0.5〜5
meqであってよい。上記含浸後にポリマーを溶解して
いた溶剤を乾燥させるときの温度は、使用する溶剤およ
び混合溶剤によって変えることができるが、一般には室
温(25℃)〜120℃が好ましく、また、その時間
は、一般に10分〜2週間が好ましい。溶剤を乾燥させ
る際の圧力は、常圧(大気圧)でも減圧(760mmH
g〜10-3mmHg)でもよい。
The ion-exchange group is introduced, for example, as follows. The polymer solution is applied to the porous membrane, the solvent is evaporated, and the polymer is filled in the pores of the porous membrane. Next, this membrane is immersed in fuming sulfuric acid to sulfonate the -CH group. The amount of ion exchange groups is 0.5 to 5 per 1 g of ion exchange membrane.
may be meq. The temperature for drying the solvent in which the polymer is dissolved after the impregnation can be changed depending on the solvent used and the mixed solvent, but in general, room temperature (25 ° C) to 120 ° C is preferable, and the time is Generally, 10 minutes to 2 weeks is preferable. The pressure for drying the solvent can be normal pressure (atmospheric pressure) or reduced pressure (760 mmH
g-10 −3 mmHg).

【0013】本発明のもう一つの方法においては、例え
ばポリスチレン樹脂、ポリイミド樹脂、ポリアミド樹脂
などのポリマーの溶液に架橋剤を添加して、上記多孔膜
の少なくとも孔内に含浸し、さらに加熱などによりポリ
マーの架橋を促進した後、この架橋ポリマーに−SO3
H、−N+3または−COOHなどのイオン交換基を導
入することもできる。架橋剤としては、過酸化ベンゾイ
ル、クメンヒドロペルオキシド、過硫酸アンモニウム、
アゾビスイソブチロニトリルなど従来既知の架橋剤が挙
げられる。ポリマー溶液への架橋剤の添加量は、ポリマ
ー100重量部に対して0.1〜20重量部の範囲が好
ましい。ポリマーの架橋を促進するための加熱温度とし
ては、50〜100℃が好ましく、また、加熱時間とし
ては、1時間〜7日間が好ましい。
In another method of the present invention, a cross-linking agent is added to a solution of a polymer such as polystyrene resin, polyimide resin or polyamide resin to impregnate at least the pores of the porous membrane, and then heated. After promoting cross-linking of the polymer, the cross-linked polymer is treated with --SO 3
H, can be introduced ion exchange group such as -N + H 3 or -COOH. As the cross-linking agent, benzoyl peroxide, cumene hydroperoxide, ammonium persulfate,
A conventionally known cross-linking agent such as azobisisobutyronitrile can be used. The amount of the crosslinking agent added to the polymer solution is preferably in the range of 0.1 to 20 parts by weight based on 100 parts by weight of the polymer. The heating temperature for promoting the crosslinking of the polymer is preferably 50 to 100 ° C., and the heating time is preferably 1 hour to 7 days.

【0014】本発明の方法において製造されたイオン交
換膜は、その後、純水等で洗浄して、余分なポリマーを
除去することが望ましい。
The ion exchange membrane produced by the method of the present invention is then preferably washed with pure water or the like to remove excess polymer.

【0015】特に多孔膜に含浸させるポリマーがポリス
チレン、ポリイミド、ポリアミドであれば、イオン交換
基の導入工程において濃硫酸などを用いることができ、
それ故に容易に−SO3H基を導入することができる。
また、特に延伸した多孔膜がPTFEである場合には、
柔軟性や耐薬品性等の物理的および化学的な性質の点で
優れているため、イオン交換基の導入の際にも多孔膜の
劣化を防ぐことができる。
Particularly when the polymer with which the porous membrane is impregnated is polystyrene, polyimide or polyamide, concentrated sulfuric acid or the like can be used in the step of introducing the ion exchange group,
Therefore, the —SO 3 H group can be easily introduced.
In addition, when the stretched porous membrane is PTFE,
Since it is excellent in physical and chemical properties such as flexibility and chemical resistance, it is possible to prevent the deterioration of the porous membrane even when the ion exchange group is introduced.

【0016】[0016]

【実施例】実施例1 ポリテトラフルオロエチレンを延伸して作製した多孔膜
(平均孔径1μm、膜厚50μm、多孔率90%)に、ポ
リスチレン(分子量:25〜30万)のベンゼン溶液
(10重量%)を含浸させ(45℃、10分)、室温
(25℃)で乾燥させた。次に、この膜を発煙硫酸に室
温で2日間浸漬して、ポリスチレンに−SO3H基を導
入した。その後、純水でこのイオン交換膜を洗浄し、余
分なポリマーを除去した。
Example 1 A porous film (average pore size 1 μm, film thickness 50 μm, porosity 90%) produced by stretching polytetrafluoroethylene was added to a benzene solution of polystyrene (molecular weight: 250,000 to 300,000) (10 weight parts). %) (45 ° C., 10 minutes) and dried at room temperature (25 ° C.). Next, this film was immersed in fuming sulfuric acid at room temperature for 2 days to introduce —SO 3 H groups into polystyrene. Then, the ion exchange membrane was washed with pure water to remove excess polymer.

【0017】実施例2 ポリスチレン(分子量:250,000〜300,00
0)のベンゼン溶液(10重量%)20mLに過酸化ベ
ンゾイル0.1gを添加し、これを実施例1と同様の多
孔膜に含浸させた(45℃、10分)。その後、室温で
乾燥し、さらに100℃の恒温槽に1時間入れて、架橋
反応を行った。次に、この膜を発煙硫酸に常温で2日間
浸漬して、ポリスチレンに−SO3H基を導入した。そ
の後、純水で洗浄し、過剰に付着したポリマーを除去し
た。
Example 2 Polystyrene (Molecular weight: 250,000 to 300,000)
0.1 g of benzoyl peroxide was added to 20 mL of the benzene solution of (0) (10% by weight), and this was impregnated into the same porous membrane as in Example 1 (45 ° C., 10 minutes). After that, it was dried at room temperature and placed in a constant temperature bath at 100 ° C. for 1 hour to carry out a crosslinking reaction. Next, this film was immersed in fuming sulfuric acid at room temperature for 2 days to introduce —SO 3 H groups into polystyrene. Then, it was washed with pure water to remove the excessively attached polymer.

【0018】実施例3 実施例1と同様の多孔膜にポリビニルアルコール溶液を
含浸させた後、6Mradの電子線を照射することによ
って親水化処理した。それを自然乾燥した後、可溶性ポ
リイミド(分子量:20,000)のN-メチルピロリド
ンと水の混合液(N-メチルピロリドン:水=1:1)
(10重量%)を調製して含浸させた(100℃、2時
間)。その後、恒温槽(100℃)に3時間入れ、溶剤
を蒸発した。次に、この膜を濃硫酸に80℃で2日間浸
漬して、ポリイミドの側鎖に−SO3H基を導入した。
その後、純水で洗浄し、余分な樹脂(ポリイミド)を除
去した。
Example 3 The same porous membrane as in Example 1 was impregnated with a polyvinyl alcohol solution, and then hydrophilized by irradiation with an electron beam of 6 Mrad. After air-drying it, a mixture of soluble polyimide (molecular weight: 20,000) N-methylpyrrolidone and water (N-methylpyrrolidone: water = 1: 1)
(10% by weight) was prepared and impregnated (100 ° C., 2 hours). Then, it was put in a constant temperature bath (100 ° C.) for 3 hours to evaporate the solvent. Next, this film was immersed in concentrated sulfuric acid at 80 ° C. for 2 days to introduce —SO 3 H groups into the side chains of the polyimide.
Then, it was washed with pure water to remove excess resin (polyimide).

【0019】実施例4 実施例1と同様の多孔膜にポリビニルアルコール溶液を
含浸させた後、6Mradの電子線を照射することによ
って親水化処理し、その後、自然乾燥した。次いで、ポ
リアミド酸(分子量:50,000〜80,000)のN
-メチルピロリドン溶液(10重量%)を調製し、その
ポリアミド酸溶液20mLに、過酸化ベンゾイル0.1
gを添加して、上記多孔膜に含浸した(100℃、2時
間)後、80℃の恒温槽に1日間入れることで、溶剤を
蒸発し、かつ架橋反応を行った。次いで、この膜を濃硫
酸に80℃で2日間浸漬して、ポリアミド酸の側鎖に−
SO3H基を導入した。その後、純水で洗浄し、余分な
ポリマーを除去した。
Example 4 The same porous membrane as in Example 1 was impregnated with a polyvinyl alcohol solution, hydrophilized by irradiation with an electron beam of 6 Mrad, and then naturally dried. Next, N of polyamic acid (molecular weight: 50,000-80,000)
-Methylpyrrolidone solution (10% by weight) was prepared, and 20 mL of the polyamic acid solution was added with 0.1% benzoyl peroxide.
After g was added and the porous membrane was impregnated (100 ° C., 2 hours), the solvent was evaporated and a crosslinking reaction was carried out by placing it in a thermostat at 80 ° C. for 1 day. Then, this membrane was immersed in concentrated sulfuric acid at 80 ° C. for 2 days to form side chains of polyamic acid.
An SO 3 H group was introduced. Then, it was washed with pure water to remove excess polymer.

【0020】実施例5 ポリスチレン(分子量:250,000〜300,00
0)のベンゼン溶液(10重量%)20mLに過酸化ベ
ンゾイル0.1gを添加し、それを実施例1と同様の多
孔膜に含浸させた(45℃、10分)。その後、常温
(25℃)で乾燥させた。この膜の上にポリアクリル酸
水溶液(10重量%)を塗布し、さらに100℃の恒温
槽に2時間入れて架橋反応を行うと共に、−COOH基
をポリマー中に導入した。その後、純水で洗浄し、余分
な樹脂を除去した。
Example 5 Polystyrene (Molecular weight: 250,000 to 300,000)
0.1 g of benzoyl peroxide was added to 20 mL of the benzene solution of (0) (10% by weight), and the same porous membrane as in Example 1 was impregnated with it (45 ° C., 10 minutes). Then, it was dried at room temperature (25 ° C.). An aqueous solution of polyacrylic acid (10% by weight) was applied onto this film, and the mixture was placed in a thermostat bath at 100 ° C. for 2 hours to carry out a crosslinking reaction, and at the same time, a —COOH group was introduced into the polymer. Then, it was washed with pure water to remove excess resin.

【0021】実施例6 実施例1と同様の多孔膜に、ポリスチレン(分子量:2
50,000〜300,000)のベンゼン溶液(10重
量%)を含浸させた(45℃、10分)。この膜を、ク
ロロエーテルに浸漬して(条件:60℃、1時間)膨潤
させた後、トリメチルアミンの蒸気中に1時間放置し、
(CH33N基をポリマー中に導入した。その後、純水
で洗浄し、余分な樹脂を除去した。
Example 6 Polystyrene (molecular weight: 2) was added to the same porous membrane as in Example 1.
The solution was impregnated with a benzene solution (50,000 to 300,000) (10% by weight) (45 ° C., 10 minutes). The membrane was swollen by immersing it in chloroether (condition: 60 ° C., 1 hour), and then allowed to stand in vapor of trimethylamine for 1 hour,
A (CH 3 ) 3 N group was introduced into the polymer. Then, it was washed with pure water to remove excess resin.

【0022】比較例1 補強用織布として、200デニールのポリテトラフルオ
ロエチレンマルチフィラメントを横糸とし、200デニ
ールのポリテトラフルオロエチレンマルチフィラメント
を縦糸として25メッシュに絡み織りしたものを用い
た。この補強用織布に、ポリスチレン(分子量:25
0,000〜300,000)のベンゼン溶液(10重量
%)を含浸させ(45℃、10分)、室温(25℃)で
乾燥した。次に、これを、発煙硫酸に室温で2日間浸漬
し、ポリスチレンに−SO3H基を導入してイオン交換
膜とした。その後、純水でこのイオン交換膜を洗浄し、
余分なポリマーを除去した。
COMPARATIVE EXAMPLE 1 As a reinforcing woven fabric, a weft-woven 200 denier polytetrafluoroethylene multifilament was used as a weft, and a 200 denier polytetrafluoroethylene multifilament was used as a warp to be woven and woven into 25 mesh. Polystyrene (molecular weight: 25
It was impregnated with a benzene solution (10 to 30% by weight) (45 to 10 minutes) and dried at room temperature (25 ° C). Next, this was immersed in fuming sulfuric acid at room temperature for 2 days, and an —SO 3 H group was introduced into polystyrene to obtain an ion exchange membrane. Then, wash this ion exchange membrane with pure water,
Excess polymer was removed.

【0023】比較例2 ポリスチレン(分子量250,000〜300,000)
のベンゼン溶液(10重量%)20mLに過酸化ベンゾ
イルを0.1g添加し、それを比較例1と同様の補強用
織布に含浸させた(45℃、10分)。その後、室温で
乾燥し、さらに100℃の恒温槽に1時間入れること
で、架橋反応を行った。次に、これを発煙硫酸に室温で
2日間浸漬してポリスチレンに−SO3H基を導入し
て、イオン交換膜とした。その後、純水でこのイオン交
換膜を洗浄し、過剰に付着したポリマーを除去した。
Comparative Example 2 Polystyrene (Molecular weight 250,000 to 300,000)
0.1 g of benzoyl peroxide was added to 20 mL of a benzene solution (10% by weight) of Example 1 and impregnated with the same reinforcing woven fabric as in Comparative Example 1 (45 ° C., 10 minutes). Then, it was dried at room temperature and further put in a constant temperature bath at 100 ° C. for 1 hour to carry out a crosslinking reaction. Next, this was immersed in fuming sulfuric acid at room temperature for 2 days to introduce —SO 3 H groups into polystyrene to obtain an ion exchange membrane. Then, this ion exchange membrane was washed with pure water to remove the excessively attached polymer.

【0024】比較例3 補強用織布は、比較例1と同様のものを用い、これにポ
リビニルアルコール溶液を含浸させた後、6Mradの
電子線を照射することによって親水化処理した。次い
で、可溶性ポリイミド(分子量:20,000)を溶解
したN-メチルピロリドンと水の混合溶液(N-メチルピ
ロリドン:水=1:1)(10重量%)を上記の親水化
した織布に含浸させた(100℃、2時間)後、恒温槽
(100℃)に3時間入れて、溶剤を蒸発した。次に、
これを濃硫酸に80℃で2日間浸漬して、ポリイミドの
側鎖に−SO3H基を導入して、イオン交換膜とした。
その後、純水でこのイオン交換膜を洗浄し、余分な樹脂
を除去した。
Comparative Example 3 The same reinforcing woven fabric as in Comparative Example 1 was used, impregnated with a polyvinyl alcohol solution, and then subjected to a hydrophilic treatment by irradiating with an electron beam of 6 Mrad. Then, the above hydrophilized woven fabric was impregnated with a mixed solution of N-methylpyrrolidone and water in which a soluble polyimide (molecular weight: 20,000) was dissolved (N-methylpyrrolidone: water = 1: 1) (10% by weight). After being allowed to stand (100 ° C., 2 hours), it was placed in a constant temperature bath (100 ° C.) for 3 hours to evaporate the solvent. next,
This was immersed in concentrated sulfuric acid at 80 ° C. for 2 days to introduce a —SO 3 H group into the side chain of polyimide to obtain an ion exchange membrane.
Then, the ion exchange membrane was washed with pure water to remove excess resin.

【0025】比較例4 補強用織布は、比較例1と同様のものを用い、これにポ
リビニルアルコール溶液を含浸させた後、6Mradの
電子線を照射することによって親水化処理し、その後、
自然乾燥させた。次いで、ポリアミド酸(分子量:5
0,000〜80,000)のN-メチルピロリドン溶液
(10重量%)を調製し、このポリアミド酸溶液20m
Lに過酸化ベンゾイル0.1gを添加して、上記の親水
化した織布に含浸させ(100℃、2時間)、その後、
80℃の恒温槽に1日間入れることで、溶剤を蒸発さ
せ、かつ架橋反応を行った。次に、これを濃硫酸に80
℃で2日間浸漬して、ポリアミド酸の側鎖に−SO3
基を導入して、イオン交換膜とした。その後、純水でこ
のイオン交換膜を洗浄し、余分なポリマーを除去した。
Comparative Example 4 As the reinforcing woven fabric, the same one as in Comparative Example 1 was used. After impregnating it with a polyvinyl alcohol solution, it was hydrophilized by irradiating it with an electron beam of 6 Mrad, and thereafter,
Naturally dried. Next, polyamic acid (molecular weight: 5
2,000-80,000) N-methylpyrrolidone solution (10% by weight) was prepared, and this polyamic acid solution 20 m
0.1 g of benzoyl peroxide was added to L to impregnate the above hydrophilized woven fabric (100 ° C., 2 hours), and then
The solvent was evaporated and the crosslinking reaction was carried out by putting it in a thermostat at 80 ° C. for 1 day. Then, add this to concentrated sulfuric acid 80
Soak for 2 days at ℃ to the side chain of polyamic acid --SO 3 H
A group was introduced to form an ion exchange membrane. Then, the ion exchange membrane was washed with pure water to remove excess polymer.

【0026】比較例5 ポリスチレン(分子量250,000〜300,000)
のベンゼン溶液(10重量%)20mLに過酸化ベンゾ
イル0.1gを添加し、比較例1と同様の補強用織布に
含浸させた(45℃、10分)。その後、これを常温
(25℃)で乾燥し、この織布の上にポリアクリル酸水
溶液(10重量%)を塗布し、さらに100℃の恒温槽
に2時間入れて架橋反応を行うと共に、−COOH基を
ポリマー中に導入して、イオン交換膜とした。その後、
純水でこのイオン交換膜を洗浄し、余分な樹脂を取り除
いた。
Comparative Example 5 Polystyrene (Molecular weight 250,000 to 300,000)
0.1 g of benzoyl peroxide was added to 20 mL of the benzene solution (10% by weight) and impregnated with the same reinforcing woven fabric as in Comparative Example 1 (45 ° C., 10 minutes). Then, this is dried at room temperature (25 ° C.), a polyacrylic acid aqueous solution (10% by weight) is applied onto this woven fabric, and the mixture is further placed in a 100 ° C. thermostat for 2 hours to carry out a crosslinking reaction. A COOH group was introduced into the polymer to give an ion exchange membrane. afterwards,
The ion exchange membrane was washed with pure water to remove excess resin.

【0027】比較例6 比較例1と同様の補強用織布に、ポリスチレン(分子量
250,000〜300,000)のベンゼン溶液(10
重量%)を含浸させた(45℃、10分)。これをクロ
ロエーテルに浸漬して(条件:60℃、1時間)膨潤さ
せた後、トリエチルアミンの蒸気中に1時間放置し、
(CH33N基をポリマー中に導入して、イオン交換膜
とした。その後、純水でこのイオン交換膜を洗浄し、余
分な樹脂を除去した。
Comparative Example 6 A reinforcing woven fabric similar to that of Comparative Example 1 was coated with a benzene solution (10) of polystyrene (molecular weight 250,000 to 300,000).
Wt%) (45 ° C., 10 minutes). This was immersed in chloroether (condition: 60 ° C., 1 hour) to swell, and then allowed to stand in vapor of triethylamine for 1 hour,
A (CH 3 ) 3 N group was introduced into the polymer to form an ion exchange membrane. Then, the ion exchange membrane was washed with pure water to remove excess resin.

【0028】実施例1〜6および比較例1〜6において
得られた多孔膜をそれぞれ、「膨潤サイクルテスト」に
付した。その結果、実施例1〜6の多孔膜では、テスト
後、ピンホールは見られなかったが、比較例1〜6の多
孔膜ではピンホールが20〜30%発生した。また、実
施例1〜6および比較例1〜6において得られた多孔膜
のイオン交換容量を測定したところ、下表のようになっ
た。
The porous membranes obtained in Examples 1 to 6 and Comparative Examples 1 to 6 were each subjected to the "swelling cycle test". As a result, no pinholes were found in the porous films of Examples 1 to 6 after the test, but 20 to 30% of pinholes were generated in the porous films of Comparative Examples 1 to 6. Further, the ion exchange capacities of the porous membranes obtained in Examples 1 to 6 and Comparative Examples 1 to 6 were measured, and the results are shown in the table below.

【0029】[0029]

【表1】 [Table 1]

【0030】なお、イオン交換容量の測定は、多孔膜を
2NのNaCl水溶液に加え、指示薬を入れた後、陽イ
オン交換膜に対しては、NaOH、陰イオン交換膜に対
してはHClで滴定することにより調べた。
The ion exchange capacity was measured by adding the porous membrane to a 2N NaCl aqueous solution, adding an indicator, and then titrating the cation exchange membrane with NaOH and the anion exchange membrane with HCl. I investigated by doing.

【0031】「膨潤サイクルテスト」は以下のように行
う。イオン交換膜を直径6cmの円形に切り、外周部(直
径5cm)のところにO−リングを乗せ、ドーナツ状押え
具で上下から挟み、押え具の6箇所をボルト/ナットで
固定し、90℃の純水中に5分間浸漬した後に取り出
し、100℃で5分間乾燥させる。この浸漬乾燥工程を
を10回繰り返した後、イオン交換樹脂の脱落による穴
の有無を目視により観察し、かつ膜の一方の面より加圧
した場合の他方の面への空気のもれの有無を観察して、
ピンホールの有無を評価する。
The "swelling cycle test" is performed as follows. Cut the ion exchange membrane into a circle with a diameter of 6 cm, put an O-ring on the outer periphery (diameter 5 cm), sandwich it with a donut-shaped retainer from the top and bottom, and fix the retainer at 6 points with bolts / nuts, 90 ° C. After being immersed in pure water for 5 minutes, it is taken out and dried at 100 ° C. for 5 minutes. After repeating this immersion drying step 10 times, the presence or absence of holes due to the dropping of the ion exchange resin is visually observed, and the presence or absence of air leakage to the other surface when pressure is applied from one surface of the membrane. Observe
Evaluate the presence of pinholes.

【0032】[0032]

【発明の効果】本発明のイオン交換膜は、それを取り付
けた装置の運転中に生じるイオン交換樹脂の膨潤、収縮
の繰り返しに起因するイオン交換膜の破損を防止する効
果がある。従って、固体高分子型燃料電池や水電解装置
などの分野で利用すると効果的である。また、スチレン
等の樹脂を多孔膜に定着させてから、イオン交換膜を導
入すると、膜の単位面積当たりのイオン交換基の量をイ
オン交換樹脂を定着させるのに比べて多くすることがで
きる。
The ion exchange membrane of the present invention has the effect of preventing damage to the ion exchange membrane due to repeated swelling and contraction of the ion exchange resin that occurs during the operation of the apparatus to which it is attached. Therefore, it is effective when used in the fields of polymer electrolyte fuel cells and water electrolysis devices. Further, when a resin such as styrene is fixed on the porous membrane and then the ion exchange membrane is introduced, the amount of ion exchange groups per unit area of the membrane can be increased as compared with fixing the ion exchange resin.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溶剤に溶解したポリマーを延伸した多孔
膜に含浸させ、乾燥してポリマーを多孔膜に付着させた
後、前記ポリマーにイオン交換基を導入することを特徴
とするイオン交換膜の製造方法。
1. An ion exchange membrane characterized in that a stretched porous membrane is impregnated with a polymer dissolved in a solvent, dried to adhere the polymer to the porous membrane, and then an ion exchange group is introduced into the polymer. Production method.
【請求項2】 溶剤に溶解したポリマーと架橋剤を、延
伸した多孔膜に含浸させてポリマーを架橋した後、該ポ
リマーにイオン交換基を導入することを特徴とする請求
項1に記載の方法。
2. The method according to claim 1, wherein a polymer dissolved in a solvent and a crosslinking agent are impregnated in the stretched porous membrane to crosslink the polymer, and then an ion exchange group is introduced into the polymer. .
【請求項3】 請求項1または2に記載の方法により製
造されるイオン交換膜。
3. An ion exchange membrane produced by the method according to claim 1.
【請求項4】 延伸した多孔膜がPTFEであることを
特徴とする請求項3に記載のイオン交換膜。
4. The ion exchange membrane according to claim 3, wherein the stretched porous membrane is PTFE.
【請求項5】 ポリマーがスチレン樹脂、ポリイミドま
たはポリアミドであることを特徴とする請求項3に記載
のイオン交換膜。
5. The ion exchange membrane according to claim 3, wherein the polymer is styrene resin, polyimide or polyamide.
【請求項6】 延伸した多孔膜がPTFEであり、かつ
ポリマーがスチレン樹脂であることを特徴とする請求項
3に記載のイオン交換膜。
6. The ion exchange membrane according to claim 3, wherein the stretched porous membrane is PTFE and the polymer is styrene resin.
JP8010848A 1996-01-25 1996-01-25 Ion-exchange membrane and its preparation Pending JPH09194609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8010848A JPH09194609A (en) 1996-01-25 1996-01-25 Ion-exchange membrane and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8010848A JPH09194609A (en) 1996-01-25 1996-01-25 Ion-exchange membrane and its preparation

Publications (1)

Publication Number Publication Date
JPH09194609A true JPH09194609A (en) 1997-07-29

Family

ID=11761780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8010848A Pending JPH09194609A (en) 1996-01-25 1996-01-25 Ion-exchange membrane and its preparation

Country Status (1)

Country Link
JP (1) JPH09194609A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340241A (en) * 1999-05-31 2000-12-08 Toyota Motor Corp Solid polymer fuel cell
JP2002008680A (en) * 2000-06-21 2002-01-11 Toyota Central Res & Dev Lab Inc Composite cross-linking electrolyte
JP2002075050A (en) * 2000-08-31 2002-03-15 Nitto Denko Corp Proton-conductive membrane and proton-conductive film obtained therefrom
JP2002170580A (en) * 2000-11-30 2002-06-14 Tokuyama Corp Diaphragm for solid polymer type fuel battery
WO2002058177A1 (en) * 2001-01-19 2002-07-25 Sony Corporation Proton conductor film and method for preparation thereof, and fuel cell having proton conductor film and method for manufacturing the cell
JP2003524863A (en) * 1999-04-21 2003-08-19 ディーエスエム エヌ.ブイ. Method for preparing a composite membrane
JP2006210349A (en) * 2005-01-26 2006-08-10 Samsung Sdi Co Ltd Polymer electrolyte film for fuel cell, its manufacturing method, and fuel cell system containing this
JP2007234419A (en) * 2006-03-01 2007-09-13 Toyota Motor Corp Method for manufacturing reinforced electrolyte film and reinforced electrolyte film manufactured by the same
WO2007148805A1 (en) 2006-06-21 2007-12-27 Toyota Jidosha Kabushiki Kaisha Methods of producing reinforced electrolyte membrane and membrane electrode joint body
WO2008018628A1 (en) 2006-08-09 2008-02-14 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, method for producing the same, membrane-electrode assembly for fuel cell and solid polymer fuel cell comprising the same
WO2008029243A1 (en) 2006-08-31 2008-03-13 Toyota Jidosha Kabushiki Kaisha Solid polymer fuel cell-purpose electrolyte membrane, production method therefor, and membrane-electrode assembly
JP2009043544A (en) * 2007-08-08 2009-02-26 Toyota Motor Corp Solid polymer fuel cell manufacturing method and solid polymer fuel cell
DE112007001517T5 (en) 2006-06-26 2009-05-07 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Porous film for an electrolyte film in a fuel cell and method for producing the same
DE112007001512T5 (en) 2006-06-26 2009-05-14 Toyota Jidosha Kabushiki Kaisha, Toyota-shi A method of manufacturing a fuel cell electrolyte membrane and method of making a membrane electrode assembly
US7601448B2 (en) 2001-07-03 2009-10-13 Sumitomo Chemical Company, Limited Polymer electrolyte membrane and fuel cell
JP2011222175A (en) * 2010-04-06 2011-11-04 Toyota Motor Corp Method for manufacturing membrane electrode assembly having diffusion-catalyst integrated layer
JP2012150931A (en) * 2011-01-18 2012-08-09 Toyota Motor Corp Method for producing electrolyte membrane for fuel cell
WO2014119208A1 (en) * 2013-01-31 2014-08-07 日東電工株式会社 Electrolytic membrane
WO2014119207A1 (en) * 2013-01-31 2014-08-07 日東電工株式会社 Electrolytic membrane
US8835076B2 (en) 2007-07-02 2014-09-16 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and fuel cell using the same
WO2015122081A1 (en) * 2014-02-17 2015-08-20 株式会社Screenホールディングス Electrolyte membrane modification apparatus and electrolyte membran modification method, and system and process for producing catalyst-coated membrane
US9208921B2 (en) 2005-07-08 2015-12-08 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and process for producing the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524863A (en) * 1999-04-21 2003-08-19 ディーエスエム エヌ.ブイ. Method for preparing a composite membrane
JP4807918B2 (en) * 1999-04-21 2011-11-02 ディーエスエム アイピー アセッツ ビー.ブイ. Method for preparing composite membrane
JP2000340241A (en) * 1999-05-31 2000-12-08 Toyota Motor Corp Solid polymer fuel cell
JP4734683B2 (en) * 1999-05-31 2011-07-27 トヨタ自動車株式会社 Polymer electrolyte fuel cell
JP2002008680A (en) * 2000-06-21 2002-01-11 Toyota Central Res & Dev Lab Inc Composite cross-linking electrolyte
JP2002075050A (en) * 2000-08-31 2002-03-15 Nitto Denko Corp Proton-conductive membrane and proton-conductive film obtained therefrom
JP2002170580A (en) * 2000-11-30 2002-06-14 Tokuyama Corp Diaphragm for solid polymer type fuel battery
WO2002058177A1 (en) * 2001-01-19 2002-07-25 Sony Corporation Proton conductor film and method for preparation thereof, and fuel cell having proton conductor film and method for manufacturing the cell
JPWO2002058177A1 (en) * 2001-01-19 2004-05-27 ソニー株式会社 PROTON CONDUCTOR MEMBRANE, PROCESS FOR PRODUCING THE SAME, FUEL CELL WITH PROTON CONDUCTOR MEMBRANE, AND PROCESS FOR PRODUCING THE SAME
US7226699B2 (en) 2001-01-19 2007-06-05 Sony Corporation Proton conductor film, manufacturing method therefor, fuel cell provided with proton conductor film and manufacturing method therefor
JP4670219B2 (en) * 2001-01-19 2011-04-13 ソニー株式会社 PROTON CONDUCTOR MEMBRANE AND ITS MANUFACTURING METHOD, FUEL CELL HAVING PROTON CONDUCTOR MEMBRANE, AND ITS MANUFACTURING METHOD
US7601448B2 (en) 2001-07-03 2009-10-13 Sumitomo Chemical Company, Limited Polymer electrolyte membrane and fuel cell
JP2006210349A (en) * 2005-01-26 2006-08-10 Samsung Sdi Co Ltd Polymer electrolyte film for fuel cell, its manufacturing method, and fuel cell system containing this
US7803495B2 (en) 2005-01-26 2010-09-28 Samsung Sdi Co., Ltd. Polymer electrolyte membrane for fuel cell, method for preparing the same, and fuel cell system comprising the same
US9208921B2 (en) 2005-07-08 2015-12-08 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and process for producing the same
JP2007234419A (en) * 2006-03-01 2007-09-13 Toyota Motor Corp Method for manufacturing reinforced electrolyte film and reinforced electrolyte film manufactured by the same
WO2007148805A1 (en) 2006-06-21 2007-12-27 Toyota Jidosha Kabushiki Kaisha Methods of producing reinforced electrolyte membrane and membrane electrode joint body
DE112007001517T5 (en) 2006-06-26 2009-05-07 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Porous film for an electrolyte film in a fuel cell and method for producing the same
DE112007001512T5 (en) 2006-06-26 2009-05-14 Toyota Jidosha Kabushiki Kaisha, Toyota-shi A method of manufacturing a fuel cell electrolyte membrane and method of making a membrane electrode assembly
DE112007001512B4 (en) 2006-06-26 2017-09-14 Toyota Jidosha Kabushiki Kaisha A method of manufacturing a fuel cell electrolyte membrane and method of making a membrane electrode assembly
US8197632B2 (en) 2006-06-26 2012-06-12 Toyota Jidosha Kabushiki Kaisha Method for producing fuel cell electrolyte membrane and method for producing membrane-electrode assembly
WO2008018628A1 (en) 2006-08-09 2008-02-14 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, method for producing the same, membrane-electrode assembly for fuel cell and solid polymer fuel cell comprising the same
US8114550B2 (en) 2006-08-09 2012-02-14 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, production method thereof, membrane electrode assembly for fuel cell, and solid polymer fuel cell comprising the same
WO2008029243A1 (en) 2006-08-31 2008-03-13 Toyota Jidosha Kabushiki Kaisha Solid polymer fuel cell-purpose electrolyte membrane, production method therefor, and membrane-electrode assembly
EP2357698A1 (en) 2006-08-31 2011-08-17 Toyota Jidosha Kabushiki Kaisha Solid polymer fuel cell-purpose electrolyte membrane, production method therefor, and membrane-electrode assembly
US8273498B2 (en) 2006-08-31 2012-09-25 Toyota Jidosha Kabushiki Kaisha Solid polymer fuel cell-purpose electrolyte membrane, production method therefor, and membrane-electrode assembly
US8835076B2 (en) 2007-07-02 2014-09-16 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and fuel cell using the same
JP2009043544A (en) * 2007-08-08 2009-02-26 Toyota Motor Corp Solid polymer fuel cell manufacturing method and solid polymer fuel cell
JP2011222175A (en) * 2010-04-06 2011-11-04 Toyota Motor Corp Method for manufacturing membrane electrode assembly having diffusion-catalyst integrated layer
JP2012150931A (en) * 2011-01-18 2012-08-09 Toyota Motor Corp Method for producing electrolyte membrane for fuel cell
WO2014119207A1 (en) * 2013-01-31 2014-08-07 日東電工株式会社 Electrolytic membrane
WO2014119208A1 (en) * 2013-01-31 2014-08-07 日東電工株式会社 Electrolytic membrane
WO2015122081A1 (en) * 2014-02-17 2015-08-20 株式会社Screenホールディングス Electrolyte membrane modification apparatus and electrolyte membran modification method, and system and process for producing catalyst-coated membrane

Similar Documents

Publication Publication Date Title
JPH09194609A (en) Ion-exchange membrane and its preparation
JPH0629032A (en) High polymer electrolyte film and its manufacture
US4113912A (en) Hydrophilic porous structures and process for production thereof
JP4201350B2 (en) Method for producing a polymer film for use as a fuel cell
US20080214687A1 (en) Cross Linking Treatment of Polymer Membranes
JP7411328B2 (en) Bipolar ionomer membrane
JP2000502625A (en) Composite membrane based on α, β, β-trifluorostyrene and composite membrane based on substituted α, β, β-trifluorostyrene
US4265959A (en) Process for producing semipermeable membranes
US3297595A (en) Semi-permeable membrane and production thereof
JP2519831B2 (en) Method for producing charged separation membrane
JPH05317664A (en) Porous hollow fiber membrane
US20240024827A1 (en) Preparation method of reverse osmosis composite membrane and reverse osmosis composite membrane prepared thereby
JP3646362B2 (en) Semipermeable membrane and method for producing the same
AU2006261581B2 (en) Cross linking treatment of polymer membranes
JPH02208333A (en) Porous hydrophilic polyolefin film and its production
KR20190079168A (en) Membrane-electrode assembly prepared from cation exchange membnrane for producing hydrogen water and method for preparing membrane-electrode assembly
JP3016451B2 (en) Microporous membrane surface treated with nylon
JP3102591B2 (en) Microporous membrane
JP3165740B2 (en) Separation membrane and method for producing the same
JP2918137B2 (en) Porous membrane surface-treated with modified nylon and method for producing the same
CN114699918B (en) Reverse osmosis membrane and preparation method thereof
JP2874742B2 (en) Microporous membrane
EP4373998A1 (en) Improved durability of diaphragm for higher temperature electrolysis
JPH054127B2 (en)
JPS591299B2 (en) Method for manufacturing porous membrane