[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0915507A - Dark field microscope - Google Patents

Dark field microscope

Info

Publication number
JPH0915507A
JPH0915507A JP16736395A JP16736395A JPH0915507A JP H0915507 A JPH0915507 A JP H0915507A JP 16736395 A JP16736395 A JP 16736395A JP 16736395 A JP16736395 A JP 16736395A JP H0915507 A JPH0915507 A JP H0915507A
Authority
JP
Japan
Prior art keywords
light
sample
objective lens
field microscope
aperture stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16736395A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nishida
浩幸 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP16736395A priority Critical patent/JPH0915507A/en
Publication of JPH0915507A publication Critical patent/JPH0915507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain the observation of only the minite object without reducing the resolution at the time of observing the minute object which is equal to or below the resolution through the dark field microscope. SOLUTION: Between a light source 21 and a sample 25, an aperture diaphragm 10 is arranged on the incident pupil position of a condenser lens 24. Light from the light source 21 is partly shielded by the aperture diaphragm 10. And also, a light shielding member 15 is arranged on the exit pupil position of an objective lens 26, and light passing by the objective lens side far away from zero-order diffracted light by the sample 25 among illuminating light is partly shielded by the light shielding member 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、標本のエッジ部分や分
解能以下の微小な部分を観察するのに適した暗視野顕微
鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dark field microscope suitable for observing an edge portion of a specimen or a minute portion having a resolution less than that of the specimen.

【0002】[0002]

【従来の技術】従来の暗視野顕微鏡光学系の一般的な構
成を図6に示す。光源1からの光はコレクタレンズ2に
より集光され、開口絞り3に至る。開口絞り3を通過し
た光はコンデンサレンズ4を介して標本5上において集
束される。標本5からの光は、対物レンズ6、遮光絞り
7及び結像レンズ8からなる結像光学系を経て像を形成
する。
2. Description of the Related Art A general configuration of a conventional dark field microscope optical system is shown in FIG. Light from the light source 1 is condensed by the collector lens 2 and reaches the aperture stop 3. The light passing through the aperture stop 3 is focused on the sample 5 via the condenser lens 4. The light from the sample 5 forms an image through an image forming optical system including an objective lens 6, a light blocking diaphragm 7 and an image forming lens 8.

【0003】この暗視野顕微鏡では、一般的に、照明は
対物レンズの開口数よりも大きな開口数で行われ、標本
のエッジ部分などの微小部分からの散乱・回折光のみが
対物レンズ6を通過するようにしている。この散乱・回
折光により像が形成され、微小部分の観察を行うことが
できるようになっている。しかしながら、照明光は必ず
しもエッジ部分や分解能以下の微小部分のみによって散
乱・回折されるわけではないので、従来の暗視野顕微鏡
でエッジ部分や分解能以下の微小部分のみを観察しよう
としても難しい場合があった。
In this dark field microscope, illumination is generally performed with a numerical aperture larger than the numerical aperture of the objective lens, and only scattered / diffracted light from a minute portion such as an edge portion of the sample passes through the objective lens 6. I am trying to do it. An image is formed by the scattered / diffracted light, and a minute portion can be observed. However, since the illumination light is not necessarily scattered and diffracted only by the edge portion and the minute portion below the resolution, it may be difficult to observe only the edge portion and the minute portion below the resolution with the conventional dark-field microscope. It was

【0004】例えば、半導体の回路パターンの観察にお
いては、回路パターン内部に強い散乱体があると、その
散乱体による散乱光の強度が非常に強いため、回路パタ
ーンのエッジ像を明瞭に形成することが極めて困難であ
ることが多い。また、バクテリアのべん毛の観察におい
ては、べん毛からの散乱・回折光の他に、菌体からの散
乱・回折角度の小さい光が重畳して観察される。この菌
体からの散乱・回折光の強度はべん毛からの散乱・回折
光の強度よりも非常に強いので、べん毛の光像を明瞭に
形成することは極めて困難であることが多かった。
For example, in observing a circuit pattern of a semiconductor, if a strong scatterer is present inside the circuit pattern, the intensity of light scattered by the scatterer is very strong, so that an edge image of the circuit pattern should be clearly formed. Is often extremely difficult. In addition, in observing bacterial flagella, in addition to scattered / diffracted light from flagella, light with small scattering / diffraction angle from bacterial cells is superimposed and observed. Since the intensity of scattered / diffracted light from these fungi is much higher than the intensity of scattered / diffracted light from flagella, it was often extremely difficult to clearly form an optical image of flagella.

【0005】このような暗視野顕微鏡において、対物レ
ンズの射出瞳又はそれと共役な位置に開口数を制限する
絞りを設け、バクテリアのべん毛の観察を容易に行える
ようにした例として特願平6−263979号がある。
また、結像光学系内部に開口を制限する特別な開口絞り
を配置した暗視野顕微鏡として特公平3−14325号
公報記載のものがある。
In such a dark-field microscope, Japanese Patent Application No. Hei 6- 6 is given as an example in which a diaphragm for limiting the numerical aperture is provided at the exit pupil of the objective lens or at a position conjugate with the exit pupil to facilitate observation of bacterial flagella. There is 263979 issue.
Further, as a dark field microscope in which a special aperture stop for limiting the aperture is arranged inside the imaging optical system, there is a dark field microscope described in Japanese Patent Publication No. 3-14325.

【0006】[0006]

【発明が解決しようとする課題】暗視野顕微鏡を用い
て、半導体パターンのエッジ部分やバクテリアのべん毛
などの微小部分を観察する際に、その観察が困難である
場合があるのは、前述のように、その微小部分以外の散
乱体からの散乱・回折角度の小さい光が対物レンズを通
過し、像を形成するからである。
As described above, when observing an edge portion of a semiconductor pattern or a minute portion such as bacterial flagella using a dark field microscope, the observation may be difficult as described above. In addition, light having a small scattering / diffraction angle from the scatterer other than the minute portion passes through the objective lens to form an image.

【0007】このため、特願平6−263979号に示
されているように、対物レンズの開口数を絞り、照明光
と観察光の開口数差を大きくすることによって、対物レ
ンズを透過する菌体からの散乱・回折光を低減すること
ができる。しかしながら、図7に示すように、結像光学
系を構成する開口絞り7が瞳を一様に制限するため、回
折角度の大きい光も同時に遮光することとなり、分解能
が低下し、さらに、明るさも低下するという問題があっ
た。
Therefore, as disclosed in Japanese Patent Application No. 6-263979, the number of apertures of the objective lens is reduced to increase the numerical aperture difference between the illumination light and the observation light, so that the bacteria that pass through the objective lens It is possible to reduce scattered / diffracted light from the body. However, as shown in FIG. 7, since the aperture stop 7 forming the image forming optical system uniformly limits the pupil, light having a large diffraction angle is also blocked at the same time, which lowers the resolution and further reduces the brightness. There was a problem of lowering.

【0008】また、特公平3−14325号公報に開示
されているように、開口絞り及び遮光絞りの双方を、と
もに光軸を中心として180度回転しても元の開口部と
重複しないような構成とすると、特願平6−26397
9号のように分解能が低下することは回避できる。しか
しながら、特公平3−14325号公報に開示されいて
る暗視野顕微鏡では、照明の開口絞りと結像系の遮光絞
りとが共役な位置にあり、開口絞りからの直接反射光を
遮光するように遮光絞りが配置されている。このため、
標本からの散乱・回折角度の小さい光は遮光できない。
また、仮に、遮光絞りが開口絞りの共役像よりも大きく
設定されていたとしても、対物レンズの開口数よりも大
きな開口数で照明する一般の暗視野照明とは異なり、対
物レンズの開口数の範囲内の光束を照明に用いているた
め、対物レンズ内に取り込むことができる回折光の角度
が一般の暗視野照明に比べて小さく、明るさ及び分解能
ともに低下せざるを得ない。さらに、照明光と観察光の
開口数差を大きくするためには、対物レンズに配置する
絞りを対物レンズの光軸側に広げ、観察光束あるいは照
明光束を細くする必要があり、何れの場合も、結果的に
は明るさは低下し、暗くなる。
Further, as disclosed in Japanese Patent Publication No. 3-14325, even if both the aperture stop and the light-shielding stop are rotated by 180 degrees about the optical axis, they do not overlap with the original opening. With the structure, Japanese Patent Application No. 6-26397
It is possible to avoid the decrease in resolution as in No. 9. However, in the dark-field microscope disclosed in Japanese Patent Publication No. 3-14325, the aperture stop of illumination and the light-shielding stop of the imaging system are in a conjugate position, and the light is blocked so that the light directly reflected from the aperture stop is blocked. A diaphragm is arranged. For this reason,
Light with small scattering and diffraction angles from the sample cannot be blocked.
Even if the light-shielding diaphragm is set to be larger than the conjugate image of the aperture diaphragm, unlike the general dark-field illumination that illuminates with a numerical aperture larger than the numerical aperture of the objective lens, Since the light flux within the range is used for illumination, the angle of the diffracted light that can be taken into the objective lens is smaller than that of general dark field illumination, and both brightness and resolution must be reduced. Further, in order to increase the numerical aperture difference between the illumination light and the observation light, it is necessary to widen the diaphragm arranged in the objective lens toward the optical axis side of the objective lens and thin the observation light flux or the illumination light flux. , As a result, the brightness decreases and becomes dark.

【0009】本発明は以上のような従来の暗視野顕微鏡
における問題点に鑑みてなされたものであり、分解能以
下の微小な物体を観察する際に、分解能を低下させるこ
となく、その微小物体だけを観察することができる暗視
野顕微鏡を提供することを目的とする。
The present invention has been made in view of the problems in the conventional dark-field microscope as described above, and when observing a minute object having a resolution less than that of the resolution, the resolution of the minute object is not lowered and only the minute object is observed. An object of the present invention is to provide a dark field microscope capable of observing.

【0010】[0010]

【問題点を解決するための手段】この目的を達成するた
め、本発明に係る暗視野顕微鏡は、光源と、該光源から
の光を集束させるコレクタレンズと、観察系の開口数よ
りも大きな開口数の下で前記コレクタレンズの光で標本
を照明する集光光学系と、前記標本の拡大像を形成す
る、少なくとも対物レンズを含む結像光学系を備えた暗
視野顕微鏡において、前記光源と前記標本との間に配置
され、照明の一部を遮光する開口絞りと、前記結像光学
系内に配置され、照明光の標本による0次回折光よりも
前記対物レンズ側を通る光の一部を遮光する遮光部材と
を有することを特徴とする。
In order to achieve this object, a dark field microscope according to the present invention comprises a light source, a collector lens for focusing light from the light source, and an aperture larger than the numerical aperture of the observation system. A dark field microscope comprising a focusing optics for illuminating a sample with light from the collector lens under a number and an imaging optics for forming a magnified image of the sample, the imaging optics including at least an objective lens; An aperture stop that is arranged between the sample and a portion of the illumination to block the illumination, and a part of the light that is arranged in the imaging optical system and that passes through the objective lens side relative to the 0th-order diffracted light of the illumination light sample. And a light blocking member for blocking light.

【0011】本発明の好ましい実施態様においては、照
明の標本側最小開口数NA0 と、標本による0次回折光
よりも前記対物レンズ側を通る光の一部を遮光すること
により制限された前記結像光学系の標本側開口数NA1
との間の関係が次式で表されることを特徴とする。 NA0 −NA1 ≧0.2
In a preferred embodiment of the present invention, the sample-side minimum numerical aperture NA 0 of the illumination and the above-mentioned result limited by blocking a part of the light passing through the objective lens side with respect to the 0th-order diffracted light by the sample. Sample-side numerical aperture NA 1 of the image optical system
The relationship between and is represented by the following equation. NA 0 −NA 1 ≧ 0.2

【0012】本発明の好ましい実施態様においては、前
記開口絞りを光軸を中心として回転させる機構と、前記
遮光部材を光軸を中心として回転させる機構とを備える
ことを特徴とする。
A preferred embodiment of the present invention is characterized by comprising a mechanism for rotating the aperture stop about the optical axis and a mechanism for rotating the light shielding member about the optical axis.

【0013】[0013]

【作用】以上のような構成を有する本発明に係る暗視野
顕微鏡において、「0次回折光」とは、標本によって回
折を受けずにそのまま透過又は反射する光を指す。ま
た、「0次回折光よりも結像光学系側を通る光」とは、
その光の進む方向と光軸とのなす角度が0次回折光と光
軸とのなす角度よりも小さいような光を指す。
In the dark field microscope according to the present invention having the above-mentioned structure, "0th order diffracted light" means light that is transmitted or reflected as it is without being diffracted by the sample. In addition, “the light that passes through the imaging optical system side with respect to the 0th-order diffracted light” is
It refers to light whose angle formed by the light traveling direction and the optical axis is smaller than the angle formed by the 0th-order diffracted light and the optical axis.

【0014】照明光の一部を遮光する開口絞りとして
は、例えば、図1(a)のように構成することができ
る。図1(a)に示す開口絞り10は、全体としては円
形をなしており、その外周に沿った円弧状の一部11の
みが開口している。この開口絞り10を照明系の例えば
コンデンサレンズ4(図6参照)の入射瞳位置に配置す
ると、標本5がない場合における対物レンズ6の射出瞳
12は図1(b)のような形状をなす。射出瞳12のう
ち、斜線を施していない部分13が0次回折光の通る部
分であり、斜線を施してある部分14が0次回折光より
も対物レンズ側において光が通る部分である。図1
(a)に示した部分11と図1(b)に示した部分13
とは光軸を中心として左右対称になる。
The aperture stop for blocking a part of the illumination light can be constructed, for example, as shown in FIG. The aperture stop 10 shown in FIG. 1A has a circular shape as a whole, and only an arc-shaped part 11 along the outer circumference thereof is open. When this aperture stop 10 is arranged at the entrance pupil position of, for example, the condenser lens 4 (see FIG. 6) of the illumination system, the exit pupil 12 of the objective lens 6 without the sample 5 has a shape as shown in FIG. . In the exit pupil 12, a non-shaded portion 13 is a portion through which the 0th-order diffracted light passes, and a shaded portion 14 is a portion through which light passes on the objective lens side with respect to the 0th-order diffracted light. FIG.
Portion 11 shown in FIG. 1A and portion 13 shown in FIG.
And are symmetrical about the optical axis.

【0015】従って、0次回折光よりも対物レンズ側を
通る光の一部を遮光する遮光部材は、部分14の一部を
遮光するような構成を有していればよく、例えば、図1
(c)に示すような構成をとり得る。図1(c)に示す
遮光部材15は、図1(b)に示す対物レンズの射出瞳
のうちの0次回折光を通す部分13よりも光軸に近い位
置において、円弧状に遮光を行う部分16を備えてお
り、この部分16は図1(b)に示した対物レンズの射
出瞳のうちの0次回折光よりも対物レンズ側を光が通る
部分14と重なり合うように位置している。
Therefore, the light blocking member for blocking a part of the light passing through the objective lens side with respect to the 0th order diffracted light may have a structure for blocking a part of the portion 14, for example, FIG.
A configuration as shown in (c) can be adopted. The light blocking member 15 shown in FIG. 1C is a portion that blocks light in an arc shape at a position closer to the optical axis than the portion 13 of the exit pupil of the objective lens shown in FIG. 16 is provided, and this portion 16 is positioned so as to overlap with a portion 14 of the exit pupil of the objective lens shown in FIG.

【0016】このような遮光部材15を用いれば、遮光
したい部分の対角位置が遮光されていないため、図7に
示したように、標本による散乱・回折角度の大きい光を
も同時に遮光してしまうという問題点を解決することが
できる。また、照明が対物レンズの開口数よりも大きく
なるようにしているため、分解能を確保するために照明
を犠牲にする必要はなく、特公平3−14325号のよ
うな問題は生じない。
If such a light shielding member 15 is used, the diagonal position of the portion to be shielded is not shielded, so that light having a large scattering / diffraction angle by the sample is also shielded at the same time, as shown in FIG. It is possible to solve the problem of being lost. Further, since the illumination is set to be larger than the numerical aperture of the objective lens, it is not necessary to sacrifice the illumination to secure the resolution, and the problem of Japanese Patent Publication No. 3-14325 does not occur.

【0017】開口絞りはコンデンサレンズの入射瞳に、
遮光絞りは対物レンズの射出瞳又はそれと共役な位置に
配置することが望ましい。ただし、遮光絞りが0次回折
光よりも対物レンズ側を通る光の一部を遮光するように
構成されていれば、それらの位置以外の位置に配置する
ことも可能である。
The aperture stop is located at the entrance pupil of the condenser lens,
It is desirable to arrange the light-shielding stop at the exit pupil of the objective lens or at a position conjugate with it. However, if the light blocking diaphragm is configured to block a part of the light passing through the objective lens side with respect to the 0th order diffracted light, the light blocking diaphragm may be arranged at a position other than those positions.

【0018】また、遮光絞りは標本からの散乱・回折角
度の小さい光を遮光するために用いられる。これは、例
えば、半導体の回路パターンのエッジ以外からの強い光
は、空間周波数を用いて表せば、かなり低い帯域に集ま
っているからである。この範囲は、標本によって異なる
が、400〜500本/mm以下の範囲である。良好な
観察を行うためには、最低でも300〜400本/mm
以下の範囲はカットしておくことが必要である。開口数
0.2を空間周波数に換算すると、約350本/mmで
ある(波長による影響は考慮しない)。従って、照明光
と観察光の開口数差が少なくとも0.2以上あることが
微小物体の観察を行ううえでは望ましい。すなわち、照
明の標本側の最小開口数をNA0 とし、遮光絞りにより
制限された結像光学系の標本側の開口数をNA1 とすれ
ば、次式のような関係が成立していることが望ましい。 NA0 −NA1 ≧0.2
Further, the light-shielding diaphragm is used to shield light having a small scattering / diffraction angle from the sample. This is because, for example, strong light from other than the edges of the semiconductor circuit pattern is concentrated in a considerably low band when expressed using a spatial frequency. This range is 400 to 500 lines / mm or less, though it varies depending on the sample. 300 to 400 lines / mm at least for good observation
It is necessary to cut the following range. When the numerical aperture of 0.2 is converted into a spatial frequency, it is about 350 lines / mm (the influence of wavelength is not taken into consideration). Therefore, it is desirable for observing a minute object that the numerical aperture difference between the illumination light and the observation light is at least 0.2 or more. That is, if the minimum numerical aperture on the sample side of the illumination is NA 0 and the numerical aperture on the sample side of the imaging optical system limited by the light-shielding diaphragm is NA 1 , then the following relationship is established. Is desirable. NA 0 −NA 1 ≧ 0.2

【0019】開口絞りについては、特公平3−1432
5号のように、複数個の開口を等角度の間隔に配置する
ことも可能であるが、開口を細かく分割すると、それに
応じて回折パターンが生じるので、開口の分割は行わな
い方が好ましい。
Regarding the aperture stop, Japanese Patent Publication No. 3-1432
It is possible to dispose a plurality of openings at equal angular intervals as in No. 5, but if the openings are divided finely, a diffraction pattern is generated accordingly, so it is preferable not to divide the openings.

【0020】また、図1(a)に示した開口絞り10と
図1(c)に示した遮光部材15は効果に方向性を有す
るため、標本の方向に合わせて光軸を中心として回転可
能であるように構成することが好ましい。開口絞りと遮
光部材とを回転させるための機構は開口絞りと遮光部材
の双方を連動させて回転させるものであることが望まし
いが、各々を独立に回転させるものであってもよい。
Since the aperture stop 10 shown in FIG. 1A and the light-shielding member 15 shown in FIG. 1C have a directional effect, they can be rotated about the optical axis according to the direction of the sample. It is preferable to configure as follows. The mechanism for rotating the aperture stop and the light blocking member is preferably a mechanism that rotates both the aperture stop and the light blocking member in conjunction with each other, but may also rotate each independently.

【0021】さらに、標本によって開口数差の最適値が
異なるので、結像光学系側の遮光部材は可変又は挿脱自
在に構成されていることが望ましい。同様に、照明系側
の開口絞りも可変又は挿脱自在に構成されていることが
望ましい。
Further, since the optimum value of the numerical aperture difference differs depending on the sample, it is desirable that the light blocking member on the side of the image forming optical system is variable or detachable. Similarly, it is desirable that the aperture stop on the illumination system side is also configured to be variable or insertable / removable.

【0022】[0022]

【実施例】【Example】

〔実施例1〕図2は本発明に係る暗視野顕微鏡の第一実
施例における落射暗視野光学系の概念図である。光源2
1からの光はコレクタレンズ22により集光され、開口
絞り10に至り、光源21からの光の一部のみが開口絞
り10を透過する。開口絞り10は図1(a)に示した
開口絞りが用いられている。開口絞り10を通過した光
は反射ミラー23により直角に進行方向を曲げられ、コ
ンデンサレンズ24を介して標本25上において集束さ
れる。開口絞り10はこのコンデンサレンズ24の入射
瞳位置に配置されている。
[Embodiment 1] FIG. 2 is a conceptual diagram of an epi-illumination dark field optical system in a first embodiment of a dark field microscope according to the present invention. Light source 2
The light from No. 1 is condensed by the collector lens 22, reaches the aperture stop 10, and only a part of the light from the light source 21 passes through the aperture stop 10. As the aperture stop 10, the aperture stop shown in FIG. 1A is used. The light passing through the aperture stop 10 is bent at a right angle by the reflection mirror 23, and is focused on the sample 25 via the condenser lens 24. The aperture stop 10 is arranged at the entrance pupil position of the condenser lens 24.

【0023】標本5で反射した光は対物レンズ26を経
て、遮光部材15を通過し、結像レンズ(図示せず)に
至り、像が形成される。遮光部材15は図1(c)に示
した遮光部材が用いられており、この遮光部材15は対
物レンズ26の射出瞳の位置に配置されている。
The light reflected by the sample 5 passes through the objective lens 26, the light-shielding member 15 and the imaging lens (not shown) to form an image. As the light blocking member 15, the light blocking member shown in FIG. 1C is used, and the light blocking member 15 is arranged at the position of the exit pupil of the objective lens 26.

【0024】本実施例においては、開口絞り10は光軸
を中心として回転可能に構成されている。開口絞り10
が回転すると、光が透過する部分11の位置が変わるの
で、開口絞り10の回転後の部分11の位置に対応して
反射ミラー23b及びコンデンサレンズ24bが配置さ
れている。
In the present embodiment, the aperture stop 10 is constructed so as to be rotatable around the optical axis. Aperture stop 10
When is rotated, the position of the portion 11 through which light is transmitted changes, so that the reflection mirror 23b and the condenser lens 24b are arranged corresponding to the position of the portion 11 of the aperture stop 10 after the rotation.

【0025】金属標本、例えば、半導体の回路パターン
の観察を行う場合、細かい構造が大きな構造の散乱・回
折角度の小さい光に埋もれて観察しにくいことがある。
100倍(開口数=0.90)の対物レンズを使用した
場合、照明の開口数は0.96乃至0.99である。本
実施例においては、コンデンサレンズ24の入射瞳の位
置に開口絞り10が配置されている。
When observing a metal sample, for example, a semiconductor circuit pattern, a fine structure may be buried in light having a large scattering / diffraction angle, which makes it difficult to observe.
When a 100 × (numerical aperture = 0.90) objective lens is used, the numerical aperture of illumination is 0.96 to 0.99. In the present embodiment, the aperture stop 10 is arranged at the position of the entrance pupil of the condenser lens 24.

【0026】また、半導体の回路パターン等のエッジ部
分だけの観察を行うためには、その他の部分からの散乱
・回折角度の小さい光を除去する必要がある。このた
め、対物レンズ26の射出瞳位置には遮光部材15が配
置されている。この遮光部材15は内側が開口数=約
0.7になるように構成されている。
Further, in order to observe only the edge portion of the semiconductor circuit pattern or the like, it is necessary to remove light having a small scattering / diffraction angle from other portions. Therefore, the light blocking member 15 is arranged at the exit pupil position of the objective lens 26. The light shielding member 15 is configured so that the inside has a numerical aperture of about 0.7.

【0027】本実施例においては、開口絞り10の対角
側を通る光は対物レンズの開口数全範囲を使っているの
で、解像力を低下させずに菌体からの散乱・回折角度の
小さい光を除去することができ、半導体回路パターンの
エッジ部分のみを良好に観察することができる。
In this embodiment, the light passing through the diagonal side of the aperture stop 10 uses the entire numerical aperture of the objective lens, and therefore the light having a small scattering / diffraction angle from the fungus body does not decrease the resolution. Can be removed, and only the edge portion of the semiconductor circuit pattern can be satisfactorily observed.

【0028】〔実施例2〕図3は本発明に係る暗視野顕
微鏡の第二実施例における落射暗視野光学系の概念図で
ある。光源31からの光はコレクタレンズ32により集
光され、開口絞り33に至り、光源21からの光の一部
のみが開口絞り33を透過する。開口絞り33は、図4
(a)に示すように、長方形と、その一の長辺に連続し
て形成されている半円形状とからなる形状を有してお
り、光軸に対して垂直な方向すなわち方向Xに沿って移
動可能であるように構成されている。開口絞り33を通
過した光はコンデンサレンズ34を介して標本35上に
おいて集束される。開口絞り33はこのコンデンサレン
ズ34の入射瞳位置に配置されている。
[Embodiment 2] FIG. 3 is a conceptual diagram of an epi-illumination dark field optical system in a second embodiment of the dark field microscope according to the present invention. The light from the light source 31 is condensed by the collector lens 32, reaches the aperture stop 33, and only part of the light from the light source 21 passes through the aperture stop 33. The aperture stop 33 is shown in FIG.
As shown in (a), it has a shape of a rectangle and a semicircular shape continuously formed on one long side thereof, and is in a direction perpendicular to the optical axis, that is, in the direction X. It is configured to be movable. The light passing through the aperture stop 33 is focused on the sample 35 via the condenser lens 34. The aperture stop 33 is arranged at the entrance pupil position of the condenser lens 34.

【0029】標本35からの光は対物レンズ36を経
て、遮光部材37を通過し、結像レンズ38に至り、像
が形成される。遮光部材37は図4(b)に示すような
長方形形状を有している。この遮光部材37は対物レン
ズ36の射出瞳の位置に配置されており、開口絞り33
と同様に光軸と直角な方向Xに沿って移動可能であると
ともに、開口絞り33の動きに連動して移動するように
構成されている。開口絞り33及び遮光部材37を可動
であるように構成することにより、標本に合わせたセッ
ティングが可能になる。
The light from the sample 35 passes through the objective lens 36, the light blocking member 37, and the image forming lens 38 to form an image. The light blocking member 37 has a rectangular shape as shown in FIG. The light shielding member 37 is arranged at the position of the exit pupil of the objective lens 36, and the aperture stop 33
Similarly to, it is movable along the direction X perpendicular to the optical axis, and is configured to move in conjunction with the movement of the aperture stop 33. By configuring the aperture stop 33 and the light blocking member 37 to be movable, it is possible to set according to the sample.

【0030】コンデンサレンズ34は油浸暗視野コンデ
ンサであり、開口数は1.2乃至1.4である。開口絞
り33は照明光束を制限するだけで、開口数を制限しな
いような構成にすると、照明の標本側最小開口数は1.
2となる。また、本実施例においては、遮光部材37が
対物レンズ36の開口数を0.7程度まで絞ることがで
きるようになっている。このため、第一実施例と同様
に、半導体の回路パターン等のエッジ部分などの微小部
分だけの観察を行う際に、その他の部分からの散乱・回
折角度の小さい光を除去することができる。
The condenser lens 34 is an oil-immersed dark-field condenser and has a numerical aperture of 1.2 to 1.4. If the aperture stop 33 is configured to limit the illumination light flux but not the numerical aperture, the minimum numerical aperture on the sample side of the illumination is 1.
It becomes 2. Further, in the present embodiment, the light shielding member 37 can reduce the numerical aperture of the objective lens 36 to about 0.7. Therefore, similar to the first embodiment, when observing only a minute portion such as an edge portion of a semiconductor circuit pattern, it is possible to remove light having a small scattering / diffraction angle from other portions.

【0031】開口絞り33及び遮光部材37の形状は本
実施例において示した形状のものには限定されない。第
一実施例において用いた開口絞り10及び遮光部材15
を用いることもできるし、あるいは、他の形状を採用す
ることもできる。その一例を図5(a)及び(b)に示
す。すなわち、開口絞り40を、図5(a)に示すよう
に、外周において円弧の一部41が欠けているような円
形形状とし、遮光部材42を、図5(b)に示すよう
に、その欠けた円弧41を含み、さらに、開口絞りの一
部43と重なるような形状にすることもできる。また、
開口絞り及び遮光部材の可動機構は透過系だけでなく、
落射系に用いることも可能である。
The shapes of the aperture stop 33 and the light shielding member 37 are not limited to those shown in this embodiment. Aperture stop 10 and light blocking member 15 used in the first embodiment
Can be used, or other shapes can be employed. An example thereof is shown in FIGS. 5 (a) and 5 (b). That is, as shown in FIG. 5A, the aperture stop 40 has a circular shape in which a part 41 of an arc is cut off on the outer periphery, and the light shielding member 42 is formed as shown in FIG. The shape may include a lacking arc 41 and may overlap the part 43 of the aperture stop. Also,
The movable mechanism of the aperture stop and the light blocking member is not only a transmission system,
It can also be used in an epi-illumination system.

【0032】以上説明したように、本発明に係る暗視野
顕微鏡は、特許請求の範囲に記載した特徴の他に下記の
特徴を有している。前記開口絞り及び前記遮光部材の少
なくとも一方を可変又は挿脱自在に構成したことを特徴
とする請求項1に記載の暗視野顕微鏡。
As described above, the dark field microscope according to the present invention has the following features in addition to the features described in the claims. The dark field microscope according to claim 1, wherein at least one of the aperture stop and the light blocking member is configured to be variable or insertable / detachable.

【0033】[0033]

【発明の効果】以上のように、本発明に係る暗視野顕微
鏡によれば、半導体の回路パターンのエッジ部分あるい
はバクテリアのべん毛などの分解能以下の微小物体を観
察する際に、分解能を低下させることなく、その微小物
体のみを観察することが可能になる。
As described above, according to the dark field microscope of the present invention, the resolution is lowered when observing a minute object having a resolution lower than the resolution, such as an edge portion of a semiconductor circuit pattern or bacterial flagella. Instead, it becomes possible to observe only the minute object.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る暗視野顕微鏡の第一実施例に用い
る開口絞り及び遮光部材の形状を示す平面図である。
FIG. 1 is a plan view showing the shapes of an aperture stop and a light shielding member used in a first embodiment of a dark field microscope according to the present invention.

【図2】本発明に係る暗視野顕微鏡の第一実施例におけ
る光学系の概略図である。
FIG. 2 is a schematic diagram of an optical system in a first embodiment of a dark field microscope according to the present invention.

【図3】本発明に係る暗視野顕微鏡の第二実施例におけ
る光学系の概略図である。
FIG. 3 is a schematic view of an optical system in a second embodiment of the dark field microscope according to the present invention.

【図4】本発明に係る暗視野顕微鏡の第二実施例に用い
る開口絞り及び遮光部材の形状を示す平面図である。
FIG. 4 is a plan view showing the shapes of an aperture stop and a light shielding member used in a second embodiment of the dark field microscope according to the present invention.

【図5】開口絞り及び遮光部材の別の形状を示す平面図
である。
FIG. 5 is a plan view showing another shape of the aperture stop and the light shielding member.

【図6】従来の暗視野顕微鏡光学系の一般的な概念図で
ある。
FIG. 6 is a general conceptual diagram of a conventional dark field microscope optical system.

【図7】従来の暗視野顕微鏡の結像光学系の構成を示す
概念図である。
FIG. 7 is a conceptual diagram showing a configuration of an image forming optical system of a conventional dark field microscope.

【符号の説明】[Explanation of symbols]

1,21,31 光源 2,22,32 コレクタレンズ 3,10,33 開口絞り 4,24,34 コンデンサレンズ 5,25,35 標本 6,26,36 対物レンズ 7 遮光絞り 15,37 遮光部材 8,38 結像レンズ 23 反射ミラー 1, 21, 31 Light source 2, 22, 32 Collector lens 3, 10, 33 Aperture diaphragm 4, 24, 34 Condenser lens 5, 25, 35 Specimen 6, 26, 36 Objective lens 7 Light-shielding diaphragm 15, 37 Light-shielding member 8, 38 Imaging lens 23 Reflective mirror

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源と、該光源からの光を集束させるコ
レクタレンズと、観察系の開口数よりも大きな開口数の
下で前記コレクタレンズの光で標本を照明する集光光学
系と、前記標本の拡大像を形成する、少なくとも対物レ
ンズを含む結像光学系を備えた暗視野顕微鏡において、 前記光源と前記標本との間に配置され、照明の一部を遮
光する開口絞りと、 前記結像光学系内に配置され、照明光の標本による0次
回折光よりも対物レンズ側を通る光の一部を遮光する遮
光部材とを有することを特徴とする暗視野顕微鏡。
1. A light source, a collector lens for focusing light from the light source, a condensing optical system for illuminating a sample with the light of the collector lens under a numerical aperture larger than the numerical aperture of the observation system, In a dark-field microscope that forms an enlarged image of a sample and that includes an imaging optical system that includes at least an objective lens, an aperture stop that is disposed between the light source and the sample, and blocks a part of illumination, A dark-field microscope, comprising: a light-shielding member that is disposed in the image optical system and that shields a part of light that passes through the objective lens side with respect to the 0th-order diffracted light of the illumination light sample.
【請求項2】 照明の標本側最小開口数NA0 と、標本
による0次回折光よりも前記対物レンズを通る光の一部
を遮光することにより制限された前記結像光学系の標本
側開口数NA1 との間の関係が次式で表わされるように
したことを特徴とする請求項1に記載の暗視野顕微鏡。 NA0 −NA1 ≧0.2
2. A sample-side numerical aperture NA 0 of illumination and a sample-side numerical aperture of the imaging optical system limited by blocking a part of light passing through the objective lens rather than 0th-order diffracted light by the sample. The dark field microscope according to claim 1, wherein the relationship with NA 1 is represented by the following equation. NA 0 −NA 1 ≧ 0.2
【請求項3】 前記開口絞りを光軸を中心として回転さ
せる機構と、前記遮光部材を光軸を中心として回転させ
る機構とを備えることを特徴とする請求項1に記載の暗
視野顕微鏡。
3. The dark field microscope according to claim 1, further comprising a mechanism for rotating the aperture stop about an optical axis and a mechanism for rotating the light shielding member about the optical axis.
JP16736395A 1995-07-03 1995-07-03 Dark field microscope Pending JPH0915507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16736395A JPH0915507A (en) 1995-07-03 1995-07-03 Dark field microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16736395A JPH0915507A (en) 1995-07-03 1995-07-03 Dark field microscope

Publications (1)

Publication Number Publication Date
JPH0915507A true JPH0915507A (en) 1997-01-17

Family

ID=15848336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16736395A Pending JPH0915507A (en) 1995-07-03 1995-07-03 Dark field microscope

Country Status (1)

Country Link
JP (1) JPH0915507A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345221A (en) * 2004-06-02 2005-12-15 Hitachi High-Technologies Corp Detection optical device and flaw inspection device
WO2007004708A1 (en) * 2005-06-30 2007-01-11 National University Corporation NARA Institute of Science and Technology Microscope
US7245426B2 (en) 2001-11-06 2007-07-17 Olympus Optical Co., Ltd. Total internal reflection illumination apparatus and microscope using this total internal reflection illumination apparatus
WO2007136100A1 (en) 2006-05-24 2007-11-29 Japan Science And Technology Agency Dark field microscope and its adjusting method
JP2015043450A (en) * 2009-08-24 2015-03-05 エーエスエムエル ネザーランズ ビー.ブイ. Metrology apparatus, lithographic apparatus, lithographic cell and metrology method
CN110161052A (en) * 2019-06-14 2019-08-23 中国工程物理研究院激光聚变研究中心 The method of the densely arranged optical elements of large caliber damage of in-situ monitoring
CN113050262A (en) * 2021-02-05 2021-06-29 安徽医科大学 Universal oblique illumination microscopic imaging system and correction algorithm thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7245426B2 (en) 2001-11-06 2007-07-17 Olympus Optical Co., Ltd. Total internal reflection illumination apparatus and microscope using this total internal reflection illumination apparatus
JP2005345221A (en) * 2004-06-02 2005-12-15 Hitachi High-Technologies Corp Detection optical device and flaw inspection device
JP4550488B2 (en) * 2004-06-02 2010-09-22 株式会社日立ハイテクノロジーズ Detection optical device and defect inspection device
JP4895050B2 (en) * 2005-06-30 2012-03-14 国立大学法人 奈良先端科学技術大学院大学 microscope
WO2007004708A1 (en) * 2005-06-30 2007-01-11 National University Corporation NARA Institute of Science and Technology Microscope
US7957058B2 (en) 2005-06-30 2011-06-07 National University Corporation NARA Institute of Science and Technology Microscope
WO2007136100A1 (en) 2006-05-24 2007-11-29 Japan Science And Technology Agency Dark field microscope and its adjusting method
JP2015043450A (en) * 2009-08-24 2015-03-05 エーエスエムエル ネザーランズ ビー.ブイ. Metrology apparatus, lithographic apparatus, lithographic cell and metrology method
JP2016145990A (en) * 2009-08-24 2016-08-12 エーエスエムエル ネザーランズ ビー.ブイ. Metrology apparatus, lithographic apparatus, lithographic cell and metrology method
CN110161052A (en) * 2019-06-14 2019-08-23 中国工程物理研究院激光聚变研究中心 The method of the densely arranged optical elements of large caliber damage of in-situ monitoring
CN110161052B (en) * 2019-06-14 2023-04-28 中国工程物理研究院激光聚变研究中心 Method for in-situ monitoring damage of densely arranged large-caliber optical elements
CN113050262A (en) * 2021-02-05 2021-06-29 安徽医科大学 Universal oblique illumination microscopic imaging system and correction algorithm thereof
CN113050262B (en) * 2021-02-05 2023-06-09 安徽医科大学 General oblique illumination microscopic imaging system and correction algorithm thereof

Similar Documents

Publication Publication Date Title
JP3708246B2 (en) Optical microscope having light control member
US4407569A (en) Device for selectively available phase-contrast and relief observation in microscopes
US20090052619A1 (en) Fresnel zone plate and x-ray microscope using the fresnel zone plate
KR100299420B1 (en) Image forming method and apparatus
JP2995820B2 (en) Exposure method and method, and device manufacturing method
US5708526A (en) Process and device for contrasting objects to be microscopically examined
KR20020013861A (en) Pattern forming member applied to sectioning image observing device and sectioning image observing device using it
WO1999012068A1 (en) Transmission illuminator for microscopes
JPS61120110A (en) Lighting apparatus for bright and dark field microscope
JPH04171415A (en) Long-focus depth high-resolution irradiating optical system
JPH0915507A (en) Dark field microscope
JPH0381129B2 (en)
US5311249A (en) Projection exposure apparatus
JP2004354650A (en) Microscopic observation method and microscope used therefor
JPH0289016A (en) Scanning type microscope
JPH01255818A (en) Reflection illuminating device
JPH0314325B2 (en)
JPH10513268A (en) Center masking lighting system and method
JP3395351B2 (en) Lighting equipment for microscope
JP2004318185A (en) Optical microscope having light control member
US20080094710A1 (en) Fresnel Zone Plate and X-Ray Microscope Using the Fresnel Zone Plate
JPH03267910A (en) Microscope
JP3380868B2 (en) Projection exposure equipment
JPH0235408A (en) Microscope
JP3217097B2 (en) High resolution microscope

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040629

Free format text: JAPANESE INTERMEDIATE CODE: A02