[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09151777A - Fuel nature detecting device for internal combustion engine - Google Patents

Fuel nature detecting device for internal combustion engine

Info

Publication number
JPH09151777A
JPH09151777A JP7309382A JP30938295A JPH09151777A JP H09151777 A JPH09151777 A JP H09151777A JP 7309382 A JP7309382 A JP 7309382A JP 30938295 A JP30938295 A JP 30938295A JP H09151777 A JPH09151777 A JP H09151777A
Authority
JP
Japan
Prior art keywords
fuel
detected
predetermined
engine
property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7309382A
Other languages
Japanese (ja)
Other versions
JP3494516B2 (en
Inventor
Masanobu Osaki
正信 大崎
Seiichi Otani
精一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP30938295A priority Critical patent/JP3494516B2/en
Publication of JPH09151777A publication Critical patent/JPH09151777A/en
Application granted granted Critical
Publication of JP3494516B2 publication Critical patent/JP3494516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0634Determining a density, viscosity, composition or concentration
    • F02D19/0636Determining a density, viscosity, composition or concentration by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a nature of fuel as early as possible. SOLUTION: After leading to a prescribed cranking period (for instance, cranking rotational speed 3000rpm) (detected in S2), at each prescribed cycle (for instance, engine 1/2 turn), a rotational speed deviation ΔNe is detected, and, when an integrated value ΣDNE of this deviation (detected in S3) reads a prescribed value JDDNE or more (judged in S5), based on whether or not a number of time lapse cycles Cycl (detected in S4) is a prescribed value JDCYL or more, nature (heavy/light quality) of fuel in use in detected (S6, S7, S8). In this way, after starting operation, a fuel nature can be detected as early as possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の現在使用中
の燃料の性状を検出する装置の改良技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved technique for detecting the property of fuel currently used in an internal combustion engine.

【0002】[0002]

【従来の技術】従来、燃料性状(使用燃料の重軽質によ
る気化率の違い)を検出して、かかる検出結果に応じ
て、例えば、冷機時における燃料供給量の増量補正量を
最適化する装置が提案されている(特開平5−1958
40号,特開平4−252835号公報参照)。
2. Description of the Related Art Conventionally, an apparatus for detecting a fuel property (a difference in vaporization rate depending on heavy and light of fuel used) and optimizing, for example, an increase correction amount of a fuel supply amount at the time of cooling in accordance with the detection result. Has been proposed (JP-A-5-1958).
40, see JP-A-4-252835).

【0003】前記特開平5−195840号公報に開示
される装置は、回転速度偏差に基づいて機関のサージト
ルクを検出し、予め余裕を持って多めに設定されている
水温に応じた増量補正量を、許容レベルを越えるサージ
トルクが検出されるまで徐々に減量補正することで、そ
のときの使用燃料で要求される(燃料性状に応じた)最
低限の増量補正量が得られるようにしたものであり、使
用燃料の気化率が高ければそれだけ増量補正量が低く修
正されることになる。
The device disclosed in Japanese Patent Laid-Open No. 195840/1993 detects surge torque of the engine based on the rotational speed deviation and increases the amount of increase correction according to the water temperature which is set in advance with a margin. Is gradually reduced until the surge torque exceeding the allowable level is detected, so that the minimum increase correction amount (according to the fuel property) required for the fuel used at that time can be obtained. Therefore, the higher the vaporization rate of the fuel used, the lower the correction amount for increase is corrected.

【0004】しかしながら、上記従来装置では、増量補
正量を急激に減少させると、増量補正の最適レベルを越
えて減少補正されて、運転性に影響する大きなサージト
ルクが発生する惧れがあるため、増量補正量の減少補正
速度を早くすることができず、従って、最終的に増量補
正量の最適レベルを得るまでに比較長い時間が必要とな
り、最適な増量補正量によって排気性状を改善できる期
間が限られてしまう(即ち、運転性を確保しつつ早期に
燃料性状を検出できない)という問題があり、増量補正
量の最適レベルへの補正(換言すれば、燃料性状の検
出)をできるだけ早期に行なわせたいという要求に十分
に応えることができなかった。
However, in the above-mentioned conventional apparatus, when the amount of increase correction is suddenly reduced, there is a possibility that a large surge torque that affects drivability may be generated because the amount of increase correction is reduced below the optimum level of increase correction. The decrease correction speed of the increase correction amount cannot be increased, and therefore, it takes a comparatively long time to finally obtain the optimum level of the increase correction amount, and there is a period in which the exhaust property can be improved by the optimum increase correction amount. There is a problem that it is limited (that is, the fuel property cannot be detected early while ensuring the drivability), and the increase correction amount is corrected to the optimum level (in other words, the fuel property is detected) as soon as possible. I couldn't fully meet the demand for it.

【0005】そこで、本願出願人等は、特願平6−29
312号公報において、機関吸気系への燃料供給量の変
化に対して、排気空燃比が前記変化した燃料供給量に見
合う変化を示すようになるまでの時間(タイムラグ)
は、使用燃料の性状の相違に起因する壁流形成特性や蒸
発特性の相違に影響されるので、前記タイムラグを検出
すれば燃料性状を検出できるということに着目し、燃料
性状の検出のために強制的に燃料供給量をステップ的に
変化させ、かかる燃料供給量のステップ変化に対応する
空燃比変化が発生するするまでの時間を燃料性状(気化
率)に相関するデータとして計測させることで、使用燃
料の性状を始動直後の短時間で検出できるようにした装
置を提案した。
Therefore, the applicants of the present application filed Japanese Patent Application No. 6-29.
In Japanese Patent Laid-Open No. 312-320, the time until the exhaust air-fuel ratio shows a change commensurate with the changed fuel supply amount with respect to the change in the fuel supply amount to the engine intake system (time lag).
Is affected by the difference in the wall flow forming characteristics and the evaporation characteristics due to the difference in the properties of the fuel used, so paying attention to the fact that the fuel properties can be detected by detecting the time lag. By forcibly changing the fuel supply amount stepwise and measuring the time until the air-fuel ratio change corresponding to the step change of the fuel supply amount occurs as data correlated to the fuel property (vaporization rate), We proposed a device that can detect the properties of fuel used in a short time immediately after starting.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記特
願平6−29312号に開示の装置では、始動後に強制
的に機関吸入混合気の空燃比を変化させるため、機関吸
入混合気の空燃比が目標空燃比(例えば、理論空燃比)
から外れてしまうので、所望の排気性能や運転性能が得
難く、また、使用燃料の性状を始動直後の短時間で検出
できるといっても始動完了後に所定の運転状態となって
から性状判別する構成であるので、始動開始から可能な
限り早期に使用燃料の性状を判別し、使用燃料の性状に
合わせた最適な機関制御(空燃比制御や点火時期制御
等)を行なえるようにするという要求を完全に満足でき
るものではなく、改善の余地が残されていると言える。
However, in the device disclosed in Japanese Patent Application No. 6-29312, since the air-fuel ratio of the engine intake air-fuel mixture is forcibly changed after starting, the air-fuel ratio of the engine intake air-fuel mixture is reduced. Target air-fuel ratio (eg theoretical air-fuel ratio)
Therefore, it is difficult to obtain the desired exhaust performance and operating performance, and even if the property of the fuel used can be detected in a short time immediately after the start, the property is determined after a predetermined operating state is reached after the start is completed. Since it is a configuration, it is necessary to determine the properties of the fuel used as early as possible from the start of start and to perform optimal engine control (air-fuel ratio control, ignition timing control, etc.) that matches the properties of the fuel used. It can be said that there is room for improvement, as it is not completely satisfactory.

【0007】本発明は、このような従来の実情に鑑みな
されたものであり、使用燃料の性状検出のために排気性
能や運転性能等を悪化させることなく、使用燃料の性状
を始動から可能な限り早期に検出できるようにした内燃
機関の燃料性状検出装置を提供することを目的とする。
The present invention has been made in view of such a conventional situation, and the property of the fuel used can be started from the start without deteriorating the exhaust performance and the driving performance for detecting the property of the fuel used. An object of the present invention is to provide a fuel property detecting device for an internal combustion engine, which can be detected as early as possible.

【0008】[0008]

【課題を解決するための手段】このため、請求項1に記
載の発明にかかる内燃機関の燃料性状検出装置は、図1
に示すように、所定のクランキング時期を検出する所定
クランキング時期検出手段と、前記所定クランキング時
期検出手段により検出された所定のクランキング時期か
ら所定期間毎の機関回転速度の変化度合いを検出する回
転速度変化度合い検出手段と、前記回転速度変化度合い
検出手段により検出される所定期間毎の回転速度の変化
度合いの演算値を検出する演算値検出手段と、前記所定
のクランキング時期から経過した所定期間を検出する経
過期間検出手段と、前記演算値検出手段により検出され
る演算値と、前記経過期間検出手段により検出される経
過期間と、に基づいて、使用燃料の性状を検出する燃料
性状検出手段と、を含んで構成した。
For this reason, the fuel property detecting apparatus for an internal combustion engine according to the first aspect of the present invention is shown in FIG.
As shown in FIG. 5, a predetermined cranking timing detecting means for detecting a predetermined cranking timing, and a degree of change in the engine speed for each predetermined period from the predetermined cranking timing detected by the predetermined cranking timing detecting means are detected. Rotation speed change degree detecting means, calculated value detection means for detecting the calculated value of the rotation speed change degree for each predetermined period detected by the rotation speed change degree detecting means, and the predetermined cranking time has elapsed. A fuel property for detecting the property of the fuel used, based on the elapsed period detecting means for detecting a predetermined period, the calculated value detected by the calculated value detecting means, and the elapsed period detected by the elapsed period detecting means. And a detection means.

【0009】上記構成によれば、始動のためのクランキ
ング中の所定時期から所定期間毎に機関回転速度の変化
度合いを検出し、当該機関回転速度の変化度合いの演算
値と、経過期間と、の相関関係に基づいて、使用燃料の
性状の検出を行なうようにしたので、始動開始(クラン
キング開始)から可能な限り早期に燃料性状を検出する
ことが可能となる。
According to the above configuration, the degree of change in the engine rotation speed is detected for each predetermined period from the predetermined time during cranking for starting, the calculated value of the degree of change in the engine rotation speed, and the elapsed period. Since the property of the fuel used is detected on the basis of the correlation of No. 1, it is possible to detect the fuel property as early as possible from the start of starting (start of cranking).

【0010】即ち、クランキング中に機関が着火燃焼さ
れると、急激に機関回転速度が変化する一方、燃料性状
の相違により気化特性等が異なり、これによって着火
性,始動性、即ち、始動開始(クランキング開始)から
完爆(完全に着火燃焼が行なわれるようになること)ま
でに要する経過期間が相違することになるので、始動開
始からの所定期間毎の回転速度の変化度合いの演算値
と、経過期間と、を観察すれば、高精度かつ容易に、燃
料性状を検出することができることとなるのである。
That is, when the engine is ignited and burned during cranking, the engine speed rapidly changes, while the vaporization characteristics and the like differ due to the difference in fuel properties, which results in ignitability, startability, that is, starting start. Since the elapsed time required from (start of cranking) to complete explosion (to start complete ignition combustion) will be different, the calculated value of the degree of change in rotational speed for each predetermined period from the start of startup. By observing and the elapsed time, the fuel property can be detected with high accuracy and easily.

【0011】なお、始動開始からの経過期間に対応させ
て回転速度変化度合い(演算値でない)のみを観察して
も、燃料性状をある程度検出することはできるが、本発
明のように、演算値を用いた方が、検出精度を高めるこ
とができる。これは、始動から完爆までには、例えば、
一旦、初爆(始動後初めて着火燃焼すること)があって
から、数サイクルの間着火燃焼が行なわれず、その後、
再び着火燃焼されて完爆に至るような状況があるので、
始動開始からの経過期間に対応させて回転速度変化度合
い(演算値でない)のみを観察するだけでは、燃料性状
を誤検出する可能性が高く、本発明のように容易な構成
で高精度に検出精度を向上させることが困難となるから
である。
Although it is possible to detect the fuel property to some extent by observing only the rotational speed change degree (not the calculated value) in correspondence with the elapsed time from the start of the start, the calculated value can be detected as in the present invention. It is possible to improve the detection accuracy by using. This is because from the start to the complete explosion, for example,
Once there was an initial explosion (it will be ignited and burned for the first time after startup), ignition and combustion will not be performed for several cycles, and then
Since there is a situation where it will be ignited and burned again to the complete explosion,
It is highly possible that the fuel property is erroneously detected only by observing only the degree of rotation speed change (not the calculated value) in correspondence with the elapsed time from the start of the start, and the fuel composition is detected with high accuracy by the simple structure of the present invention. This is because it becomes difficult to improve accuracy.

【0012】そして、このような本発明によれば、例え
ば、従来のように始動完了後において所定の運転条件が
成立した後に運転状態を変化させて使用燃料の性状を検
出するようなものに比べ、極めて早期に使用燃料の性状
を検出できると共に、燃料性状検出のために運転性や排
気性能等を悪化させるような事態を完全に回避すること
ができることとなる。
According to the present invention as described above, for example, as compared with the conventional one in which the operating state is changed after the predetermined operating condition is satisfied after the completion of the start and the property of the fuel used is detected. Thus, the property of the fuel used can be detected very early, and a situation that deteriorates drivability, exhaust performance, etc. due to the detection of the fuel property can be completely avoided.

【0013】また、本発明により燃料性状を早期に検出
し、その結果に基づいて、後述する始動及び始動後増量
補正係数KASや水温増量補正係数KTWや加速増量補正係
数K ACC を(延いては空燃比を)、そのときの使用燃料
に適合するように早期に修正させるようにすれば、該修
正によって排気性能等を最大限改善することができる空
燃比制御装置を提供できることになる。請求項2に記載
の発明では、前記燃料性状検出手段を、前記演算値検出
手段により検出される演算値が所定値以上となったとき
に、前記経過期間検出手段により検出される経過期間が
所定値以上となっているか否かに基づいて、使用燃料の
性状を検出するように構成した。
Further, according to the present invention, the fuel property can be detected early.
Then, based on the result, start-up and post-start increase
Correction coefficient KASAnd water temperature increase correction coefficient KTWAnd acceleration increase correction
Number K ACC(Then the air-fuel ratio), the fuel used at that time
If it is corrected early so that the
A positive value that can improve exhaust performance to the maximum.
A fuel ratio control device can be provided. Claim 2
In the invention, the fuel property detecting means is configured to detect the calculated value.
When the calculated value detected by the means exceeds a specified value
The elapsed period detected by the elapsed period detecting means is
Based on whether or not the fuel consumption exceeds the specified value,
It is configured to detect the property.

【0014】これにより、極めて簡単な構成で、迅速か
つ高精度に、使用燃料の性状(重・軽質)を検出するこ
とが可能となる。請求項3に記載の発明では、前記経過
期間に係わる所定値が、温度状態に応じて可変設定され
るように構成した。また、請求項4に記載の発明では、
前記演算値に係わる所定値が、温度状態に応じて可変設
定されるように構成した。
This makes it possible to detect the properties (heavy / light) of the fuel used with a very simple structure and quickly and with high accuracy. According to the third aspect of the invention, the predetermined value related to the elapsed period is variably set according to the temperature state. In the invention according to claim 4,
The predetermined value related to the calculated value is variably set according to the temperature condition.

【0015】請求項3,請求項4に記載の発明のように
すれば、外気温度や機関温度等の温度状態の変化に応じ
て着火特性,始動性等が変化することで、前記演算値と
前記経過期間との相関関係が変化しても、当該相関関係
の変化を修正することができるので、温度状態が変化し
ても燃料性状の検出精度を常に所望の精度とすることが
可能となる。請求項5に記載の発明では、前記所定のク
ランキング時期を、クランキング中の機関回転速度が所
定回転速度となった時期として構成した。
According to the third and fourth aspects of the present invention, the ignition value, the startability, etc. are changed according to the change of the temperature condition such as the outside air temperature and the engine temperature, so that the calculated value and Even if the correlation with the elapsed time changes, the change in the correlation can be corrected, so that the detection accuracy of the fuel property can always be set to a desired accuracy even if the temperature state changes. . In the invention according to claim 5, the predetermined cranking time is configured as a time when the engine rotation speed during cranking reaches a predetermined rotation speed.

【0016】即ち、本発明のように前記演算値と前記経
過期間との相関関係から燃料性状を検出する構成とする
と、例えば、機関回転速度の変化度合いがスタータモー
ターの回転速度(クランキング回転速度)の変化度合い
(バッテリの消耗度合いによってスタータの回転速度の
変化速度は異なる)に影響される惧れがあり、スタータ
モーターの回転速度の変化度合いが燃料性状の検出精度
に悪影響を及ぼすこととなるので、この悪影響を極力排
除すべく、例えば、始動性の良い軽質燃料を使用した場
合に機関が始動されて自力で回転し始める回転速度の低
速側近傍の所定回転速度(例えば300rpm)となる
まで、機関回転速度の変化度合いに基づく燃料性状の検
出を行なわせないようにすれば、前記スタータモータの
回転速度変化(バッテリの消耗度合い等)等の影響を排
除することができ、以って簡単な構成でありながら高精
度に燃料性状を検出することができることとなる。
That is, when the fuel property is detected from the correlation between the calculated value and the elapsed time as in the present invention, for example, the degree of change in the engine speed is the speed of the starter motor (cranking speed). ) Change rate (the change rate of the starter rotation speed changes depending on the battery consumption degree), and the change rate of the starter motor rotation speed adversely affects the detection accuracy of the fuel property. Therefore, in order to eliminate this adverse effect as much as possible, for example, when a light fuel with good startability is used, the engine is started and starts to rotate by itself until it reaches a predetermined rotation speed near the low speed side (for example, 300 rpm). If the detection of the fuel property based on the degree of change in the engine rotation speed is not performed, the change in the rotation speed of the starter motor It is possible to eliminate the influence of the exhaustion degree, etc.) or the like Terri, it becomes possible to detect the fuel property with high precision while a simple configuration I following.

【0017】請求項6に記載の発明では、前記所定期間
が、機関1/2回転であるように構成した。これによ
り、機関回転速度の変化度合いが、機関の1/2回転毎
に検出され演算されることになるが、このように構成す
るのが、機関回転速度変化度合いの検出限界と、機関回
転速度変化度合いの検出精度延いては燃料性状の検出精
度と、を両立させることができる等の点で望ましいもの
となる。請求項7に記載の発明では、前記機関回転速度
の変化度合いが、機関回転速度偏差であるように構成し
た。
In a sixth aspect of the invention, the predetermined period is configured to be 1/2 engine revolution. As a result, the degree of change in the engine rotation speed is detected and calculated for each 1/2 revolution of the engine. This configuration is based on the detection limit of the degree of change in the engine rotation speed and the engine speed. This is desirable in that the degree of change detection accuracy and the fuel property detection accuracy can both be achieved. According to the seventh aspect of the invention, the degree of change in the engine rotation speed is the engine rotation speed deviation.

【0018】これにより、簡単な構成としつつ、高精度
かつ、極力迅速に燃料性状の検出を行なわせることがで
きることとなる。
As a result, the fuel property can be detected with high accuracy and as quickly as possible while having a simple structure.

【0019】[0019]

【発明の実施の形態】以下に、本発明の実施の形態を、
添付の図面に基づいて説明する。本発明の第1の実施形
態のシステム構成を示す図2において、内燃機関1には
エアクリーナ2から吸気ダクト3,スロットル弁4及び
吸気マニホールド5を介して空気が吸入される。吸気マ
ニホールド5の各ブランチ部には、各気筒別に燃料噴射
弁6が設けられている。なお、気筒別でなくても、1の
燃料噴射弁が複数気筒に燃料を供給する所謂シングルポ
イント式の燃料噴射システムであっても構わない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.
Description will be given based on the attached drawings. In FIG. 2 showing the system configuration of the first embodiment of the present invention, air is taken into an internal combustion engine 1 from an air cleaner 2 through an intake duct 3, a throttle valve 4 and an intake manifold 5. In each branch of the intake manifold 5, a fuel injection valve 6 is provided for each cylinder. Note that the fuel injection system may be a so-called single-point fuel injection system in which one fuel injection valve supplies fuel to a plurality of cylinders, instead of each cylinder.

【0020】この燃料噴射弁6は、ソレノイドに通電さ
れて開弁し、通電停止されて閉弁する電磁式燃料噴射弁
であって、後述するコントロールユニット12からの駆
動パルス信号により通電制御されて開弁し、図示しない
燃料ポンプから圧送されてプレッシャレギュレータによ
り所定の圧力に調整された燃料を、機関1に間欠的に噴
射供給する。
The fuel injection valve 6 is an electromagnetic fuel injection valve which is energized by a solenoid to open the valve, and deenergized to be closed, and the energization is controlled by a drive pulse signal from a control unit 12 which will be described later. The fuel, which is opened and pressure-fed from a fuel pump (not shown) and adjusted to a predetermined pressure by a pressure regulator, is intermittently injected and supplied to the engine 1.

【0021】機関1の各燃焼室には点火栓7が設けられ
ていて、これにより火花点火してシリンダ内に導入され
た混合気を着火燃焼させる。そして、機関1からは、排
気マニホールド8,排気ダクト9,触媒10及びマフラ
ー11を介して排気が排出される。なお、機関への燃料
供給を電子制御するコントロールユニット12は、CP
U,ROM,RAM,A/D変換器及び入出力インタフ
ェイス等を含んで構成されるマイクロコンピュータから
なり、各種のセンサからの入力信号を受け、後述の如く
演算処理して、燃料噴射弁6の作動を制御する。
A spark plug 7 is provided in each combustion chamber of the engine 1 to ignite sparks to ignite and burn the air-fuel mixture introduced into the cylinder. Exhaust gas is discharged from the engine 1 through the exhaust manifold 8, the exhaust duct 9, the catalyst 10 and the muffler 11. The control unit 12 that electronically controls the fuel supply to the engine is a CP
The fuel injection valve 6 is composed of a microcomputer including U, ROM, RAM, an A / D converter, an input / output interface, etc., receives input signals from various sensors, and performs arithmetic processing as described later. Control the operation of.

【0022】前記各種のセンサとしては、吸気ダクト3
中にエアフローメータ13が設けられていて、機関1の
吸入空気流量Qに応じた信号をコントロールユニット1
2へ出力するようになっている。また、クランク角セン
サ14が設けられていて、基準角度位置毎(例えばTD
C毎)の基準角度信号REFと、1°又は2°毎の単位
角度信号POSとを出力する。そして、これら信号が入
力されるコントロールユニット12では、前記基準角度
信号REFの周期、或いは、所定時間内における前記単
位角度信号POSの発生数を計測することにより、機関
回転速度Neを算出できるようになっている。
The various sensors include an intake duct 3
An air flow meter 13 is provided in the control unit 1 for outputting a signal corresponding to the intake air flow rate Q of the engine 1.
It is designed to output to 2. In addition, a crank angle sensor 14 is provided, and each reference angle position (for example, TD
The reference angle signal REF for each C) and the unit angle signal POS for each 1 ° or 2 ° are output. Then, in the control unit 12 to which these signals are input, the engine rotation speed Ne can be calculated by measuring the cycle of the reference angle signal REF or the number of generations of the unit angle signal POS within a predetermined time. Has become.

【0023】なお、機関1のウォータジャケットの冷却
水温度Twを検出する水温センサ15が設けられている
が、これに限らず、他の部位の機関温度や外気温度(或
いは吸気温度)を検出できるセンサを設けるようにして
もよい。ここにおいて、コントロールユニット12に内
蔵されたマイクロコンピュータのCPUは、ROM上の
プログラムに従って演算処理を行い、機関1への燃料噴
射量(噴射パルス幅)Tiを演算し、所定の噴射タイミ
ングにおいて前記燃料噴射量Ti(燃料供給量)相当の
パルス幅の駆動パルス信号を燃料噴射弁6に出力する。
Although the water temperature sensor 15 for detecting the cooling water temperature Tw of the water jacket of the engine 1 is provided, the invention is not limited to this, and the engine temperature and the outside air temperature (or the intake air temperature) of other parts can be detected. A sensor may be provided. Here, the CPU of the microcomputer built in the control unit 12 performs arithmetic processing according to the program on the ROM to calculate the fuel injection amount (injection pulse width) Ti to the engine 1, and the fuel is injected at a predetermined injection timing. A drive pulse signal having a pulse width corresponding to the injection amount Ti (fuel supply amount) is output to the fuel injection valve 6.

【0024】前記燃料噴射量Tiは、燃料噴射量Ti=
基本噴射量Tp×各種補正係数Co+電圧補正分Tsと
して算出される。前記基本噴射量Tpは、吸入空気流量
Qと機関回転速度Neとに基づいて決定される基本的な
噴射量であり、電圧補正分Tsは、バッテリ電圧の低下
による無効噴射量の増加に対応するための補正分であ
る。
The fuel injection amount Ti is the fuel injection amount Ti =
It is calculated as basic injection amount Tp × various correction coefficient Co + voltage correction amount Ts. The basic injection amount Tp is a basic injection amount determined based on the intake air flow rate Q and the engine rotation speed Ne, and the voltage correction amount Ts corresponds to an increase in the invalid injection amount due to a decrease in the battery voltage. This is the correction amount for.

【0025】また、前記各種補正係数Coは、Co=
{1+空燃比補正係数KMR+水温増量補正係数KTW+始
動及び始動後増量補正係数KAS+加速増量補正係数K
ACC +減速減量補正係数KDC+・・・}として算出され
る。前記空燃比補正係数KMRは、機関回転速度Neと基
本噴射量Tp(機関負荷)に対して最適な空燃比となる
ように基本噴射量Tpを補正するための係数であり、水
温増量補正係数KTWは冷却水温度Twが低いときほど噴
射量を増大補正する。
Further, the various correction coefficients Co are Co =
{1 + air-fuel ratio correction coefficient K MR + water temperature increase correction coefficient K TW + start and after start increase correction coefficient K AS + acceleration increase correction coefficient K
ACC + deceleration reduction correction coefficient K DC + ...}. The air-fuel ratio correction coefficient K MR is a coefficient for correcting the basic injection amount Tp so as to obtain an optimum air-fuel ratio with respect to the engine rotation speed Ne and the basic injection amount Tp (engine load). KTW increases and corrects the injection amount as the cooling water temperature Tw is lower.

【0026】また、前記始動及び始動後増量補正係数K
AS(始動時増量補正手段)は、始動性や始動直後の運転
性を確保するために始動時に燃料増量を行なわせるため
の係数で、始動時及び始動直後に冷却水温度Twが低い
ほど噴射量を増量補正する傾向に設定され、始動後所定
の割合で徐々にその増量補正量を減じて最終的には0に
なるように設定されている。更に、加速増量補正係数K
ACC 及び減速減量補正係数KDCは、機関の加減速時の空
燃比の変動を回避すべく噴射量を増減補正するものであ
る。
Further, the starting and post-starting amount increase correction coefficient K
AS (starting amount increase correction means) is a coefficient for increasing the fuel amount at the time of starting to secure the starting property and the drivability immediately after starting. The lower the cooling water temperature Tw at the time of starting and immediately after starting, the lower the injection amount. Is set to tend to increase, and the increase correction amount is gradually decreased at a predetermined rate after the start so that it finally becomes zero. Furthermore, the acceleration increase correction coefficient K
The ACC and the deceleration reduction correction coefficient K DC are used to increase / decrease the injection amount in order to avoid fluctuations in the air-fuel ratio during acceleration / deceleration of the engine.

【0027】ここで、前記各種補正係数Coによる噴射
量の補正要求は、使用燃料の性状、特に燃料の重軽質
(気化率)によって変化し、気化率の低い重質燃料を使
用しているときには、前記始動及び始動後増量補正係数
AS,水温増量補正係数KTWや加速増量補正係数KACC
による増量要求は、気化率の高い軽質燃料を使用してい
るときに比べて大きくなる。
Here, the request for correction of the injection amount by the various correction coefficients Co changes depending on the properties of the fuel used, especially the heavy and light (vaporization rate) of the fuel, and when using a heavy fuel with a low vaporization rate, , The startup and post-starting increase correction coefficient K AS , the water temperature increase correction coefficient K TW, and the acceleration increase correction coefficient K ACC
The demand for increasing the fuel consumption due to is larger than when using a light fuel with a high vaporization rate.

【0028】従って、増量補正要求に対して実際の増量
補正レベルが不足して、これにより空燃比がリーン化し
て始動できなかったり機関運転の安定性を損なうことが
ないようにするために、前記始動及び始動後増量補正係
数KAS,水温増量補正係数K TWや加速増量補正係数K
ACC の初期値は、例えば、増量要求レベルが最も高い重
質燃料に適合されている。
Therefore, the actual amount of increase in response to the increase correction request
The correction level is insufficient, which causes the air-fuel ratio to become lean.
Cannot be started and impair the stability of engine operation.
In order to prevent
Number KAS, Water temperature increase correction coefficient K TWAnd acceleration increase correction coefficient K
ACCThe initial value of, for example,
Adapted to quality fuel.

【0029】しかしながら、実際の使用燃料が軽質燃料
であると、前記初期値では増量補正量が過剰になって、
排気性状の悪化(未燃燃料分の排出量増大等)を招くこ
とになってしまう。そこで、本実施の形態におけるコン
トロールユニット12では、以下に示すようにして燃料
の重軽質(気化率)を検出し、該検出結果に応じて、前
記始動及び始動後増量補正係数KAS,水温増量補正係数
TWや加速増量補正係数KACC を、実際の使用燃料に適
合する値に修正するようになっている。
However, if the actual fuel used is a light fuel, the increase correction amount becomes excessive at the initial value,
This leads to deterioration of exhaust properties (increase in emission amount of unburned fuel, etc.). Therefore, in the control unit 12 in the present embodiment, the heavy and light fuel (vaporization rate) is detected as described below, and the start-up and post-startup increase correction coefficient K AS and the water temperature increase are detected according to the detection result. The correction coefficient K TW and the acceleration increase correction coefficient K ACC are corrected to values that match the actual fuel used.

【0030】図3のフローチャートは、コントロールユ
ニット12による燃料性状(重軽質)の検出制御及び該
検出結果に基づく各種補正係数の修正制御を示す。な
お、本発明にかかる所定クランキング時期検出手段、回
転速度変化度合い検出手段、演算値検出手段、経過期間
検出手段、燃料性状検出手段としての機能は、前記図3
のフローチャートに示すようにコントロールユニット1
2がソフトウェア的に備えるものである。
The flowchart of FIG. 3 shows the control of the fuel property (heavy and light) by the control unit 12 and the correction control of various correction coefficients based on the detection result. The functions of the predetermined cranking timing detecting means, the rotational speed change degree detecting means, the calculated value detecting means, the elapsed time detecting means, and the fuel property detecting means according to the present invention are the same as those shown in FIG.
Control unit 1 as shown in the flow chart
2 is provided as software.

【0031】ここで、図3のフローチャートに従って、
上記コントロールユニット12が行なう燃料性状(重軽
質)の検出制御及び該検出結果に基づく各種補正係数の
修正制御について説明することにする。ステップ(図中
ではSとしてある。以下同様)1では、燃料性状検出の
ための各種演算処理が終了しているか否かを判断する。
Here, according to the flow chart of FIG.
The detection control of the fuel property (heavy and light) performed by the control unit 12 and the correction control of various correction coefficients based on the detection result will be described. In step (denoted as S in the figure. The same applies hereinafter) 1, it is determined whether or not various calculation processes for fuel property detection have been completed.

【0032】NOであれば、未だ各種演算処理が終了し
ておらず、延いては未だ燃料性状を検出できていないと
判断して、燃料性状検出を行なうべく、ステップ3へ進
む。YESであれば、各種演算処理が終了しており、既
に燃料性状を検出できていると判断して、そのまま本フ
ローを終了する。ステップ2では、クランク角センサ1
4からの検出信号に基づいて算出される機関回転速度N
eと所定値STNEとを比較し、Ne≧STNEとなれ
ば、ステップ3へ進み、Ne<STNEであれば、本フ
ローを終了する。
If the answer is NO, it is determined that the various calculation processes have not been completed and the fuel property has not yet been detected, and the process proceeds to step 3 to detect the fuel property. If YES, it is determined that the various calculation processes have been completed and the fuel property has already been detected, and the present flow ends. In step 2, crank angle sensor 1
Engine rotation speed N calculated based on the detection signal from 4
e and a predetermined value STNE are compared, and if Ne ≧ STNE, the process proceeds to step 3, and if Ne <STNE, the present flow ends.

【0033】これは、Ne<STNEの場合には、例え
ば、機関の回転速度Neの変化速度がスタータモーター
の回転速度(クランキング回転速度)の変化速度(バッ
テリの消耗度合いによってスタータの回転速度の変化速
度は異なる)に大きく影響される惧れがあり、後述する
機関回転速度Neの変化度合いに基づく燃料性状の検出
精度に悪影響を及ぼすこととなるので、この悪影響を極
力排除すべく、始動性の良い軽質燃料を使用した場合に
機関が始動されて自力で回転し始める回転速度の低速側
近傍の回転速度(所定値STNE、例えば300rp
m)となるまで、機関回転速度Neの変化度合いに基づ
く燃料性状の検出を行なわせないようにするためであ
る。
When Ne <STNE, for example, the changing speed of the engine rotation speed Ne is the changing speed of the rotation speed (cranking rotation speed) of the starter motor (the starter rotation speed depends on the degree of battery consumption). Since the change speed is different), the accuracy of fuel property detection based on the degree of change in the engine speed Ne, which will be described later, will be adversely affected. When a light fuel of good quality is used, the engine is started and starts to rotate by itself. The rotation speed near the low speed side (predetermined value STNE, for example, 300 rp
This is because the fuel property is not detected based on the degree of change in the engine rotation speed Ne until m).

【0034】ステップ3では、回転速度変化(ここで
は、偏差ΔNeを用いて説明するが、これに限らず変化
率等を用いるようにしてもよい)を求めると共に、Ne
≧STNEとなってからのΔNeの積算値ΣDNE(=
ΣDNE-1+ΔNe)を算出する。なお、ΔNeは、所
定期間毎、例えば機関が1/2回転(クランク角度で1
80°回転)する間で変化した回転速度Neの偏差(即
ち、1/2回転前の回転速度Neと、最新の回転速度N
eと、の偏差)とするのが検出精度や検出限界等の面で
望ましいが、場合によっては、1/4回転毎や1/1回
転毎や1.5 回転毎や2回転毎等の偏差とすることもでき
る。ステップ4では、経過サイクル数Cycl(=Cy
cl+1)をカウントアップする。即ち、何回ΔNeが
積算されたのかを算出する。経過サイクル数が、本発明
に係る経過期間に相当する。
In step 3, the rotational speed change (here, the deviation ΔNe is used for explanation, but the present invention is not limited to this, a change rate or the like may be used), and Ne is used.
Integrated value ΣDNE of ΔNe after ≧ STNE (=
ΣDNE −1 + ΔNe) is calculated. It should be noted that ΔNe is, for example, ½ rotation of the engine (1 at crank angle) every predetermined period.
The deviation of the rotation speed Ne changed during the rotation of 80 ° (that is, the rotation speed Ne before ½ rotation and the latest rotation speed N).
However, in some cases, it may be a deviation every 1/4 rotation, every 1/1 rotation, every 1.5 rotations, every 2 rotations, etc. You can also In step 4, the number of elapsed cycles Cycl (= Cy
cl + 1) is incremented. That is, the number of times ΔNe has been integrated is calculated. The number of elapsed cycles corresponds to the elapsed period according to the present invention.

【0035】ステップ5では、積算値ΣDNEと、所定
値JDDNEと、を比較する。ΣDNE≧JDDNEと
なったら、ステップ6へ進み、ΣDNE<JDDNEで
あれば、ΣDNE≧JDDNEとなるまで、ステップ3
〜ステップ5の処理を繰り返す。ステップ6では、経過
サイクル数Cyclと、所定値JDCYLと、を比較す
る。Cycl<JDCYLであればステップ7へ進み、
Cycl≧JDCYLであればステップ8へ進む。
At step 5, the integrated value ΣDNE is compared with the predetermined value JDDNE. When ΣDNE ≧ JDDNE, the process proceeds to step 6, and when ΣDNE <JDDNE, step 3 is performed until ΣDNE ≧ JDDNE.
~ The process of step 5 is repeated. In step 6, the elapsed cycle number Cycl is compared with the predetermined value JDCYL. If Cycl <JDCYL, proceed to step 7,
If Cycl ≧ JDCYL, the process proceeds to step 8.

【0036】ステップ7では、Cycl<JDCYLで
あるので、機関回転速度Neが所定値STNE以上とな
ってから機関回転速度Neの偏差ΔNeの積算値ΣDN
Eが所定値JDDNE以上となるまでの経過サイクル数
Cyclが比較的少なく、始動完了(完爆)までに比較
的短時間で済んだと判断できるので、現在使用中の燃料
は、気化率が高い「軽質燃料」であると判定し(図4等
参照)、その後、ステップ9へ進む。
At step 7, since Cycl <JDCYL, the integrated value ΣDN of the deviation ΔNe of the engine speed Ne after the engine speed Ne becomes equal to or higher than the predetermined value STNE.
The number of cycles Cycl until E becomes equal to or greater than the predetermined value JDDNE is relatively small, and it can be determined that the completion of the start (complete explosion) was completed in a relatively short time. Therefore, the fuel currently in use has a high vaporization rate. It is determined that the fuel is “light fuel” (see FIG. 4 etc.), and then the process proceeds to step 9.

【0037】ステップ8では、Cycl≧JDCYLで
あるので、機関回転速度Neが所定値STNE以上とな
ってから機関回転速度Neの偏差ΔNeの積算値ΣDN
Eが所定値JDDNE以上となるまでの経過サイクル数
Cyclが比較的多く、始動完了(完爆)までに比較的
長期間を要したと判断できるので、現在使用中の燃料
は、気化率が低い「重質燃料」であると判定し(図4等
参照)、その後、ステップ9へ進む。
At step 8, since Cycl ≧ JDCYL, the integrated value ΣDN of the deviation ΔNe of the engine rotation speed Ne after the engine rotation speed Ne becomes equal to or higher than the predetermined value STNE.
Since the number of cycles Cycl until E becomes equal to or greater than the predetermined value JDDNE is relatively large, it can be determined that it took a relatively long time to complete the start (complete explosion), so the fuel currently in use has a low vaporization rate. It is determined that the fuel is “heavy fuel” (see FIG. 4 etc.), and then the process proceeds to step 9.

【0038】そして、ステップ9では、検出(判定)さ
れた燃料性状に見合うように、前記始動及び始動後増量
補正係数KASや水温増量補正係数KTWや加速増量補正係
数K ACC 等を修正する処理を行わせる。なお、前記ステ
ップ6では、経過サイクル数Cyclと、所定値JDC
YLと、を比較して重・軽質を判別する構成としたが、
よりきめ細かく使用燃料の性状を検出したい場合には、
複数の性状毎に経過サイクル数Cyclと積算値ΣDN
Eとの相関関係(図4等参照)を予め記憶しておき、検
出された経過サイクル数Cyclと積算値ΣDNEとの
相関関係が、前記予め記憶しておいたどの相関関係に該
当するのか、を判断すれば、よりきめ細かく使用燃料の
性状を検出することも可能である。
Then, in step 9, it is detected (determined).
The fuel consumption is increased to meet the fuel properties
Correction coefficient KASAnd water temperature increase correction coefficient KTWAnd acceleration increase correction
Number K ACCEtc. are made to be corrected. In addition, the above-mentioned
In step 6, the elapsed cycle number Cycl and the predetermined value JDC
Although it is configured to compare heavy and light by comparing with YL,
For more detailed detection of the properties of the fuel used,
Cycle number Cycl and integrated value ΣDN for each of a plurality of properties
The correlation with E (see FIG. 4 etc.) is stored in advance and the
Of the elapsed cycle number Cycl and the integrated value ΣDNE
The correlation is related to which one of the previously stored correlations.
Judging whether or not it hits the fuel used more precisely
It is also possible to detect the property.

【0039】また、機関温度や外気温度によって着火性
能(完爆までの所要サイクル数,所要期間)が異なるこ
とになるので、前記所定値JDDNE或いは前記所定値
JDCYLの何れか一方若しくは両方の値を、所望の燃
料性状検出精度が得られるように、機関温度や外気温度
等に応じて可変に設定するようにするのが好ましい(図
4〜図7参照)。
Further, since the ignition performance (the required number of cycles until the complete explosion, the required period) differs depending on the engine temperature and the outside air temperature, either one or both of the predetermined value JDDNE or the predetermined value JDCYL is set. It is preferable to variably set according to the engine temperature, the outside air temperature, etc. so that the desired fuel property detection accuracy can be obtained (see FIGS. 4 to 7).

【0040】このように、本実施形態によれば、機関回
転速度Neが所定値STNE以上となってから、機関回
転速度Neの偏差ΔNeの積算値ΣDNEが所定値JD
DNE以上となるまでの経過サイクル数Cycl(経過
期間)が、どのレベルにあるのか、に基づいて、使用燃
料の性状(重軽質)検出を行なうようにしたので、始動
開始から可能な限り早期に燃料性状を検出することが可
能となる。従って、例えば、従来のように始動後におい
て所定の運転条件が成立した後に運転状態を変化させて
使用燃料の性状を検出するようなものに比べ、極めて早
期に使用燃料の性状を検出できると共に、燃料性状検出
のために運転性や排気性能等を悪化させるような事態を
完全に回避することができる。
As described above, according to this embodiment, the integrated value ΣDNE of the deviation ΔNe of the engine rotation speed Ne after the engine rotation speed Ne becomes equal to or higher than the predetermined value STNE is the predetermined value JD.
Since the property (heavy and light) of the fuel used is detected based on the level of the number of cycles Cycl (elapsed period) until it reaches DNE or more, it is possible to start as early as possible from the start of starting. It becomes possible to detect the fuel property. Therefore, for example, as compared with the conventional one that detects the property of the used fuel by changing the operating state after the predetermined operation condition is satisfied after the start, the property of the used fuel can be detected very early, and It is possible to completely avoid a situation that deteriorates drivability, exhaust performance, etc. due to the detection of the fuel property.

【0041】また、燃料性状を早期に検出し、その結果
に基づいて、前記始動及び始動後増量補正係数KASや水
温増量補正係数KTWや加速増量補正係数KACC を(延い
ては空燃比を)、そのときの使用燃料に適合するように
早期に修正させるようにすれば、該修正によって排気性
能等を最大限改善することができる。なお、本実施形態
では、機関回転速度Neが所定値STNE以上となって
から、機関回転速度Neの偏差ΔNeの積算値ΣDNE
が所定値JDDNE以上となるまでの経過サイクル数C
ycl(経過期間)に基づいて、使用燃料の性状を検出
するようにして説明したが、スタータモーターの回転速
度の変化が燃料性状検出に余り影響しないようであれ
ば、始動(クランキング)開始時(この場合には、始動
開始時期が本発明の所定のクランキング時期となる)か
ら機関回転速度Neの偏差ΔNeの積算値ΣDNEを検
出し、積算値ΣDNEが所定値JDDNE以上となるま
での経過サイクル数Cycl(経過期間)に基づいて、
使用燃料の性状を検出するように構成することもでき
る。即ち、例えばイグニッションスイッチがONされた
こと等に基づいて、本発明の所定のクランキング時期を
検出するようにしてもよい。
Further, the fuel property is detected at an early stage, and based on the result, the start-up and post-starting increase correction coefficient K AS , the water temperature increase correction coefficient K TW, and the acceleration increase correction coefficient K ACC (and eventually the air-fuel ratio ), If it is corrected early so as to match the fuel used at that time, the exhaust performance and the like can be improved to the maximum extent by the correction. In the present embodiment, the integrated value ΣDNE of the deviation ΔNe of the engine rotation speed Ne after the engine rotation speed Ne becomes equal to or higher than the predetermined value STNE.
The number of cycles C until the value becomes equal to or greater than the predetermined value JDDNE
Although it has been described that the property of the used fuel is detected based on ycl (elapsed period), if the change in the rotation speed of the starter motor does not affect the fuel property detection so much, the start (cranking) is started. (In this case, the start timing becomes the predetermined cranking timing of the present invention) From the time when the integrated value ΣDNE of the deviation ΔNe of the engine speed Ne is detected and the integrated value ΣDNE becomes the predetermined value JDDNE or more Based on the cycle number Cycle (elapsed period),
It can also be configured to detect the properties of the fuel used. That is, for example, the predetermined cranking time of the present invention may be detected based on, for example, that the ignition switch is turned on.

【0042】また、本実施形態では、本発明にかかる温
度状態として、冷却水温度Twを用いて説明したが、外
気温度や燃料温度やシリンダヘッド或いはシリンダブロ
ック等の機関本体の温度を用いる構成としても良いこと
は勿論である。また、経過期間として、時間を用いるこ
ともできる。演算値検出手段として、マップを用いるこ
ともできる。
Further, in the present embodiment, the cooling water temperature Tw is used as the temperature condition according to the present invention, but the temperature of the outside air, the fuel temperature, the temperature of the engine body such as the cylinder head or the cylinder block is used. Of course, it is also good. Moreover, time can also be used as the elapsed period. A map may be used as the calculated value detecting means.

【0043】つづけて、使用燃料の性状をより一層きめ
細かく検出するための第2の実施形態について説明する
ことにする。第2の実施形態は、第1の実施形態のシス
テム構成(図2)と略同様であり、コントロールユニッ
ト12が行なう燃料性状の検出制御が、第1の実施形態
(図3のフローチャート)の場合と異なる。
Next, a second embodiment for detecting the property of the fuel used more finely will be described. The second embodiment is substantially the same as the system configuration of the first embodiment (FIG. 2), and the fuel property detection control performed by the control unit 12 is the first embodiment (flow chart of FIG. 3). Different from

【0044】従って、ここでは、第2の実施形態のコン
トロールユニット12が行なう燃料性状の検出制御につ
いてのみ、図8のフローチャートに従って説明すること
とする。なお、第1の実施形態における図3のフローチ
ャートのステップ1からステップ5まで、及びステップ
9については、第2の実施形態においても略同様である
ので、これらについての説明は省略することとする。
Therefore, only the fuel property detection control performed by the control unit 12 of the second embodiment will be described here with reference to the flowchart of FIG. Note that steps 1 to 5 and step 9 of the flowchart of FIG. 3 in the first embodiment are substantially the same in the second embodiment as well, so description thereof will be omitted.

【0045】即ち、第2の実施形態における燃料性状の
検出制御では、図8のフローチャートに示すように、図
3のフローチャートのステップ1〜ステップ5が実行さ
れると、ステップ6Aへ進む。ステップ6Aでは、「経
過サイクル数Cycl」と「始動時の水温Tw」と「複
数の異なる燃料性状」との関係が予め割り付けられた3
次元マップ(フロー中に示す)を参照し、実際の経過サ
イクル数Cyclと、実際の始動時水温Twと、に基づ
いて、現在使用中の燃料性状を判別する。
That is, in the fuel property detection control of the second embodiment, as shown in the flowchart of FIG. 8, when steps 1 to 5 of the flowchart of FIG. 3 are executed, the routine proceeds to step 6A. In step 6A, the relationship among the “elapsed cycle number Cycl”, the “water temperature Tw at the time of starting”, and the “plurality of different fuel properties” is assigned in advance 3
With reference to the dimension map (shown in the flow), the fuel property currently in use is determined based on the actual elapsed cycle number Cycl and the actual start-up water temperature Tw.

【0046】その後は、ステップ9へ進み、第1の実施
形態の場合と同様に、判別された燃料性状に見合うよう
に、前記始動及び始動後増量補正係数KASや水温増量補
正係数KTWや加速増量補正係数KACC 等を修正する処理
を行わせて、本フローを終了する。このように、第2の
実施形態によれば、「経過サイクル数Cycl」と「始
動時の水温Tw」と「複数の異なる燃料性状」との関係
を予め割り付けた3次元マップを利用することで、簡単
な構成により、第1の実施形態に対して、より一層きめ
細かく燃料性状を検出することができる。
After that, the process proceeds to step 9, and as in the case of the first embodiment, the start-up and post-start-up increase correction coefficient K AS and the water temperature increase correction coefficient K TW are adjusted in accordance with the judged fuel property. The process for correcting the acceleration increase correction coefficient K ACC and the like is performed, and the present flow ends. As described above, according to the second embodiment, the three-dimensional map in which the relationships among the “elapsed cycle number Cycl”, the “water temperature Tw at the time of starting”, and the “plurality of different fuel properties” are assigned in advance is used. With a simple configuration, the fuel property can be detected more finely than in the first embodiment.

【0047】なお、第1の実施形態及び第2の実施形態
共に、電源投入時には、図9に示すように、ΣDNE←
0,Cycl←0なるリセット処理が実行され、その後
に図3のフローチャートや図8のフローチャートが実行
されるようになっている。
In both the first embodiment and the second embodiment, when the power is turned on, as shown in FIG. 9, ΣDNE ←
The reset process of 0, Cycle ← 0 is executed, and then the flowchart of FIG. 3 and the flowchart of FIG. 8 are executed.

【0048】[0048]

【発明の効果】以上説明したように、請求項1に記載の
発明にかかる内燃機関の燃料性状検出装置によれば、始
動のためのクランキング中の所定時期から所定期間毎に
機関回転速度の変化度合いを検出し、当該機関回転速度
の変化度合いの演算値と、経過期間と、の相関関係に基
づいて、使用燃料の性状の検出を行なうようにしたの
で、始動開始(クランキング開始)から可能な限り早期
に燃料性状を検出することが可能となる。また、このよ
うな本発明によれば、例えば、従来のように始動完了後
において所定の運転条件が成立した後に運転状態を変化
させて使用燃料の性状を検出するようなものに比べ、極
めて早期に使用燃料の性状を検出できると共に、燃料性
状検出のために運転性や排気性能等を悪化させるような
事態を完全に回避することができることとなる。
As described above, according to the fuel property detecting device for an internal combustion engine according to the invention described in claim 1, the engine speed of the engine speed is changed every predetermined period from a predetermined time during cranking for starting. The degree of change is detected, and the property of the fuel used is detected based on the correlation between the calculated value of the degree of change in the engine speed and the elapsed time. It is possible to detect the fuel property as early as possible. Further, according to the present invention as described above, for example, as compared with the conventional one in which the operating condition is changed and the property of the fuel used is detected after a predetermined operating condition is satisfied after the completion of start-up, it is extremely early. In addition to being able to detect the properties of the fuel used, it is possible to completely avoid a situation that deteriorates drivability, exhaust performance, etc. due to the detection of the fuel properties.

【0049】また、本発明により燃料性状を早期に検出
し、その結果に基づいて、空燃比を、そのときの使用燃
料に適合するように早期に修正させるようにすれば、該
修正によって排気性能等を最大限改善することができる
空燃比制御装置を提供できることになる。請求項2に記
載の発明によれば、極めて簡単な構成で、迅速かつ高精
度に、使用燃料の性状(重・軽質)を検出することが可
能となる。
Further, according to the present invention, the fuel property is detected at an early stage, and based on the result, the air-fuel ratio is corrected at an early stage so as to match the fuel used at that time. It is possible to provide an air-fuel ratio control device capable of maximally improving the above. According to the second aspect of the present invention, the properties (heavy / light) of the fuel used can be detected quickly and accurately with an extremely simple configuration.

【0050】請求項3,請求項4に記載の発明のように
すれば、外気温度や機関温度等の温度状態の変化に応じ
て着火特性,始動性等が変化することで、前記演算値と
前記経過期間との相関関係が変化しても、当該相関関係
の変化を修正することができるので、燃料性状の検出精
度を常に所望の精度とすることが可能となる。請求項5
に記載の発明によれば、スタータモータの回転速度変化
等(バッテリの消耗度合い等)の影響を排除することが
でき、以って簡単な構成でありながら高精度に燃料性状
を検出することができる。
According to the third and fourth aspects of the present invention, the ignition value, the startability, etc. are changed according to the change of the temperature condition such as the outside air temperature and the engine temperature, so that the calculated value and Even if the correlation with the elapsed period changes, the change in the correlation can be corrected, so that the detection accuracy of the fuel property can always be set to a desired accuracy. Claim 5
According to the invention described in (1), it is possible to eliminate the influence of the change in the rotation speed of the starter motor (the degree of consumption of the battery, etc.), and thus it is possible to detect the fuel property with high accuracy with a simple configuration. it can.

【0051】請求項6に記載の発明によれば、機関回転
速度の変化度合いの検出限界と、機関回転速度の変化度
合いの検出精度延いては燃料性状の検出精度と、を良好
に両立させることができる。請求項7に記載の発明によ
れば、簡単な構成としつつ、高精度かつ、極力迅速に燃
料性状の検出を行なわせることができる。
According to the sixth aspect of the present invention, the detection limit of the degree of change of the engine rotation speed and the detection accuracy of the degree of change of the engine rotation speed, that is, the detection accuracy of the fuel property are well compatible with each other. You can According to the invention described in claim 7, the fuel property can be detected with high accuracy and as quickly as possible while having a simple structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の第1の実施の形態を示すシステム概略
図。
FIG. 2 is a system schematic diagram showing the first embodiment of the present invention.

【図3】同上実施形態の燃料性状検出制御及び該検出結
果に基づく各種補正係数の修正制御を説明するフローチ
ャート。
FIG. 3 is a flowchart illustrating a fuel property detection control according to the above embodiment and correction control of various correction coefficients based on the detection result.

【図4】サイクル数(経過期間)カウント開始からの経
過サイクル数Cycl(経過期間)と、ΣDNEと、の
相関関係の燃料性状違いによる相違を説明する図(Tw
=25°C時)。
FIG. 4 is a diagram (Tw) for explaining a difference between the cycle number Cycl (elapsed period) from the start of counting the cycle number (elapsed period) and ΣDNE due to a difference in fuel property.
= 25 ° C).

【図5】サイクル数(経過期間)カウント開始からの経
過サイクル数Cycl(経過期間)と、ΣDNEと、の
相関関係の燃料性状違いによる相違を説明する図(Tw
=10°C時)。
FIG. 5 is a diagram (Tw) for explaining the difference in the correlation between the number of cycles Cycl (elapsed period) from the start of counting the number of cycles (elapsed period) and ΣDNE due to the difference in fuel property.
= 10 ° C).

【図6】機関温度(Tw)若しくは外気温度或いは吸気
温度に基づいて所定値JDDNEを可変設定するための
テーブルの一例。
FIG. 6 is an example of a table for variably setting a predetermined value JDDNE based on an engine temperature (Tw), an outside air temperature, or an intake air temperature.

【図7】機関温度(Tw)若しくは外気温度或いは吸気
温度に基づいて所定値JDCYLを可変設定するための
テーブルの一例。
FIG. 7 is an example of a table for variably setting a predetermined value JDCYL based on an engine temperature (Tw), an outside air temperature, or an intake air temperature.

【図8】第2の実施形態の燃料性状検出制御及び該検出
結果に基づく各種補正係数の修正制御を説明するフロー
チャート。
FIG. 8 is a flowchart illustrating a fuel property detection control of the second embodiment and correction control of various correction coefficients based on the detection result.

【図9】電源投入時の処理を説明するフローチャート。FIG. 9 is a flowchart illustrating processing when power is turned on.

【符号の説明】[Explanation of symbols]

1 機関 12 コントロールユニット 14 クランク角センサ 15 水温センサ 1 Engine 12 Control unit 14 Crank angle sensor 15 Water temperature sensor

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】所定のクランキング時期を検出する所定ク
ランキング時期検出手段と、 前記所定クランキング時期検出手段により検出された所
定のクランキング時期から所定期間毎の機関回転速度の
変化度合いを検出する回転速度変化度合い検出手段と、 前記回転速度変化度合い検出手段により検出される所定
期間毎の回転速度の変化度合いの演算値を検出する演算
値検出手段と、 前記所定のクランキング時期から経過した所定期間を検
出する経過期間検出手段と、 前記演算値検出手段により検出される演算値と、前記経
過期間検出手段により検出される経過期間と、に基づい
て、使用燃料の性状を検出する燃料性状検出手段と、 を含んで構成したことを特徴とする内燃機関の燃料性状
検出装置。
1. A predetermined cranking timing detecting means for detecting a predetermined cranking timing, and a degree of change in engine rotational speed for each predetermined period from the predetermined cranking timing detected by the predetermined cranking timing detecting means. Rotation speed change degree detecting means, calculation value detecting means for detecting a calculation value of the change degree of the rotation speed for each predetermined period detected by the rotation speed change degree detecting means, and the predetermined cranking time has elapsed. A fuel property for detecting the property of the fuel used, based on an elapsed period detecting means for detecting a predetermined period, a calculated value detected by the calculated value detecting means, and an elapsed period detected by the elapsed period detecting means. A fuel property detection device for an internal combustion engine, comprising: a detection means.
【請求項2】前記燃料性状検出手段が、前記演算値検出
手段により検出される演算値が所定値以上となったとき
に、前記経過期間検出手段により検出される経過期間が
所定値以上となっているか否かに応じて、使用燃料の性
状を検出することを特徴とする請求項1に記載の内燃機
関の燃料性状検出装置。
2. The fuel property detecting means, when the calculated value detected by the calculated value detecting means is a predetermined value or more, the elapsed period detected by the elapsed period detecting means is a predetermined value or more. The fuel property detecting device for an internal combustion engine according to claim 1, wherein the property of the fuel used is detected according to whether or not the fuel is used.
【請求項3】前記経過期間に係わる所定値が、温度状態
に応じて可変設定されることを特徴とする請求項2に記
載の内燃機関の燃料性状検出装置。
3. The fuel property detecting device for an internal combustion engine according to claim 2, wherein the predetermined value relating to the elapsed period is variably set according to the temperature state.
【請求項4】前記演算値に係わる所定値が、温度状態に
応じて可変設定されることを特徴とする請求項2又は請
求項3に記載の内燃機関の燃料性状検出装置。
4. The fuel property detecting device for an internal combustion engine according to claim 2, wherein the predetermined value related to the calculated value is variably set according to the temperature condition.
【請求項5】前記所定のクランキング時期が、クランキ
ング中の機関回転速度が所定回転速度となった時期であ
ることを特徴とする請求項1〜請求項4の何れか1つに
記載の内燃機関の燃料性状検出装置。
5. The predetermined cranking time is a time when the engine speed during cranking becomes a predetermined speed, according to any one of claims 1 to 4. Fuel property detection device for internal combustion engine.
【請求項6】前記所定期間が、機関の1/2回転である
ことを特徴とする請求項1〜請求項5のいずれか1つに
記載の内燃機関の燃料性状検出装置。
6. The fuel property detection device for an internal combustion engine according to claim 1, wherein the predetermined period is 1/2 rotation of the engine.
【請求項7】前記機関回転速度の変化度合いが、機関回
転速度偏差であることを特徴とする請求項1〜請求項6
のいずれか1つに記載の内燃機関の燃料性状検出装置。
7. The method according to claim 1, wherein the degree of change of the engine speed is an engine speed deviation.
5. A fuel property detection device for an internal combustion engine according to any one of 1.
JP30938295A 1995-11-28 1995-11-28 Fuel property detection device for internal combustion engine Expired - Fee Related JP3494516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30938295A JP3494516B2 (en) 1995-11-28 1995-11-28 Fuel property detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30938295A JP3494516B2 (en) 1995-11-28 1995-11-28 Fuel property detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09151777A true JPH09151777A (en) 1997-06-10
JP3494516B2 JP3494516B2 (en) 2004-02-09

Family

ID=17992341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30938295A Expired - Fee Related JP3494516B2 (en) 1995-11-28 1995-11-28 Fuel property detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3494516B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1621748A1 (en) 2004-07-26 2006-02-01 Nissan Motor Co., Ltd. Combustion control apparatus for direct-injection spark-ignition internal combusion engine
US7050901B2 (en) 2003-09-19 2006-05-23 Nissan Motor Co., Ltd. Fuel property determination system
EP1811158A2 (en) 2006-01-24 2007-07-25 Hitachi, Ltd. Engine control apparatus
JP2008180115A (en) * 2007-01-23 2008-08-07 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Device for managing fuel used in construction machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525586B2 (en) * 2005-12-21 2010-08-18 三菱自動車工業株式会社 Engine combustion state detection device
WO2012176331A1 (en) * 2011-06-24 2012-12-27 トヨタ自動車株式会社 Control device for internal combustion engine
JP5712819B2 (en) * 2011-07-01 2015-05-07 トヨタ自動車株式会社 Control device for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050901B2 (en) 2003-09-19 2006-05-23 Nissan Motor Co., Ltd. Fuel property determination system
EP1621748A1 (en) 2004-07-26 2006-02-01 Nissan Motor Co., Ltd. Combustion control apparatus for direct-injection spark-ignition internal combusion engine
US7194999B2 (en) 2004-07-26 2007-03-27 Nissan Motor Co., Ltd. Combustion control apparatus for direct-injection spark-ignition internal combustion engine
EP1811158A2 (en) 2006-01-24 2007-07-25 Hitachi, Ltd. Engine control apparatus
EP1811158A3 (en) * 2006-01-24 2010-09-01 Hitachi, Ltd. Engine control apparatus
JP2008180115A (en) * 2007-01-23 2008-08-07 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Device for managing fuel used in construction machine
JP4577727B2 (en) * 2007-01-23 2010-11-10 住友建機株式会社 Construction machinery fuel management system

Also Published As

Publication number Publication date
JP3494516B2 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
US5817923A (en) Apparatus for detecting the fuel property for an internal combustion engine and method thereof
JP2884472B2 (en) Fuel property detection device for internal combustion engine
JPH08232752A (en) Output fluctuation detecting device and control device for internal combustion engine
JP3314294B2 (en) Control device for internal combustion engine
JP3791364B2 (en) Engine ignition timing control device
JP3956455B2 (en) Fuel injection control device for internal combustion engine
JP3494516B2 (en) Fuel property detection device for internal combustion engine
JP2002070706A (en) Ignition timing control system of internal combustion engine
JP3967663B2 (en) Electronic control unit for controlling ignition timing of internal combustion engine
JP3478163B2 (en) Control device for internal combustion engine
JP2921304B2 (en) Fuel injection control device for internal combustion engine
JP3401131B2 (en) Fuel property detection device for internal combustion engine
JP2775676B2 (en) Fuel supply control device for internal combustion engine
JP3850632B2 (en) Fuel injection control device for internal combustion engine
US6705288B2 (en) Starting control apparatus for internal combustion engine
CA2513222C (en) Ignition control system for internal combustion engine
JP4722676B2 (en) Fuel injection control device for multi-cylinder engine
JPH06185387A (en) Fuel injection controller for internal combustion engine
JP3489204B2 (en) Control device for internal combustion engine
JPH07286547A (en) Fuel property detecting device of internal combustion engine
JP4147932B2 (en) Engine ignition timing control device
JP2681565B2 (en) Fuel injection device for internal combustion engine
JP2917183B2 (en) Start control device for fuel injection device of internal combustion engine
JPH0849581A (en) Air-fuel ratio control device for internal combustion engine
JPH07151043A (en) Ignition control device for internal combustion engine

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees